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Abstract

Non-convex optimization with local search heuristics has been widely used in
machine learning, achieving many state-of-art results. It becomes increasingly
important to understand why they can work for these NP-hard problems on typical
data. The landscape of many objective functions in learning has been conjectured
to have the geometric property that “all local optima are (approximately) global op-
tima”, and thus they can be solved efficiently by local search algorithms. However,
establishing such property can be very difficult.

In this paper, we analyze the optimization landscape of the random over-complete
tensor decomposition problem, which has many applications in unsupervised lean-
ing, especially in learning latent variable models. In practice, it can be efficiently
solved by gradient ascent on a non-convex objective. We show that for any small
constant ε > 0, among the set of points with function values (1 + ε)-factor larger
than the expectation of the function, all the local maxima are approximate global
maxima. Previously, the best-known result only characterizes the geometry in
small neighborhoods around the true components. Our result implies that even
with an initialization that is barely better than the random guess, the gradient ascent
algorithm is guaranteed to solve this problem.

Our main technique uses Kac-Rice formula and random matrix theory. To our best
knowledge, this is the first time when Kac-Rice formula is successfully applied to
counting the number of local optima of a highly-structured random polynomial
with dependent coefficients.

1 Introduction

Non-convex optimization is the dominating algorithmic technique behind many state-of-art results in
machine learning, computer vision, natural language processing and reinforcement learning. Local
search algorithms through stochastic gradient methods are simple, scalable and easy to implement.
Surprisingly, they also return high-quality solutions for practical problems like training deep neural
networks, which are NP-hard in the worst case. It has been conjectured [DPG+14, CHM+15] that
on typical data, the landscape of the training objectives has the nice geometric property that all
local minima are (approximate) global minima. Such property assures the local search algorithms to
converge to global minima [GHJY15, LSJR16, NP06, SQW15]. However, establishing it for concrete
problems can be challenging.

Despite recent progress on understanding the optimization landscape of various machine learning
problems (see [GHJY15, BBV16, BNS16, Kaw16, GLM16, HM16, HMR16] and references therein),
a comprehensive answer remains elusive. Moreover, all previous techniques fundamentally rely on
the spectral structure of the problems. For example, in [GLM16] allows us to pin down the set of the
critical points (points with vanishing gradients) as approximate eigenvectors of some matrix. Among

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



these eigenvectors we can further identify all the local minima. The heavy dependency on linear
algebraic structure limits the generalization to problems with non-linearity (like neural networks).

Towards developing techniques beyond linear algebra, in this work, we investigate the optimization
landscape of tensor decomposition problems. This is a clean non-convex optimization problem whose
optimization landscape cannot be analyzed by the previous approach. It also connects to the training
of neural networks with many shared properties [NPOV15] . For example, in comparison with the
matrix case where all the global optima reside on a (connected) Grassmannian manifold, for both
tensors and neural networks all the global optima are isolated from each other.

Besides the technical motivations above, tensor decomposition itself is also the key algorithmic tool for
learning many latent variable models, mixture of Gaussians, hidden Markov models, dictionary learn-
ing [Cha96, MR06, HKZ12, AHK12, AFH+12, HK13], just to name a few. In practice, local search
heuristics such as alternating least squares [CLA09], gradient descent and power method [KM11] are
popular and successful.

Tensor decomposition also connects to the learning of neural networks [GLM17, JSA15, CS16].
For example, The work [GLM17] shows that the objective of learning one-hidden-layer network is
implicitly decomposing a sequence of tensors with shared components, and uses the intuition from
tensor decomposition to design better objective functions that provably recovers the parameters under
Gaussian inputs.

Concretely, we consider decomposing a random 4-th order tensor T of the rank n of the following
form,

T =
n∑

i=1

ai ⊗ ai ⊗ ai ⊗ ai .

We are mainly interested in the over-complete regime where n ≫ d. This setting is particularly
challenging, but it is crucial for unsupervised learning applications where the hidden representations
have higher dimension than the data [AGMM15, DLCC07]. Previous algorithmic results either
require access to high order tensors [BCMV14, GVX13], or use complicated techniques such as
FOOBI [DLCC07] or sum-of-squares relaxation [BKS15, GM15, HSSS16, MSS16].

In the worst case, most tensor problems are NP-hard [Hås90, HL13]. Therefore we work in the
average case where vectors ai ∈ R

d are assumed to be drawn i.i.d from Gaussian distribution N (0, I).
We call ai’s the components of the tensor. We are given the entries of tensor T and our goal is to
recover the components a1, . . . , an.

We will analyze the following popular non-convex objective,

max f(x) =
∑

i,j,k,l∈[d]4

Ti,j,k,lxixjxkxl =

n∑

i=1

〈ai, x〉4 (1.1)

s.t. ‖x‖ = 1.

It is known that for n ≪ d2, the global maxima of f is close to one of ± 1√
d
a1, . . . ,± 1√

d
an. Previ-

ously, Ge et al. [GHJY15] show that for the orthogonal case where n ≤ d and all the ai’s are orthogo-
nal, objective function f(·) have only 2n local maxima that are approximately ± 1√

d
a1, . . . ,± 1√

d
an.

However, the technique heavily uses the orthogonality of the components and is not generalizable to
over-complete case.

Empirically, projected gradient ascent and power methods find one of the components ai’s even if n is
significantly larger than d. The local geometry for the over-complete case around the true components
is known: in a small neighborhood of each of ± 1√

d
ai’s, there is a unique local maximum [AGJ15].

Algebraic geometry techniques [CS13, ASS15] can show that f(·) has an exponential number of
other critical points, while these techniques seem difficult to extend to the characterization of local
maxima. It remains a major open question whether there are any other spurious local maxima that
gradient ascent can potentially converge to.

Main results. We show that there are no spurious local maxima in a large superlevel set that
contains all the points with function values slightly larger than that of the random initialization.



Theorem 1.1. Let ε, ζ ∈ (0, 1/3) be two arbitrary constants and d be sufficiently large. Suppose
d1+ε < n < d2−ε. Then, with high probability over the randomness of ai’s, we have that in the
superlevel set

L =
{
x ∈ Sd−1 : f(x) ≥ 3(1 + ζ)n

}
, (1.2)

there are exactly 2n local maxima with function values (1± o(1))d2, each of which is Õ(
√

n/d3)-
close to one of ± 1√

d
a1, . . . ,± 1√

d
an.

Previously, the best known result [AGJ15] only characterizes the geometry in small neighborhoods
around the true components, that is, there exists one local maximum in each of the small constant
neighborhoods around each of the true components ai’s. (It turns out in such neighborhoods, the
objective function is actually convex.) We significantly enlarge this region to the superlevel set L, on
which the function f is not convex and has an exponential number of saddle points, but still doesn’t
have any spurious local maximum.

Note that a random initialization z on the unit sphere has expected function value E[f(z)] = 3n.
Therefore the superlevel set L contains all points that have function values barely larger than that
of the random guess. Hence, Theorem 1.1 implies that with a slightly better initialization than the
random guess, gradient ascent and power method1 are guaranteed to find one of the components in
polynomial time. (It is known that after finding one component, it can be peeled off from the tensor
and the same algorithm can be repeated to find all other components.)

Corollary 1.2. In the setting of Theorem 1.1, with high probability over the choice of ai’s, we have
that given any starting point x0 that satisfies f(x0) ≥ 3(1 + ζ)n, stochastic projected gradient

descent2 will find one of the ± 1√
d
ai’s up to Õ(

√
n/d3) Euclidean error in polynomial time.

We also strengthen Theorem 1.1 and Corollary 1.2 (see Theorem 3.1) slightly – the same conclusion

still holds with ζ = O(
√
d/n) that is smaller than a constant. Note that the expected value of a

random initialization is 3n and we only require an initialization that is slightly better than random
guess in function value. We remark that a uniformly random point x on the unit sphere are not in
the set L with high probability. It’s an intriguing open question to characterize the landscape in the
complement of the set L.

We also conjecture that from random initialization, it suffices to use constant number of projected

gradient descent (with optimal step size) to achieve the function value 3(1+ ζ)n with ζ = O(
√
d/n).

This conjecture — an interesting question for future work — is based on the hypothesis that the first
constant number of steps of gradient descent can make similar improvements as the first step does

(which is equal to c
√
dn for a universal constant c).

As a comparison, previous works such as [AGJ15] require an initialization with function value
Θ(d2) ≫ n. Anandkumar et al. [AGJ16] analyze the dynamics of tensor power method with a
delicate initialization that is independent with the randomness of the tensor. Thus it is not suitable for
the situation where the initialization comes from the result of another algorithm, and it does not have
a direct implication on the landscape of f(·).
We note that the local maximum of f(·) corresponds to the robust eigenvector of the tensor. Using
this language, our theorem says that a robust eigenvector of an over-complete tensor with random
components is either one of those true components or has a small correlation with the tensor in
the sense that 〈T, x⊗4〉 is small. This improves significantly upon the understanding of robust
eigenvectors [ASS15] under an interesting random model.

The condition n > d1+ε should be artificial. The under-complete case (n < d) can be proved
by re-using the proof of [GHJY15] with the observation that local optima are preserved by linear
transformation. The intermediate regime when d < n < d1+ε should be analyzable by Kac-Rice
formula using similar techniques, but our current proof cannot capture it directly. Since the proof in
this paper is already involved, we leave this case to future work. The condition n < d2−ε matches
the best over-completeness level that existing polynomial algorithm can handle [DLCC07, MSS16].

1Power method is exactly equivalent to gradient ascent with a properly chosen finite learning rate
2We note that by stochastic gradient descent we meant the algorithm that is analyzed in [GHJY15]. To get

a global maximum in polynomial time (polynomial in log(1/ε) to get ε precision), one also needs to slightly
modify stochastic gradient descent in the following way: run SGD until 1/d accuracy and then switch to gradient
descent. Since the problem is locally strongly convex, the local convergence is linear.



Our techniques The proof of Theorem 1.1 uses Kac-Rice formula (see, e.g., [AT09]), which is
based on a counting argument. To build up the intuition, we tentatively view the unit sphere as a
collection of discrete points, then for each point x one can compute the probability (with respect to
the randomness of the function) that x is a local maximum. Adding up all these probabilities will
give us the expected number of local maxima. In continuous space, such counting argument has
to be more delicate since the local geometry needs to be taken into account. This is formalized by
Kac-Rice formula (see Lemma 2.2).

However, Kac-Rice formula only gives a closed form expression that involves the integration of
the expectation of some complicated random variable. It’s often very challenging to simplify the

expression to obtain interpretable results. Before our work, Auffinger et al. [AAČ13, AA+13] have
successfully applied Kac-Rice formula to characterize the landscape of polynomials with random
Gaussian coefficients. The exact expectation of the number of local minima can be computed there,
because the Hessian of a random polynomial is a Gaussian orthogonal ensemble, whose eigenvalue
distribution is well-understood with closed form expression.

Our technical contribution here is successfully applying Kac-Rice formula to structured random
non-convex functions where the formula cannot be exactly evaluated. The Hessian and gradients of
f(·) have much more complicated distributions compared to the Gaussian orthogonal ensemble. As a

result, the Kac-Rice formula is difficult to be evaluated exactly. We instead cut the space R
d into

regions and use different techniques to estimate the number of local maxima. See a proof overview in
Section 3. We believe our techniques can be extended to 3rd order tensors and can shed light on the
analysis of other non-convex problems with structured randomness.

Organization In Section 2 we introduce preliminaries regarding manifold optimization and Kac-Rice
formula. We give a detailed explanation of our proof strategy in Section 3. The technical details are
deferred to the supplementary material. We also note that the supplementary material contains an
extended version of the preliminary and proof overview section below.

2 Notations and Preliminaries

We use Idd to denote the identity matrix of dimension d× d. Let ‖ · ‖ denote the spectral norm of a
matrix or the Euclidean norm of a vector. Let ‖·‖F denote the Frobenius norm of a matrix or a tensor.

Gradient, Hessian, and local maxima on manifold We have a constrained optimization problem
over the unit sphere Sd−1, which is a smooth manifold. Thus we define the local maxima with respect
to the manifold. It’s known that projected gradient descent for Sd−1 behaves pretty much the same
on the manifold as in the usual unconstrained setting [BAC16]. In supplementary material we give a
brief introduction to manifold optimization, and the definition of gradient and Hessian. We refer the
readers to the book [AMS07] for more backgrounds.

Here we use grad f and Hess f to denote the gradient and the Hessian of f on the manifold Sd−1.
We compute them in the following claim.

Claim 2.1. Let f : Sd−1 → R be f(x) := 1
4

∑n
i=1〈ai, x〉4. Let Px = Idd − xx⊤. Then the gradient

and Hessian of f on the sphere can be written as,

grad f(x) = Px

n∑

i=1

〈ai, x〉3ai , Hess f(x) = 3

n∑

i=1

〈ai, x〉2Pxaia
⊤
i Px −

(
n∑

i=1

〈ai, x〉4
)
Px ,

A local maximum of a function f on the manifold Sd−1 satisfies grad f(x) = 0, and Hess f(x) � 0.

Let Mf be the set of all local maxima, i.e. Mf =
{
x ∈ Sd−1 : grad f(x) = 0,Hess f(x) � 0

}
.

Kac-Rice formula Kac-Rice formula is a general tool for computing the expected number of
special points on a manifold. Suppose there are two random functions P (·) : R

d → R
d and

Q(·) : Rd → R
k, and an open set B in R

k. The formula counts the expected number of point x ∈ R
d

that satisfies both P (x) = 0 and Q(x) ∈ B.

Suppose we take P = ∇f and Q = ∇2f , and let B be the set of negative semidefinite matrices, then
the set of points that satisfies P (x) = 0 and Q ∈ B is the set of all local maxima Mf . Moreover,

for any set Z ⊂ Sd−1, we can also augment Q by Q = [∇2f, x] and choose B = {A : A � 0} ⊗ Z.



With this choice of P,Q, Kac-Rice formula can count the number of local maxima inside the region
Z. For simplicity, we will only introduce Kac-Rice formula for this setting. We refer the readers
to [AT09, Chapter 11&12] for more backgrounds.

Lemma 2.2 (Informally stated). Let f be a random function defined on the unit sphere Sd−1 and let

Z ⊂ Sd−1. Under certain regularity conditions3 on f and Z, we have

E [|Mf ∩ Z|] =

∫
x

E [| det(Hess f)| · 1(Hess f � 0)1(x ∈ Z) | grad f(x) = 0] pgrad f(x)(0)dx . (2.1)

where dx is the usual surface measure on Sd−1 and pgrad f(x)(0) is the density of grad f(x) at 0.

Formula for the number of local maxima In this subsection, we give a concrete formula for
the number of local maxima of our objective function (1.1) inside the superlevel set L (defined
in equation (1.2)). Taking Z = L in Lemma 2.2, it boils down to estimating the quantity on
the right hand side of (2.1). We remark that for the particular function f as defined in (1.1) and
Z = L, the integrand in (2.1) doesn’t depend on the choice of x. This is because for any x ∈ Sd−1,
(Hess f, grad f,1(x ∈ L)) has the same joint distribution, as characterized below:

Lemma 2.3. Let f be the random function defined in (1.1). Let α1, . . . , αn ∈ N (0, 1), and
b1, . . . , bn ∼ N (0, Idd−1) be independent Gaussian random variables. Let

M = ‖α‖44 · Idd−1 − 3

n∑

i=1

α2
i bib

⊤
i and g =

n∑

i=1

α3
i bi (2.2)

Then, we have that for any x ∈ Sd−1, (Hess f, grad f, f) has the same joint distribution as

(−M, g, ‖α‖44).

Using Lemma 2.2 (with Z = L) and Lemma 2.3, we derive the following formula for the expectation
of our random variable E [|Mf ∩ L|]. Later we will later use Lemma 2.2 slightly differently with
another choice of Z.

Lemma 2.4. Using the notation of Lemma 2.3, let pg(·) denote the density of g. Then,

E [|Mf ∩ L|] = Vol(Sd−1) · E
[
|det(M)|1(M � 0)1(‖α‖44 ≥ 3(1 + ζ)n) | g = 0

]
pg(0) . (2.3)

3 Proof Overview

In this section, we give a high-level overview of the proof of the main Theorem. We will prove a
slightly stronger version of Theorem 1.1.

Let γ be a universal constant that is to be determined later. Define the set L1 ⊂ Sd−1 as,

L1 :=

{
x ∈ Sd−1 :

n∑

i=1

〈ai, x〉4 ≥ 3n+ γ
√
nd

}
. (3.1)

Indeed we see that L (defined in (1.2)) is a subset of L1 when n ≫ d. We prove that in L1 there are
exactly 2n local maxima.

Theorem 3.1 (main). There exists universal constants γ, β such that the following holds: suppose

d2/ logO(1) ≥ n ≥ βd log2 d and L1 be defined as in (3.1), then with high probability over the
choice of a1, . . . , an, we have that the number of local maxima in L1 is exactly 2n:

|Mf ∩ L1| = 2n . (3.2)

Moreover, each of the local maximum in L1 is Õ(
√

n/d3)-close to one of ± 1√
d
a1, . . . ,± 1√

d
an.

In order to count the number of local maxima in L1, we use the Kac-Rice formula (Lemma 2.4).
Recall that what Kac-Rice formula gives an expression that involves the complicated expectation

3We omit the long list of regularity conditions here for simplicity. See more details at [AT09, Theorem
12.1.1]



E

[
|det(M)|1(M � 0)1(‖α‖44 ≥ 3(1 + ζ)n) | g = 0

]
. Here the difficulty is to deal with the deter-

minant of a random matrix M (defined in Lemma 2.3), whose eigenvalue distribution does not admit
an analytical form. Moreover, due to the existence of the conditioning and the indicator functions,
it’s almost impossible to compute the RHS of the Kac-Rice formula (equation (2.3)) exactly.

Local vs. global analysis: The key idea to proceed is to divide the superlevel set L1 into two subsets

L1 = (L1 ∩ L2) ∪ Lc
2,

where L2 := {x ∈ Sd−1 : ∀i, ‖Pxai‖2 ≥ (1− δ)d, and |〈ai, x〉|2 ≤ δd} . (3.3)

Here δ is a sufficiently small universal constant that is to be chosen later. We also note that Lc
2 ⊂ L1

and hence L1 = (L1 ∩ L2) ∪ Lc
2.

Intuitively, the set L1 ∩ L2 contains those points that do not have large correlation with any of
the ai’s; the compliment Lc

2 is the union of the neighborhoods around each of the desired vector
1√
d
a1, . . . ,

1√
d
an. We will refer to the first subset L1 ∩ L2 as the global region, and refer to the Lc

2

as the local region.

We will compute the number of local maxima in sets L1 ∩ L2 and Lc
2 separately using different

techniques. We will show that with high probability L1 ∩ L2 contains no local maxima using Kac-
Rice formula (see Theorem 3.2). Then, we show that Lc

2 contains exactly 2n local maxima (see
Theorem 3.3) using a different and more direct approach.

Global analysis. The key benefit of have such division to local and global regions is that for the
global region, we can avoid evaluating the value of the RHS of the Kac-Rice formula. Instead, we only
need to have an estimate: Note that the number of local optima in L1 ∩ L2, namely |Mf ∩ L1 ∩ L2|,
is an integer nonnegative random variable. Thus, if we can show its expectation E [|Mf ∩ L1 ∩ L2|]
is much smaller than 1, then Markov’s inequality implies that with high probability, the number of
local maxima will be exactly zero. Concretely, we will use Lemma 2.2 with Z = L1 ∩ L2, and then
estimate the resulting integral using various techniques in random matrix theory. It remains quite
challenging even if we are only shooting for an estimate. Concretely, we get the following Theorem

Theorem 3.2. Let sets L1, L2 be defined as in equation (3.3) and n ≥ βd log2 d. There exists
universal small constant δ ∈ (0, 1) and universal constants γ, β, and a high probability event G0,
such that the expected number of local maxima in L1 ∩ L2 conditioned on G0 is exponentially small:

E

[
|Mf ∩ L1 ∩ L2|

∣∣ G0

]
≤ 2−d/2 .

See Section 3.1 for an overview of the analysis. The purpose and definition of G0 are more technical
and can be found in Section 3 of the supplementary material around equation (3.3) (3,4) and (3.5).
We also prove that G0 is indeed a high probability event in supplementary material. 4

Local analysis. In the local region Lc
2, that is, the neighborhoods of a1, . . . , an, we will show

there are exactly 2n local maxima. As argued above, it’s almost impossible to get exact numbers
out of the Kac-Rice formula since it’s often hard to compute the complicated integral. Moreover,
Kac-Rice formula only gives the expected number but not high probability bounds. However, here the
observation is that the local maxima (and critical points) in the local region are well-structured. Thus,
instead, we show that in these local regions, the gradient and Hessian of a point x are dominated by
the terms corresponding to components {ai}’s that are highly correlated with x. The number of such
terms cannot be very large (by restricted isometry property, see Section B.5 of the supplementary
material). As a result, we can characterize the possible local maxima explicitly, and eventually show
there is exactly one local maximum in each of the local neighborhoods around {± 1√

d
ai}’s. Similar

(but weaker) analysis was done before in [AGJ15]. We formalize the guarantee for local regions in
the following theorem, which is proved in Section 5 of the supplementary material. In Section 3.2 of
the supplementary material, we also discuss the key ideas of the proof of this Theorem.

Theorem 3.3. Suppose 1/δ2 · d log d ≤ n ≤ d2/ logO(1) d. Then, with high probability over the
choice a1, . . . , an, we have,

|Mf ∩ L1 ∩ Lc
2| = 2n . (3.4)

Moreover, each of the point in L ∩ Lc
2 is Õ(

√
n/d3)-close to one of ± 1√

d
a1, . . . ,± 1√

d
an.

4We note again that the supplementary material contains more details in each section even for sections in the
main text.



The main Theorem 3.1 is a direct consequence of Theorem 3.2 and Theorem 3.3. The formal proof
can be found in Section 3 of the supplementary material.

In the next subsections we sketch the basic ideas behind the proof of Theorem 3.2 and Theorem 3.3.
Theorem 3.2 is the crux of the technical part of the paper.

3.1 Estimating the Kac-Rice formula for the global region

The general plan to prove Theorem 3.2 is to use random matrix theory to estimate the RHS of the
Kac-Rice formula. We begin by applying Kac-Rice formula to our situation. We note that we dropped
the effect of G0 in all of the following discussions since G0 only affects some technicality that
appears in the details of the proof in the supplementary material.

Applying Kac-Rice formula. The first step to apply Kac-Rice formula is to characterize the
joint distribution of the gradient and the Hessian. We use the notation of Lemma 2.3 for ex-
pressing the joint distribution of (Hess f, grad f,1(x ∈ L1 ∩ L2)). For any fix x ∈ Sd−1,

let αi = 〈ai, x〉 and bi = Pxai (where Px = Id − xx⊤) and M = ‖α‖44 · Idd−1 −
3
∑n

i=1 α
2
i bib

⊤
i and g =

∑n
i=1 α

3
i bi as defined in (2.2). In order to apply Kac-Rice for-

mula, we’d like to compute the joint distribution of the gradient and the Hessian. We have that
(Hess f, grad f,1(x ∈ L1 ∩ L2)) has the same distribution as (M, g,1(E1 ∩ E2 ∩ E′

2)),where E1

corresponds to the event that x ∈ L1,

E1 =
{
‖α‖44 ≥ 3n+ γ

√
nd
}
,

and events E2 and E′
2 correspond to the events that x ∈ L2. We separate them out to reflect that E2

and E′
2 depends the randomness of αi’s and bi’s respectively.

E2 =
{
‖α‖2∞ ≤ δd

}
, and E′

2 =
{
∀i ∈ [n], ‖bi‖2 ≥ (1− δ)d

}
.

Using Kac-Rice formula (Lemma 2.2 with Z = L1 ∩ L2), we conclude that

E [|Mf ∩ L1 ∩ L2|] = Vol(Sd−1) · E [|det(M)|1(M � 0)1(E1 ∩ E2 ∩ E′
2) | g = 0] pg(0) .

(3.5)

Next, towards proving Theorem 3.2 we will estimate the RHS of (3.5) using various techniques.

Conditioning on α. We observe that the distributions of the gradient g and Hessian M on the RHS
of equation 3.5 are fairly complicated. In particular, we need to deal with the interactions of αi’s
(the components along x) and bi’s (the components in the orthogonal subspace of x). Therefore, we
use the law of total expectation to first condition on α and take expectation over the randomness of
bi’s, and then take expectation over αi’s. Let pg|α denotes the density of g | α, using the law of total
expectation, we have,

E [|det(M)|1(M � 0)1(E1 ∩ E2 ∩ E′
2) | g = 0] pg(0)

= E

[
E [|det(M)|1(M � 0)1(E′

2) | g = 0, α]1(E1)1(E2)pg|α(0)
]
. (3.6)

Note that the inner expectation of RHS of (3.6) is with respect to the randomness of bi’s and the outer
one is with respect to αi’s.

For notional convenience we define h(·) : Rn → R as

h(α) := Vol(Sd−1)E [det(M)1(M � 0)1(E′
2) | g = 0, α]1(E1)1(E2)pg|α(0) .

Then, using the Kac-Rice formula (equation (2.3))5 and equation (3.5), we obtain the following
explicit formula for the number of local maxima in L1 ∩ L2.

E [|Mf ∩ L1 ∩ L2|] = E [h(α)] . (3.7)

We note that pg|α(0) has an explicit expression since g | α is Gaussian. For the ease of exposition,

we separate out the hard-to-estimate part from h(α), which we call W (α):

W (α) := E [det(M)1(M � 0)1(E′
2) | g = 0, α]1(E1)1(E2) . (3.8)

5In Section C of the supplementary material, we rigorously verify the regularity condition of Kac-Rice
formula.



Therefore by definition, we have that h(α) = Vol(Sd−1)W (α)pg|α(0). Now, since we have condi-

tioned on α, the distributions of the Hessian, namely M | α, is a generalized Wishart matrix which is
slightly easier than before. However there are still several challenges that we need to address in order
to estimate W (α).

How to control det(M)1(M � 0)? Recall that M = ‖α‖44 − 3
∑

α2
i bib

⊤
i , which is a generalized

Wishart matrix whose eigenvalue distribution has no (known) analytical expression. The determinant
itself by definition is a high-degree polynomial over the entries, and in our case, a complicated
polynomial over the random variables αi’s and vectors bi’s. We also need to properly exploit the
presence of the indicator function 1(M � 0), since otherwise, the desired statement will not be true –
the function f has an exponential number of critical points.

Fortunately, in most of the cases, we can use the following simple claim that bounds the determinant
from above by the trace. The inequality is close to being tight when all the eigenvalues of M are
similar to each other. More importantly, it uses naturally the indicator function 1(M � 0)! Later we
will see how to strengthen it when it’s far from tight.

Claim 3.4. We have that

det(M)1(M � 0) ≤
( |tr(M)|

d− 1

)d−1

1(M � 0)

The claim is a direct consequence of AM-GM inequality on the eigenvalue of M . (Note that M is of
dimension (d− 1)× (d− 1). we give a formal proof in Section 3.1 of the supplementary material).
It follows that

W (α) ≤ E

[ |tr(M)|d−1

(d− 1)d−1
| g = 0, α

]
1(E1) . (3.9)

Here we dropped the indicators for events E2 and E′
2 since they are not important for the discussion

below. It turns out that |tr(M)| is a random variable that concentrates very well, and thus we have

E

[
|tr(M)|d−1

]
≈ |E [tr(M)] |d−1. It can be shown that (see Proposition 4.3 in the supplementary

material for the detailed calculation),

E [tr(M) | g = 0, α] = (d− 1)
(
‖α‖44 − 3‖α‖2 + 3‖α‖88/‖α‖66

)
.

Therefore using equation (3.9) and equation above, we have that

W (α) ≤
(
‖α‖44 − 3‖α‖2 + 3‖α‖88/‖α‖66

)d−1
1(E0)1(E1) .

Note that since g | α has Gaussian distribution, we have, pg|α(0) = (2π)−d/2(‖α‖66)−d/2 . Thus

using two equations above, we can bound E [h(α)] by

E [h(α)] ≤ Vol(Sd−1)E
[(
‖α‖44 − 3‖α‖2 + 3‖α‖88/‖α‖66

)d−1 · (2π)−d/2(‖α‖66)−d/2
1(E0)1(E1)

]
.

(3.10)

Therefore, it suffices to control the RHS of (3.10), which is much easier than the original Kac-Rice
formula. However, it turns out that RHS of (3.10) is roughly cd for some constant c > 1! Roughly
speaking, this is because the high powers of a random variables is very sensitive to its tail.

Two sub-cases according to max |αi|. We aim to find a tighter bond of E[h(α)] by re-using the idea
in equation (3.10). Intuitively we can consider two separate situations events: the event F0 when all
of the αi’s are close to constant and the complementary event F c

0 . Formally, let τ = Kn/d where K
is a universal constant that will be determined later. Let F0 be the event that .F0 =

{
‖α‖4∞ ≤ τ

}
.

Then we control E [h(α)1(F0)] and E [h(α)1(F c
0 )] separately. For the former, we basically need to

reuse the equation (3.10) with an indicator function inserted inside the expectation. For the latter,
we make use of the large coordinate, which contributes to the −3α2

i bib
⊤
i term in M and makes the

probability of 1(M � 0) extremely small. As a result det(M)1(M � 0) is almost always 0. We
formalized the two cases as below:

Proposition 3.5. Let K ≥ 2 · 103 be a universal constant. Let τ = Kn/d and let γ, β be sufficiently

large constants (depending on K). Then for any n ≥ βd log2 d, we have that

E [h(α)1(F0)] ≤ (0.3)d/2 .



Proposition 3.6. In the setting of Proposition 3.5, we have

E [h(α)1(F c
0 )] ≤ n · (0.3)d/2 .

We see that Theorem 3.2 can be obtained as a direct consequence of Proposition 3.5, Proposition 3.6
and equation (3.7).

Due to space limit, we refer the readers to the supplementary material for an extended version of
proof overview and the full proofs.

4 Conclusion

We analyze the optimization landscape of the random over-complete tensor decomposition problem
using the Kac-Rice formula and random matrix theory. We show that in the superlevel set L that
contains all the points with function values barely larger than the random guess, there are exactly 2n
local maxima that correspond to the true components. This implies that with an initialization slight
better than the random guess, local search algorithms converge to the desired solutions. We believe
our techniques can be extended to 3rd order tensors, or other non-convex problems with structured
randomness.

The immediate open question is whether there is any other spurious local maximum outside this
superlevel set. Answering it seems to involve solving difficult questions in random matrix theory.
Another potential approach to unravel the mystery behind the success of the non-convex methods is
to analyze the early stage of local search algorithms and show that they will enter the superlevel set L
quickly from a good initialization.
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