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ON THE OPTIMUM SUPPORT SIZE IN MESHFREE METHODS

years in complex simulations involving impact, crack propagation, large deformations, vibrations

and acoustics, and flow problems to name a few [1–3]. Despite a large number of the proposed

meshfree methods, these rely on a handful of meshfree basis functions or approximants [4], the most

popular being those based on the moving least-squares (MLS) idea [5]. Recently, the information-

theoretic concept of maximum-entropy (max-ent) has been put forth to develop meshfree first-order

and second-order approximants [6, 7], and polygonal approximants [8]. In the meshfree flavor,

max-ent approximants present some advantages over MLS approximants (e.g. their positivity, the

straightforward imposition of boundary data, the simpler quadrature, or the robustness of their

evaluation). In both MLS and max-ent approximants, one can adjust the locality of the shape

functions, understood as the extent of the support of the basis functions relative to the nominal

nodal spacing. In MLS methods, the locality is controlled through the so-called dilation parameter.

The most visible advantage of meshfree methods over the conventional mesh-based methods

is the flexibility in the definition and the adaption of the spacial discretization. Not only it is

possible to scatter nodes in the domain at will, without caring about any mesh or connectivity

(other than neighbor lists), but one can also select different support sizes for each basis function.

An understated advantage of meshfree methods based on smooth basis function, e.g. MLS or

max-ent approximants, is the very high accuracy that is achieved in problems with smooth solution

as compared with C0 finite elements (FEs) of the same order of polynomial consistency. Max-ent

C∞ approximants have even been shown to be considerably more accurate than the B-spline

shape basis functions in the Galerkin approximation of vibration and heat conduction problems

[7]. This accuracy comes at a cost, in that the meshfree shape functions cannot be, in general,

evaluated explicitly but rather require the solution of a local problem, a linear system for MLS,

and a convex optimization problem for max-ent. More important than the computational cost of

the basis function evaluation is the need for expensive quadrature rules, and the extra band-width

in the systems of equations as a result of the larger support size. Despite these drawbacks, in many

examples the high accuracy for very few degrees of freedom overrules the extra computational

cost as compared with standard FEs or B-Splines [6, 7]. Thus, meshfree methods seem to be well

suited in problems with smooth solutions and when accurate solutions are needed with stringent

limitations on the number of degrees of freedom.

While some authors have exploited the flexibility of meshfree methods in adaptive strategies by

arranging the nodes to capture sharp features of the solution or to control the discretization error

below a given bound [9, 10], the locality of the shape functions has not been adapted to enhance

the accuracy of the numerical solution. Most often, the dilation parameter or locality is kept fixed,

partly due to the structure of the a priori error estimates for meshfree methods [11], needed

in node adaption strategies. However, the locality of the meshfree shape functions has a strong

effect on the accuracy of the numerical solutions. By way of an illustration, Figure 1 shows the

convergence plots obtained with the local (first order) max-ent (LME) approximants in a Galerkin

approximation of a 2D linear elasticity problem. In this method, as discussed below in detail, a

non-dimensional parameter � controls the locality. As it tends to infinity, it has been proved [6]

that the affine function supported on the Delaunay triangulation of the node set is recovered. In

practice, for �=4 the shape functions are visually very close to the Delaunay approximants (see

Figure 2). Figure 1 shows that the accuracy of the numerical solution measured in the L2 norm

can change by almost two orders of magnitude depending on the locality. It can be observed that

the less local the functions, the more accurate the solution up to a limit. The figure also illustrates

an important practical point; it can be noticed that for very low values of �, the accuracy and

convergence rate are degraded. This can be fixed by using a more accurate and very expensive
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Figure 1. Convergence of first-order max-ent approximants in the Galerkin approximation of a 2D linear
elasticity problem [6] for several values of the locality parameter �.
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Figure 2. Seamless transition from meshfree to the Delaunay affine basis functions. The
transition is controlled by the non-dimensional nodal parameters �a , which here take linearly

varying values from 0.6 (left) to 6 (right).

quadrature, with 12 Gauss points per triangle in the quadrature mesh used in this example. In

summary, in this example widespread shape functions result in very accurate numerical solutions,

but the numerical integration rule can become prohibitively expensive.

This example highlights that the accuracy of the numerical solution for a fixed number of

nodes is considerably affected by the choice of locality. Unfortunately, the optimal support size of

the basis functions is problem-dependent, and even depends on the level of refinement [3, 6, 12].

Furthermore, it is expectable that the optimal locality may be different in different regions of

the domain. Yet, a priori error estimates do not provide clues on how to adapt the support size

[10, 11]. Although experience can be useful in many cases to estimate an appropriate support size

for the shape functions, the presence of free and very sensitive parameters in meshfree methods
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is an obstacle to a more widespread use. In this paper, we explore the automatic adaption of the

support size of the shape functions in the context of the LME approximants and partial differential

equations stemming from a minimum principle. Here, we consider Poisson’s equation, and linear

and non-linear elasticity approximated by the Galerkin method. We follow a variational adaptivity

approach, closely related to the variational node relocation methods proposed recently [13–15].

The central idea of the method is that the variational principle governs the selection of both the

discretized physical fields and the discretization itself. Although similar methods are conceivable

for MLS approximants, LME approximants are particularly well suited for variational adaption

because (1) the basis functions depend smoothly (C∞) on the parameters governing the locality,

with explicitly computable sensitivities, and (2) the evaluation of the shape functions is robust

with respect to the locality parameters, without the solvability problems of MLS methods for small

dilation parameters.

The structure of this paper is as follows. Section 2 introduces a modified formulation of the

LME approximants, particularly appropriate for the purpose of the paper. In Section 3, we describe

a framework for locality variational adaption. Numerical examples are presented and discussed in

Section 4. An algorithm for the optimization problem is also proposed. Some concluding remarks

are collected in Section 5.

2. LME APPROXIMANTS

LME meshfree approximants, introduced in [6], fall into the general class of convex approxima-

tion schemes, like natural neighbor approximants [16], subdivision approximants [17], or B-spline

and NURBS basis functions [18]. Convex basis functions, which we will denote by pa(x),a=

1, . . . ,N with x∈R
d , are non-negative approximants that fulfil the zeroth-order and first-order

consistency conditions, and are intimately related to convex geometry. The consistency condi-

tions are expressed by

pa(x)�0,
N∑

a=1

pa(x)=1,
N∑

a=1

pa(x) xa = x, (1)

where the last equation allows us to identify the vectorial weights xa with the positions of the

nodes associated with each basis function. We denote the set of nodes by X ={xa}a=1,...,N , and

its convex hull by

conv X =

{
x∈R

d

∣∣∣∣x=
N∑

a=1

�axa, with �a�0,
N∑

a=1

�a =1

}
.

As shown in [6], convex approximants can only exist within the convex hull (or subsets of it) and

satisfy ab initio a weak Kronecker-delta property at the boundary of the convex hull of the nodes.

With this property, the imposition of essential boundary conditions in the Galerkin methods is

straightforward. Note that convex approximants can be used in non-convex domains, as illustrated

later in the paper. However, the weak Kronecker-delta property does not hold in the non-convex

parts of the boundary of the domain.

There are infinitely many convex approximants for a node set of d+2 or more affinely inde-

pendent nodes. In max-ent approximation schemes, one selects from this set of approximants-

distinguished basis functions, whose functional form is not explicitly known in general but can
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be efficiently computed. A computationally and conceptually appealing procedure is to select

the optimal choice from an information-theoretic viewpoint. For this, one only needs to realize

that according to Equation (1), we can interpret the shape functions at each space location x as

a discrete probability distribution for a scheme with N events associated with the nodes. From

this probability distribution, we know that the expectation of the position random variable is

precisely x (first-order consistency condition). With this interpretation, the approximation of a

function u(x)≈
∑N

a=1 pa(x)ua from the nodal values {ua}a=1,...,N can be understood as computing

an expectation or average. The principle of max-ent postulates that the least biased distribution

consistent with the known information maximizes Shannon’s entropy subject to the constraints:

For fixed x maximize H(p1, p2, . . . , pN )=−
N∑

a=1

pa ln pa,

subject to pa�0, a=1, . . . ,N ,

N∑
a=1

pa =1,
N∑

a=1

paxa = x.

The solution of this optimization problem for a given x is the set of basis functions at this point,

pa(x),a=1, . . . ,N . This pure entropy maximization problem leads to non-local shape functions

[6], and has been proposed and used to develop basis functions for polygonal elements [8].

This kind of optimization problem to select convex approximants is reminiscent of Rajan’s

variational formulation of the Delaunay triangulation in arbitrary dimensions [19]. In this reference,

it was proven that the shape functions of the Delaunay triangulation are the solutions of the

following linear program:

For fixed x minimize U (x, p1, p2, . . . , pN ) =
N∑

a=1

pa|x−xa|
2,

subject to pa � 0, a=1, . . . ,N ,

N∑
a=1

pa = 1,
N∑

a=1

paxa = x.

The objective function can be interpreted as a measure of the width or locality of the shape

functions. Note that, despite that all sums in the above program run over all the nodes or basis

functions, for the solution only d+1 shape functions are non-zero at each x.

The idea behind the LME basis functions is to select the convex approximants that exhibit a

(Pareto) compromise between competing objectives, entropy maximization, and minimum width.

By minimizing the function �U (x, p1, p2, . . . , pN )−H(p1, p2, . . . , pN ) subject to the usual

constraints, meshfree-type approximants of controllable locality can be built. The non-negative

parameter �, which weighs the relative importance given to each of the objectives, can in principle

be a function of position. As fully detailed in [6], it can be mathematically proved that the

optimization problem has a unique solution within conv X , the resulting shape functions are

as smooth as �(x) with respect to position (e.g. C∞ if � is constant), are smooth (C∞) with

respect to �, can be efficiently computed using duality methods (see below), and max-ent and

the Delaunay approximants arise as specialized limits. An extension to second-order schemes has

been proposed in [7].
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Thus, LME approximants offer the opportunity of seamlessly transitioning from widespread

basis functions in parts of the computational domain to tightly supported functions in other parts,

by appropriately selecting the function �(x). In practice, it is not easy in general to define such

smooth adapted function on a general domain. Here, we present a modified objective function,

conceptually very similar to that presented in [6], but much more convenient from a practical

viewpoint. The optimization problems defining the LME approximants considered here take the

form

For fixed x∈ convX, minimize
N∑

a=1

�a pa|x−xa|
2+

N∑
a=1

pa ln pa,

subject to pa�0, a=1, . . . ,N ,

N∑
a=1

pa =1,
N∑

a=1

paxa = x

Here, locality is defined through a set of nodal parameters b={�a}a=1,...,N rather than a function.

This flavor of the LME approximants shares the main properties previously mentioned. In particular,

the methods of [6] allow us to immediately show that the resulting basis functions are C∞ functions

of both x and the discretization parameters, b and X . Similarly, the efficient solution of this

program follows from standard duality methods. Here, we just summarize the recipe for the final

calculation of the basis functions. By analogy with statistical mechanics, we define the partition

function

Z(x,�)=
N∑

b=1

exp[−�b|x−xb|
2+�·(x−xb)].

At each evaluation point x, the Lagrange multiplier for the linear consistency condition is the

unique solution to a solvable, convex, unconstrained optimization problem

�∗(x)=arg min
�∈R

d
ln Z(x,�).

This optimization problem with d unknowns, where d is the space dimension, is efficiently solved

with Newton’s method. Then, the basis functions adopt the form

pa(x)=
1

Z(x,�∗(x))
exp[−�a|x−xa|

2+�∗(x) ·(x−xa)]. (2)

The calculation of the spatial gradients of the shape functions can be found in Appendix A.

The smooth transition from widespread meshfree basis functions to linear C0 basis functions

in 1D is illustrated in Figure 2. The transition is controlled by the set of non-negative locality

parameters b={�a =�a/h
2
a}a=1,...,N , where ha is the nodal spacing (uniform in this case) and �a is

a dimensionless parameter that characterizes the degree of locality of the basis function associated

with the node xa . It can be noticed that the shape functions become sharper and more local as

the value of the dimensionless parameter �a increases. For values of �a close to 4 and above, the

shape functions are nearly indistinguishable from the affine Delaunay basis functions.

The formulation of the LME approximants presented here allows us to control with great

flexibility the degree of locality, defined as the extent of the basis functions relative to the typical

nodal spacing, through the parameters �a . Note that as soon as the nodal spacing is non-uniform,
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Figure 3. Shape functions for a non-uniform nodal distribution. Non-uniform locality of the basis
functions for a constant value of � (left) and basis functions with uniform locality by adapting

the nodal parameters �a to achieve uniform �a =�ah
2
a (right). Here, ha denotes the typical nodal

spacing close to the ath node.

a spatially varying � is required to define basis functions with uniform value of � or locality, see

Figure 3 for an illustration.

3. VARIATIONAL ADAPTIVITY WITH THE LME APPROXIMANTS

This section outlines the concept of variational adaptivity, and its application to LME approximants.

Variational adaptivity is a natural strategy in partial differential equations that can be cast as a

minimization problem, such as linear and non-linear elasticity, linear and non-linear diffusion

equations, including transient problems appropriately time-discretized, or variational plasticity

formulations. In these methods, the energy minimization determines not only the equilibrium

discrete solution, but also the optimal node locations or mesh connectivity. When compared with the

traditional adaptive methods based on error estimation and remeshing criteria, variational adaptive

strategies are particularly well suited for strongly non-linear problems since they do not rely on

linearization. In the present setting, one fundamental drawback of adaptivity driven by a posteriori

error estimation is that current a priori error estimates for meshfree methods [11] do not provide

any clue on how to adapt the locality of the basis functions once the local error is estimated.

Variational adaptivity does not require any remeshing criterion, and the adaption is performed

on the sole basis of energy optimality. On the other hand, one limitation of current variational

adaptivity techniques is that they optimize the discretization on the basis of a global quantity,

whereas most engineering calculations are performed to extract a specific quantity of interest. Error

estimation techniques targeted at these quantities have been developed in the recent years [20].

To illustrate the key ideas, we consider non-linear elastostatics. Given the undeformed config-

uration of an elastic body �0⊂R
3 subject to body forces, with prescribed deformation on part of

its boundary ��
D
0 and prescribed tractions in the rest of the boundary of the body ��

N
0 , the goal

is to obtain the deformation mapping u :�0−→R
3 satisfying the following equations (balance of

linear momentum and boundary conditions):

Div P+B = 0 in �0,

u=u on ��
D
0 ,

PN = T on ��
N
0 .
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Here Div denotes the divergence in material coordinates, P is the first Piola–Kirchhoff stress tensor,

B the body force per unit undeformed volume, N the unit outward normal to the boundary of the

undeformed body, T is the prescribed traction per unit undeformed area, and u is the prescribed

deformation mapping in part of the boundary. These equations need to be supplemented by the

constitutive relation, which in hyper-elastic materials takes the form

P(X)=
�W

�F
(Du(X)) ∀X ∈�0.

Here W (F) is the free energy density of the material, whose argument is the deformation gradient,

that is the derivative of the deformation mapping Du.

The standard FE discretization of this problem relies on the weak form of these equations and

the FE interpolation of the deformation mapping and the test functions. The resulting non-linear

set of equations can be solved using, for instance, Newton’s method. This approach may lead to

unstable equilibria, and in many instances, it is useful to recast the non-linear elastostatics problem

as a minimization problem. We define the total potential energy of the body and the applied loads as

I [u]=

∫

�0

W (Du)d�−

∫

�0

B ·ud�−

∫

��
N
0

T ·ud�.

We denote by C the space of admissible deformation mapping satisfying the essential boundary

conditions u=u on ��
D
0 . According to the principle of minimal potential energy, the stable

equilibrium deformations u∗ minimize the total potential energy functional

u∗ =arg inf
u∈C

I [u]. (3)

It takes a simple calculation to show that the Euler–Lagrange equations of this variational problem

are the strong form of the governing equations of non-linear elastostatics. Additionally, the solutions

of Equation (3) are stable equilibria.

The Ritz view of Galerkin methods for partial differential equations stemming fromminimization

principles proceeds as follows. The physical field, here the deformation mapping, is discretized as

uh(X)=
N∑

a=1

ua pa(X),

where ua denote the nodal values and pa(X) are the basis functions defined in the undeformed

body. We denote by U=(u1,u2, . . . ,uN ) the array containing all the nodal values. Plugging this

expression into the potential energy functional, we obtain the discrete potential energy function

Ih(U)= I [uh], which also involves numerical quadrature. The solution of the discretized problem

is simply

U
∗ =arg min

U∈Ch

Ih(U), (4)

where Ch is the set of nodal values such that uh is an admissible discrete deformation mapping

consistent with the boundary conditions. Since the set of deformation mappings of the discrete

scheme is a subset of C, the minimization in Equation (4) can be viewed as a constrained version

of the minimization problem in Equation (3), hence yields higher optimal values of the potential

energy.
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Let us explicitly denote the dependence of the basis functions pa(X; P) on the set of discretiza-

tion parameters P , which in FE methods is the location of the nodes and the mesh connectivity,

and in the present setting is the location of the nodes and the locality parameters. Then, we can

view the discrete potential energy as a function of P too, and seek for minima with respect to

both the nodal values of the physical field and the discretization parameters

(U; P)∗ =arg min
U∈Ch ,P∈P

Ih(U; P). (5)

Here,P denotes some suitable admissible set of discretization parameters. In this way, the minimum

principle yields the equilibrium solutions and also relaxes as much as possible the frustration

introduced by the discretization scheme. This approach has received considerable attention in the FE

context in the recent years [13, 15, 21, 22]. These references show the robustness and effectivity of

variational adaptivity, and highlight its relation with configurational mechanics. Related approaches

in structural optimization [14, 23] and elastodynamics [24] have been proposed.

For LME approximants, the set of discretization parameters is P=(X,b), i.e. the node set and

the nodal values of the locality parameter. In the present paper, only variational adaption with

respect to b is considered, of interest by its own as argued in the introduction. The full optimization

of the discretization parameters is the object of current research. Thus, we will consider the

shape functions as explicitly depending on the locality parameters pa(X;b), and will solve the

minimization problem

(U;b)∗ =arg min
U∈Ch ,b∈P

Ih(U;b). (6)

The nature of the space of admissible locality parameters P is discussed in the following section.

This minimization equilibrates the standard forces conjugate to the physical fields, as well as the

configurational forces conjugate to the locality of the shape functions. By the chain rule, these

forces, required in the numerical optimization by gradient methods, at the bth node, can be written as

�Ih

�ub
=

∫

�0

P∇0 pb d�−

∫

�0

pbB d�−

∫

��
N
0

pbT d�,

�Ih

��b
=

∫

�0

N∑
a=1

(
uTa P

�(∇0 pa)

��b

)
d�−

∫

�0

B ·

(
N∑

a=1

�pa

��b
ua

)
d�

−

∫

��
N
0

T ·

(
N∑

a=1

�pa

��b
ua

)
d�.

(7)

Here, ∇0 is the gradient with respect to the material coordinates of the undeformed body, where

the basis functions are defined. Although in these expressions the sums run over all the nodes,

in practice only the nodes neighboring the bth node contribute to the sums. A key technical fact

behind the proposed method is that the sensitivities of the shape functions with respect to the

locality parameters can be readily computed for LME approximants, as shown in Appendix A.

The problem presented in Equation (5) is, in general, highly non-convex and difficult. Figure 4

illustrates this fact. The energy can be thought of as dependent on two sets of variables, one associ-

ated with the discretization of the physical field U and the other associated with the discretization

parameters P=(X,b). For fixed discretization parameters, the minimization problem with respect

9
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a function of b:

U
∗(b)=argmin

b∈P
Ih(U;b).

Numerically, this involves the solution of a system of linear equations for Poisson and linear

elasticity problems, or a non-linear optimization problem for non-linear elasticity. For the latter,

we use a limited memory BFGS algorithm [25]. Algorithmically, this can be understood as an

inner loop. This allows us to formally define a discrete energy function depending only on the

locality parameters

Îh(b)= Ih(U
∗(b);b),

which is optimized in an outer loop. In this optimization, the set of admissible locality parameters

P is defined as follows. As illustrated before, values of the non-dimensional locality � higher than

4 lead to basis functions very close to the Delaunay limit. For this reason, we limit the maximum

value of �a to 4/h2a , where ha is the typical nodal spacing around node a. On the other hand,

low values of the locality parameter lead to widespread shape functions that can increase the

computational cost of the solution considerably, by enlarging the band-width of the system and by

requiring more quadrature points for accurate results. For this reason, we impose the constraints

�a��min/h
2
a , where depending on the application �min takes values around 0.8. Thus, we selectP=

[�min/h
2
1,4/h

2
1]×[�min/h

2
2,4/h

2
2]×· · ·×[�min/h

2
N ,4/h2N ]. The numerical optimization of Îh(b)

within P is carried out with a limited memory BFGS implementation for bound-constrained

problems [26].

The algorithm can be summarized as follows for a non-linear problem:

1. Set b0=bguess and n=0

2. Set bmin and bmax

3. Outer loop: L-BFGS-B algorithm (iterations run over n)

(a) Inner loop: L-BFGS

(i) Un =U∗(bn)

(ii) I nh = Ih(U
n;bn)

(iii) �Ih
�b

(Un;bn)

(b) Exit if

∣∣∣bn−bn−1
∣∣∣�Tol� and

∣∣∣I nh − I n−1
h

∣∣∣�TolI and

∣∣∣�Ih
�b

∣∣∣�TolDer I

(c) Update to bn+1

(d) Reset n to n+1, and go to 3.

For a linear problem, the inner loop is replaced by a solver for linear systems of equations. Despite

the robust and efficient performance of the proposed algorithm, we believe that there is a room

for improvement in the numerical optimization strategy for these kinds of variational adaptivity

programs.

4.2. Example 1: 2D heat conduction with Gaussian solution

To illustrate the proposed method, we consider a Poisson boundary value problem

−∇ ·(k∇u) = s in �=[0,1]×[0,1],

u = ū in ��.
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Figure 5. Analytical solution of Example 1.

We consider in this example k=1, and chose the source s and the boundary data ū such that the

exact solution has the following expression (illustrated in Figure 5):

u(x, y)=10e−180[(x−0.51)2+(y−0.52)2]+50e−450[(x−0.31)2+(y−0.34)2]

The strong form of the boundary value problem arises as the Euler–Lagrange equations of the

minimization of the functional

I [u]=
1

2

∫

�

k |∇u|2 d�−

∫

�

us d�

for admissible functions u satisfying the essential boundary conditions. Thus, an energy mini-

mization problem equivalent to that of Equation (6) can be posed, and similar forces to those of

Equation (7) can be computed.

The relative energy error Eer and the L2 error are plotted in Figure 6 for different fixed support

sizes of the shape functions and for optimized locality parameters, as well as for different levels

of uniform refinement. The relative energy error is defined as

Eer=
|Iexact− Ih |

|Iexact|

where Iexact is the exact value of the energy, and Ih is the numerical value of the energy at the

optimal physical parameters and possibly the optimal locality parameters.

Figure 6 (left) shows that, for this example, the accuracy strongly depends on the choice of

locality parameters, and that the lower the value of �, i.e. the more widespread the basis functions

are, the more accurate the solution is in terms of the total energy error. As it has been mentioned

before, this comes at a cost, since for �=0.8, the band-width of the system is larger and more

quadrature points are needed. In this example, we consider this as the lowest acceptable value

from an efficiency viewpoint. The figure also shows that numerical solutions with the optimized

locality parameters constrained to 0.8/h2��a�4/h2 exhibit more accurate values of the total

potential energy, particularly for coarse discretizations. Figure 6 (right) shows the corresponding

convergence plots in the L2 norm, which is not the target quantity of the variational adaptivity

method. Still, it can be observed that the adaptive strategy performs better than the most accurate

solution with uniform �=0.8. For instance, the number of nodes required by the non-adaptive

LME scheme with �=0.8 to achieve an L2 error of 10−3 is twice the number of nodes needed

with the adaptive strategy, and at least 10 times higher when ��1.6.
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Figure 6. Relative energy error (left) and L2 error (right) for Example 1. The variational adaptive scheme
with �a ∈[0.8,4] improves the accuracy of the solution as compared with non-adaptive local max-ent

approximations with uniform �a .
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Figure 7. Relative energy error dependence on the initial guess for �0 (left) and the admissible
interval (right) for Example 1.

Figure 7 (left) shows the relative energy error for the variational adaptive strategy with different

values of the initial guess for the locality �0 in the numerical optimization. It is interesting to

appreciate that the result of the energy Ih is essentially independent on this initial guess, which

suggests that the optimization is not trapped in the local minima. The dependence of the relative

energy error on the admissible interval for the support size is illustrated in Figure 7 (right). It can

be noticed that the dependence is more important when coarse meshes are used, and as expected,

the smaller the interval, the less efficient the optimization is. The interval �∈[0.8,4] is used in the

remainder of the paper.

We now analyze the optimal locality distributions given by the algorithm. For this, it is convenient

to define for each node a the numerically effective support size Ra of the corresponding shape

function, related to the locality parameter �a through the equation Ra =
√

(− log(Tol0)/�a). This

formula comes from equating Equation (2) to Tol0, and assuming that Z and �∗ are bounded,
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Figure 10. Analytical solution of Example 2. A black line highlights the
interface between the two materials.
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Figure 11. Relative energy error (left) and L2 error (right) for Example 2.

The behavior of the relative energy error as a function of refinement for this example is shown

in Figure 11 (left). It is apparent from this figure that a uniform refinement with smooth basis

functions of uniform locality (�=1.6) exhibits much slower convergence than the Delaunay FE

solution (uniform �=8), or than smooth basis functions with a local transition to the Delaunay

shape functions around the interface (�a =1.6 with strip of nodes with �a =8). The left plot in this

figure also shows the much superior performance of the proposed adaptive method for this example,

with almost converged energies for very coarse discretizations. The convergence of L2 error norm

is illustrated in Figure 11 (right). It can be observed that when smooth shape functions are used

(values of ��3), the optimal rate of convergence is lost, as expected. This rate of convergence

is recovered when the shape functions close to the interface reach the Delaunay limit (�=8 in

a strip or everywhere). The remarkable accuracy of the adaptive strategy is illustrated in this L2

error plot.

We now turn to the locality patterns given by the variational adaptive method. Figure 12 (left)

qualitatively illustrates the extent of the support of the basis functions when a strip of high values

of � is placed around the interface, with a value of �=1.6 in the rest of the domain where a smooth

solution is expected. This is a good educated guess for the nodal locality parameters, as argued
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Figure 14. Shape function for a node located on the interface (Example 2).
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Figure 15. Solution of Example 2 on a line perpendicular to the interface (left) and on the interface (right).

cross-sections of the exact (solid black line), the adapted (dashed line), and the numerical solution

for fixed locality parameters with a high locality strip near the interface (solid gray line), in a

line perpendicular to the interface (left) and on the interface (right). It can be observed that the

adaptive solution introduces the discontinuity in the gradient precisely where needed, whereas the

numerical solution with ad hoc adapted locality parameters introduces too many discontinuities

associated with the Delaunay faces in the interface region, and results in a poorer approximation.

It should be emphasized that strictly speaking, these are not discontinuities in the gradients, but

rather sharp changes in the gradients. In order to describe mathematical discontinuities on the

gradients of local max-ent shape functions, the Delaunay limit much be reached, i.e. �=+∞.

4.4. Example 3: infinite plate with a hole

In this example we test the behavior of the proposed methodology in the standard benchmark

problem of an infinite plate with a hole subject to a far-field uniaxial traction �0 in the x direction

(see Figure 16). The exact solution of this linear elasticity boundary value problem can be looked

up in reference [27]. By the symmetry of the problem, only one quarter of the plate needs to be

considered in the computation. The exact tractions are applied at the boundary of the non-convex

numerical domain (gray area in Figure 16). A Young’s Modulus of E=1 and a Poisson ratio of

�=0.495 are considered.
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min

max

min

max

Figure 17. Optimum support size (represented as disks centered at each node and proportional to Ra , see
text) for two levels of refinement and Example 3.

4.5. Example 4: stretching of a neo-Hookean hyperelastic slab

We now consider a slab given by �0=[0,1]×[0,1]×[0,0.25] clamped on two opposite sides

and subject to prescribed extensional deformation. The nominal stretch ratio is 1.5 and the entire

deformation is applied in one step. The slab is made out of a compressible neo-Hookean material

with strain–energy density

W (F)= 1
2
� ln2(J )+ 1

2
� tr(FTF)− 3

2
�−� ln(J )

where J =det(F), and � and � are the Lamé constants. In calculations these constants are set to

�=12115.38 and �=8071.92, which corresponds to an initial Poisson ratio of �=0.3. A similar

problem was analyzed in [15].

The undeformed and deformed configurations of the slab are shown in Figure 18. The radius

of the spheres illustrated in the reference configuration is proportional to the optimum support

size of the shape functions. In Table II, it can be noticed that variational adaptive LME scheme

(VA) present a 3.05 and 0.81% of energy reduction in comparison with non-adaptive FEs and

non-adaptive LME schemes (uniform �=1.6), respectively. Although these figures seem to be

a little disappointing, they are similar to other results obtained with the mesh-based variational

adaption schemes [15, 29] for this simple example.

4.6. Example 5: upsetting of a neo-Hookean hyperelastic block

A hyperelastic block clamped on two opposite sides and subjected to prescribed compressive

deformations is studied in this example. The nominal stretch ratio is 0.5 and the entire deformation

is applied incrementally in 10 steps. The material is compressible neo-Hookean with a relation of

constants �/�=10, corresponding to an initial Poisson ratio of �=0.4545. Although the dimensions

of the block are [0,16]×[0,16]×[0,16], only an eighth is analyzed by the symmetry of the

problem. A similar problem was presented in [6].

The undeformed and deformed configurations of the block are shown in Figure 19. As in the

previous example, the radius of the spheres shown in the reference configuration is proportional

to the optimum support size of the shape functions. It can be observed that the optimum locality

parameters are nearly uniform throughout the domain, with the exception of the nodes in the
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Figure 18. Stretching of a hyperelastic slab (Example 4): reference (left) and deformed (right) configu-
rations. The optimum support size for each shape function is shown in the reference configuration, by

spheres of radius proportional to Ra , see text.

Table II. I FEh , ILME
h , and IVAh are the energies of the non-adaptive FE and LME schemes, and the VA

scheme, respectively, for Example 4.

# nodes IFE
h

ILME
h

IVA
h

∣∣∣∣1−
IFEh
IVAh

∣∣∣∣ (%)

∣∣∣∣1−
ILME
h

IVAh

∣∣∣∣ (%)

50 577.859 565.253 560.729 3.05 0.81

vicinity of the edge where the largest deformations occur. As in Example 2, a large contrast of

nominal supports sizes can be observed in this region. The quadrature effort can be concentrated

in the vicinity of these edges.

Table III shows that the variational adaptive LME scheme presents a 12.35 and 3.85% of energy

reduction in comparison with non-adaptive FE and LME schemes (uniform �=1.6), respectively,

when equal number of nodes is used. It can be also observed that the number of nodes required by

non-adaptive FE and LME methods to get a similar energy is 230 and 15 times higher, respectively.

Furthermore, this accuracy is achieved with a moderate computational cost. Figure 20 illustrates

the convergence of iterative method for the optimization of b (outer loop), for a node set with 1147

nodes. Note that more than 90% of the energy reduction is achieved in less than 10 iterations.

Thus, with a few iterations on the locality parameters, very accurate solutions can be obtained

with coarse discretizations.

4.7. Example 6: buckling of a neo-Hookean hyperelastic beam

Here, we compress of a hyperelastic slender body �0=[0,1]×[0,1]×[0,10]. The specimen is

clamped on two opposite sides and is subject to prescribed compressive deformations. The nominal

stretch ratio is 0.35 and the entire deformation is applied incrementally in 20 steps. The material

parameters are those of the previous example.

The undeformed and deformed configurations of the body, together with the optimum support

sizes, are shown in Figure 21. In this example, it can be observed that for the optimum discretization,
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Figure 19. Compression of a hyperelastic block (Example 5): reference (left) and deformed (right)
configurations. The optimum support size for each shape function is shown in the reference configuration,

by spheres of radius proportional to Ra , see text.

Table III. I FEh , ILME
h , and IVAh are the energies of the non-adaptive FE and LME schemes, and the VA

scheme, respectively, for Example 5.

# nodes IFE
h

ILME
h

IVA
h

∣∣∣∣1−
IFEh
IVAh

∣∣∣∣ (%)

∣∣∣∣1−
I LME
h

I V A
h

∣∣∣∣ (%)

401 357.810 322.729 307.311 16.43 5.02
1147 341.262 315.427 303.743 12.35 3.85
18 065 319.135 303.180
265 937 303.457

most shape functions at the free surface of the body exhibit large support sizes, whereas the inner

shape functions adopt variable support sizes depending on the features of the deformation. Table IV

shows that the variational adaptive LME scheme decreases the energy by 76.3 and 5.3% as

compared with non-adaptive FE and LME schemes (uniform �=1.6), respectively, for an equal

number of nodes. It can be also observed that the number of nodes required by non-adaptive FE

and LME to get a similar energy is 178 and 6 times higher, respectively.

5. CONCLUSIONS

We have proposed a variational adaptive approach to optimize the support size of meshfree shape

functions in the numerical approximation of boundary value problems stemming from a minimum

principle. The flexibility in scattering nodes in the domain and assigning different support sizes

22



A. ROSOLEN, D. MILLÁN AND M. ARROYO
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Figure 20. Energy vs number of iterations in b for Example 5.

of the shape functions has often been presented as an attractive feature of meshfree methods.

However, the accuracy of the numerical approximation to partial differential equations strongly

depends on the choice of support size, referred to here as locality, and the current theories (a priori

estimates) do not help in selecting an adequate value, which is found to depend on the problem

at hand and the level of refinement. We have presented a rational method to select the locality

of the basis functions, which optimizes the total potential energy functions not only with respect

to the nodal physical values, but also with respect to the support sizes. The resulting method has

been shown to be very effective in achieving very accurate solutions with very coarse node sets

in the Poisson and non-linear elasticity problems. This accuracy has been observed not only in

terms of the target quantity of the method, i.e. the total potential energy, but also in terms of the

L2 norm. The variational adaptivity of the support size has been presented in the context of LME

approximation schemes, similar in some respect to MLS approximants. The former are particularly

well suited for our purposes because their evaluation is robust when the locality parameters are

varied arbitrarily, and because the derivatives of the basis functions with respect to the locality

parameters can be readily computed in closed form.

For problems with smooth solutions, meshfree basis functions with larger support sizes typically

lead to more accurate solutions, at the expense of extra computational cost due to the larger band-

width of the stiffness matrix and the requirements in the numerical quadrature. The optimized

locality parameters allow us to use such widespread shape functions only in some areas of the

domain; hence, concentrating the computational effort where really needed. The produced patterns

in the locality distribution are difficult to guess a priori, particularly in problems involving material

interfaces, hence discontinuities in the normal derivative to the interface.

Finally, we note that in the present work, we have considered a scalar locality parameter �a .

However, as shown in [6], it is possible to consider a locality metric tensor (symmetric, positive-

definite) ba at each node, and then minimize the function
∑N

a=1 pa(x−xa)·ba(x−xa)+∑N
a=1 pa ln pa to obtain the basis functions. A tensorial locality gives more flexibility to generate

anisotropic shape functions, which could be useful to capture different physical features of a
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Figure 21. Buckling of a hyperelastic slender body (Example 6): deformed (top) and reference (bottom)
configurations. For a better visualization, the optimum support sizes are illustrated in the reference

configuration, and in the deformed configuration for half of the nodes.

problem. Such an approach seems to be appropriate for examples exhibiting localization or

bi-material interfaces such as that in Section 4.3. This, together with the variational adaptivity

with respect to the node set, i.e. variational radaption for the LME approximants, is the topic of

the current work.
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Table IV. I FEh , ILME
h , and IVAh are the energies corresponding to the non-adaptive FE and LME schemes,

and the VA scheme, respectively, for Example 6.

# nodes IFE
h

ILME
h

IVA
h

∣∣∣∣1−
IFEh
IVAh

∣∣∣∣ (%)

∣∣∣∣1−
I LME
h

I V A
h

∣∣∣∣ (%)

189 1.547 0.764 0.711 117.6 7.4
496 1.166 0.697 0.662 76.3 5.3
2989 0.818 0.661
88 641 0.664

APPENDIX A: DERIVATIVES OF THE SHAPE FUNCTIONS

In this appendix, we detail the procedure to compute the various derivatives of the shape functions

needed in the paper. We denote spatial gradients of scalar functions by ∇, whereas for vector-

valued functions we denote by D y(x) the matrix of partial derivatives with respect to position.

The symbol � denotes partial differentiation. The subindexes a, b and c refer to nodes. Within the

scope of the appendix, we define the following functions:

fa(x,�,�a) = −�a|x−xa|
2+�·(x−xa), (A1)

pa(x,�,b) =
exp[ fa(x,�,�a)]∑
b exp[ fb(x,�,�b)]

=
exp[ fa(x,�,�a)]

Z(x,�,b)
, (A2)

r(x,�,b) =
∑
a

pa(x,�,b)(x−xa), (A3)

J(x,�,b) =
�r

��
=

∑
a

pa(x,�,b)(x−xa)⊗(x−xa)− r(x,�,b)⊗ r(x,�,b). (A4)

The dependence on the node set of locality parameters b, on the evaluation point x, and on the

Lagrange multiplier � is dropped for notational simplicity. The symbol ∗ is used to denote that a

function is evaluated in �∗(x,b)=argmin�∈R
d ln Z(x,�,b). This introduces explicit and implicit

dependencies on x and b on all functions with ∗. Note that what has been denoted by pa in the

remainder of the paper is denoted by p∗
a in the appendix. No implied sum is assumed for repeated

node indices.

A.1. Spatial derivatives

The first spatial derivative of the shape functions will be referred as∇ p∗
a . It is readily verified [6] that

∇ p∗
a = p∗

a

(
∇ f ∗

a −
∑
c

p∗
c∇ f ∗

c

)
. (A5)

Applying the chain rule, we have

∇ f ∗
a =

(
� fa

�x

)∗

+D�∗

(
� fa

��

)∗

, (A6)
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where
(

� fa

�x

)∗

=−2�a(x−xa)+�∗,

(
� fa

��

)∗

=(x−xa).

The only term that is not available explicitly in Equation (A6) is D�∗. In order to compute it we

note that, since r∗ is identically zero,

0=Dr∗ =

(
�r

�x

)∗

+D�∗

(
�r

��

)∗

,

where
(

�r

��

)∗

= J∗,

(
�r

�x

)∗

=−J�+ I, J� =2
∑
a

�a p
∗
a(x−xa)⊗(x−xa).

It follows that

D�∗ =
(
J�− I

)
(J∗)−1.

Rearranging terms, we finally obtain the spacial gradients of the shape functions as

∇ p∗
a = p∗

a(r�−Ma(x−xa)),

where

r� =2
∑
a

�a p∗
a(x−xa), Ma =2�a I−D�∗.

A.2. Derivatives of p∗
a with respect to �b

The goal is to obtain an explicit expression for the derivative of the shape function of node a with

respect to the locality parameter of the node b. It is readily verified that

�p∗
a

��b
= p∗

a

(
� f ∗

a

��b
−

∑
c

p∗
c

� f ∗
c

��b

)
, (A7)

where

� f ∗
a

��b
=

(
� fa

��b

)∗

+

(
� fa

��

)∗ (
��

��b

)∗

.

Note the difference between taking the partial derivative after evaluation at the optimal Lagrange

multiplier �∗ (total derivative with respect to �b) and taking the partial derivative of the explicit

dependence of fa on �b, and then evaluating at the optimal Lagrange multiplier. In the above

equation,

(
� fa

��b

)∗

=−	ab|x−xa|
2,

(
� fa

��

)∗

=(x−xa),

where 	ab is the Kronecker delta. Using the fact that r∗ =0, we have

(
��

��b

)∗

= p∗
b |x−xb|

2 (J∗)−1 (x−xb).
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Replacing all these expressions in Equation (A7), we find the derivative of the shape functions

with respect to the locality parameters

�p∗
a

��b
= p∗

a |x−xb|
2 [p∗

b(1+�ab)−	ab],

where

�ab=(x−xb) ·(J
∗)−1(x−xa).

A.3. Derivatives of ∇ p∗
a with respect to �b

From Equation (A5) it follows that

�(∇ p∗
a)

��b
=

�p∗
a

��b

(
∇ f ∗

a −
∑
c

p∗
c∇ f ∗

c

)

︸ ︷︷ ︸
A

+p∗
a

�(∇ f ∗
a )

��b︸ ︷︷ ︸
B

−p∗
a

∑
c

[
�p∗

c

��b
∇ f ∗

c + p∗
c

�(∇ f ∗
c )

��b

]

︸ ︷︷ ︸
C

.

Replacing the expressions of the different derivatives and defining

K b=
∑
c

�bc p
∗
cMc(x−xc)⊗(x−xc), ja =(J∗)−1(x−xa),

it follows that

A = ∇ p∗
a |x−xb|

2[−	ab+ p∗
b(1+�ab)],

B = −2	ab(x−xa)+ p∗
b{|x−xb|

2[ jb+(I+K b) ja−�abMb(x−xb)]+2�ab(x−xb)},

C = −2p∗
b(x−xb)−|x−xb|

2∇ p∗
b .

Finally, the derivatives of the gradient of the shape functions with respect to the locality parameters

can be rewritten as

�(∇ p∗
a)

��b
= p∗

a[−2(x−xb)	ab+(1+�ab)|x−xb|
2∇ p∗

b]+∇ p∗
a |x−xb|

2[−	ab+(1+�ab)p
∗
b]

+p∗
a p

∗
b{2(1+�ab)(x−xb)+|x−xb|

2[ jb+(I+K b) ja−�abr�]}.
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