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[, INTRODUCTION

The probiem of orbit determination utilizing teast
squares estimation techniques was addressed hy Gauss in
1795. We have come a long way from Gauss via Kalman
to present-day numerically stable and accurate estimators
for precision orbit determination [1~4{. It uppcars that the
prime issue from the very heginning has been the
computational speed and accuracy [1. 5]. While Gauss
invented and used the method of least squares as an
estimation technique. Kalman solved the problem of
filtering systems with noisy measurements and process
noise in dynamics in 1960{2, 3]. The Kalman filter is
regarded as an efficient computational solution of the
least-squares method. It has been applied to a number of
areas: POWer systems. aerospace navigation systems.
communications, process control. and biomedical
applications. Soon the researchers became aware of
numerical problems associated with the Kalman filter and
many related problems were studied in [6-9]. As a result
new aiternative filtering techniques were proposed [4.,
10-171. They were claimed to be numerically more stable
and efficient than the conventional Kalman filicr. In the
present work we discuss some of these estimators since
they have a great impact on orbit determination
methodology.

Since the orbit determination process {O0P) involves
system models. measurements, arid estimation technique.
we discuss these aspects critically and review various
aflernatives to illuminate their merits and demerits.

We systematically tabularize the constituents of ODP.
various parameter sets (coordinate systems). and fcatures
of some orbit estimators. We also survey some of the
representative application results which elucidate the
aspects of stability. efficiency, and accuracy of the
filtering algorithms. When appropriate we highlight some
aspects related to on-board orbit determination (OBOD?}.

The central issue of this exposition is to take a step in
the direction of evolving an ODM that has attributes of
good numeric stability. efficiency. and accuracy. In our
opinion this review is the first of its kind in the open
literature on the orbit determination problem.
Mathematics is kept to a minimum. The related aspects of
spacecraft attitude estimation utilizing the Kalman filter
are elegantly presented in [18, 19].

{1. ORBIT DETERMINATION PROBLEM

Orbit determination is the process of obtaining values
of those parameters which completely specify the motion
of an orbiting body. a satellite through space, based on a
set of observations of the body. The observations may be
obtainable from the ground-based tracking system or from
the sensors on-board the satellite. A high precision orbit
determination estimator takes the raeasurement noise into
account and determines an orbit that provides a ""best fit"
to the collected data (subject to dynamics of orbital
motion of a satellite). The current estimate of orbital
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parameters must be updated periodically using tracking
and ranging data. Accurate orbit prediction is necessary
for determination of launch windows, planning of orbit
maneuvers. and anticipating events such as eclipses.

The search and rescue satellite aided tracking
{SARSAT) system [20] requires that accurate orbital
information be available at all times so that an accurate
position of the site of an emergency can be computed
immediately {21, 22}. For a mission life of several years
3 km orbit-position error is feasible. However, the
position of the satellite should be known to an accuracy
of | km-at all times during a pass, in order that this error
will be a very small pan of the total error budget {22].

The communications functions of a geosynchronous
satellite necessitate accurate control of orbit and attitude.
To achieve the required control of a satellite's orbit. it is
necessary to determine the current orbit and then plan an)
required corrections. The position of a communications
sateHite must remain within a small tolerance band of the
assigned longitude. The need for strict control arises
because many groundbased receiving antennas are of the
nontracking type. For Ku-band systems { {4-GHz uplink.
[2-GHz downlink). the tolerance bands are + 0.05
degree in longitude and latitude [23]. To ensure that
timely orbit correction can b¢ applied for restricting the
altitude error within centain limits, the altitude must be
measured to a high degree of accuracy: I part in 10°
[24]. The effects of orbital inclination on communications
satellite system design are discussed in [23].

The navigation satellite time and ranging
(NAVSTAR) system is based on satellites that
continuously transmit data about their positions {26, 27].
Receiving signals from NAVSTAR satellites. ground
vehicles. ships. and airplanes can determine their own

positions and speeds. Ground stations nionitor the
satellites and compute their orbits and clock drifts.
Navigation accuracy is heavily dependent on relative
satellite geometry and NAVSTAR clock accuracy [28]

[1l. ORBIT DETERMINATION PROCESS

Major constituents of an ODP are: system models.
measurements, and estimation technique as outlined in
Table I. We observe that there arc many alternatives
under each major column/itemn of the table. For greater
details on formulations of models and algorithms the cited
references must be consulted.

A. System Models

By system models we mean the system description
required for dynamics of orbital motion of a satellite.
measurement models, Eanh's rotation. and penurbation
models.

1} Dynamics: Two-body motion is the principal orbit
motion. The orbits of most of the bodies in space can be
described as two-body orbits to a fair degree of accuracy.
Orbital elements are the parameters which completely
specify the basic two-body motion of orbiting bodies.
Several formulations of parameter sets are possible {21,
29,301. in Table Il we compare commonly used
parameter sets for orbit description. Also refer to Fig. 1

The classical orbital elements (C6) set employs an
Eanh-centered inertial frame and six parameters to
provide complete description of the orbit (see Fig. 1(a)).

Since IC-6 and U7 sets are widely used wc describe
them here in some detail.

TABLE |
Orbit Determination Process

Hardware Measurements

System Muodels

Estimators Other Software

- Eanh land mark tracking
data [34. 35]

Yehicle mounted sensors

138, 40. 41} satellite)

Dynamic, {orbitai motion of a

- GLS dc technique Coordinate transformations

-¢lassical orbital elements (Co)

(214

- equations of motion{1C-6)

(zy

- Data of angle measure-

Sensor data acquisation
ments between the 2]

system microcomputers
f43. 44] woon and stars [38}
- Azimuth. ¢levation [21}]

- Range. range tate

.unified state model (U7, UG)

- combined 1C-U6 {22 82]
- combined 1C-U7 [31]
Measurerment models

[53. 54) 121, 30
- EKF {Zi, 501 IC « U7
-Adaptive filters [59., 61, [C & U6

IC < topocentric
I-Adaptive filter [56. 57] Numerical integration {45
- Fuactorization methods {4]) - Euler

[21, 23] - pusition space [21] - SRIF [63] - predictor-carrector
- SateHite-to-satelite track- - velocity space 1321 - UDF [64, 651} - R.K. (Giih
ing type data {37) Atmospheric models - UDF/RTS.S [67]
Mandatory data and cun- - exponential modet 1331 - -0 [46)
stants - Brogho's density model §33] - L-D (70, 711
Earth mode! [21] - SBDC technique [73]
Perturbations - Pugachev filter (74.75]

- zonal and Tesseral {33]

- air drag {33)

Denotes alternatives or options.
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TABLE I

Parameter Sets

Classica! Orbitasl Elcrents

Inertial Coordinate

Velocity-Space Set

u7

Us

Six elements

Easy 0 visualize

One element (1) varies capidly
Many singulanties

Co = la. et w {2 7t

Six states

Define position and velocity

All states vary rapadly
1IC6 = {e.v.oovevv )

Requires small iniegration step size

Seven states

Define position and velocity
in velocity space

Four position space

orbits are circular

in this space

Relatively free from
singularities

Six states

Only one element
vanies rapidly
Transition matrix
computation is
simple

Similar singular-
ities as for U7

ur = {f’m-f’u:-f’m-(”(u- L6 = ‘:C,..C\.;.
C'RH'RII} C.rl-Rfl-er-}\}
In IC-6 set representation of dynamics [21. 31] we o 0 w, 0w €0
have d e | _ | e 0 w0 €2
1 1 T, ] dr 1 egs 0 W 0 uky LOR
A T € Wy 0 “wy 0 Co
/|- v, (2
{— = = \ ' { ! )
ot 1, —m’r'..I + ua, and
T, —uir'y + a, _
. . —wir'D boa. ] c
w here
. d R
v 1C components of r (see Fig. H{b}) a0
v, 1. v, 1C components of v Ry,
ru position and velocity vectors of an orbiting )
bodv I
u gravitational parameter for the Earth .
ing accelerations . : ]
a,.a,.a. tC components of perturbing acceleratio 0 -p 0 a,
In this set, position and velocity determine the orbit. ) — i Ros
P , : : cos A ~{l+psin A —L oA
However. for the gecometry of the orbit we need conic - v :
. . el
section parameters, But ultimately we need to compute
o . . . . (J 1
position and velocity at each instant of processing the ) v Ry ¢
measurements sin A {1 +pjcos A V., ]
Another useful set for orbital dynamics is based on (3)
Altman's unified state model (LSM) [21, 32. 33]. In
USM both orbit and attitude dynamics of an orbiting where
body can he described in a unified manner. We describe . . .
Y . - . C u/h(u 1s defined earlier)
only the orbital part of the model. The attractive o
) . h specific angular momentum
properties of U7 (seven states) and U6 (six states) of
. . . R eC
USM are given in Table I. One of the important - .
o . . e eccentricity of the orbit
properties is that the parameters of this representation are .
) . . R;.R> componentsofvector R(R| =RRHy =0
free from classical singularities. However, retrograde and ! (see [21, fig. 2.3])
deep-space mission type (r.ectlhnear) orbits cannot be e, the four Euler parameters describing the
represented in these velocity-space sets. . L
. . . rotation from the inertial frame to-the
The USM is based on the orbit description in the . .
) ) . o velocity-orbital frame
velocity-space as against the conventional position-space.
. . . . . . r i .
The circular, elliptic, parabolic, and hyperbolic orbits (of — and ep,~ + €022 + egy® + e = 1. The associated

position-space) transform into circular velocity-
hodographs in the velocity-space (Fig. I).

The four-parameter set of Euler parameters {ep;. €na,
€o3. €04} and the parametric variables (C, Ry, Ry»)
together define the orbital states in the instantaneous
orbital plane [21]. Consequently we have

17

auxiliary equations are given in the Appendix. The a,; are
the velocity-space components of the perturbing
acceleration. The operational details for these are given in
[33].

It would often be advantageous to combine two
parameter sets in order to derive certain advantages from
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both., One such combination is 1C-6 set for filier and U6
(USM sct with 0 clements) for iategration Uime-cvolution
of state dyvnamics). The former permits slightly better use
of computer carc and the latter is efficient from the speed
and accuracy point of view {22]. We use the [C-6 and U7
combination for simtilar and other reasons for SARSAT
sateflite orbit determination [31}].

2} Measurement Modef: The measurement model is
defined by the type of measurements to be made. It
includes the specification of the coordinates of the
observation sites. Earth model, and certain cgordinate
transformation. The conventional position-space or
regularized velocity-space interpretations can be used for.
this model description.

The position-space measurement model [21] 1
described here. The coordinates of the Earth-based
observation site are given by

_X‘ cos B
Rr=1}1X sint (-h}
Re
where
x = | o +H ® (5)
.= ——— 4 cOs -
) [ V(1 —elsinid;) ! d
[ adl—e?
vy = (1 ‘) + Hy | sin (6)
| V(L — e sin"dp)

semimajor axis of the ellipsoid of Earth

u,
e, ils eccentricity

Hy  height of the site

dr,  the geodetic latitude of the site
Ap  the longitude of the site

6 the local sidereal time, 0 £ 6§ = 27 (see
Appendix).
Then vector p from the site to the orbiting body has
inertial frame components (see Fig. 1(b}).

p=r—RT. (7)

The components of p vector referred to the
topocentric-coordinate frame at the site are given by

(see Appendix for £;).
(8)

The observables azimuth and elevation are defined in
terms of these components as follows:

pr = Erp = lpri.pra.prsl

AZ = lan_i pr,l’p-.rz (9)

El = tan™' pr3/ Vips + ph)-

The range p can be defined in terms of inertial frame
components

p=ipl = Vel + i+ ol

Often position-space observations can be transformed
into velocity-space maps [32]. These transformations and
the state maps can be used for. development of the orbit
observation matrix used with the unified state matrix in

(19)

(i

an estimator. For details on this tvpe of representation see
f32}. In [32) w1 shown thal in bispherical coordinates
the field of observation maps for a ground-bused tracking
system site s a degenerate form of the general ficld of
abservation maps for a satelliie-based tracking site. Such
a set can be exploited for OBOD/ODP.

The rotation of Earth should be accounted for by a
suitable model. If real observations are used then the
effects of prectsion and mutation should be included 10
ensure that an accurate estimate is obtained. An excetlent
account of USM model and vanous related aspects for U7
and U6 is given is [21].

2} Amospheric Madels and Pernerbations: The
dynamical equations must include the influence of
perturbations in order to accurately model the physicul
system. The perturbing accelerations due to azmaospheric
drag and wind forces are delined for the USM in |33,
Table 1], The perturbing accelerations due to the zonal
and tesseral harmentes are defined for the USM in |33,
Tuable 1V,

ft 1v interesting to note that if the USM is used for
time propagation of the states (orbital states), then these
accelerations can be eastly incorporated in the dynamical
cquations and these states are then rransformed 1o, say,
IC-6 states to be used by the estimator. Since these
perturbing accelerattons contribute to the complexity of
the dynamical equation. the accelerations are gencrally
excluded from the relincarization process. This simplifies
the computation of the transition mutrix.

B. Measurements

The choice of the kind or type of mcasurements 1b9]
should be used depends on the problem at hand. For
autonomy of navigation the onboard measurements
obtainable from star-tracker, horizon tracker, or
multispectral/landmark trackers can be used [34-36].

A system that utilizes a landmark tracker as the
navigation sensor for autonomous orbit navigation is
considered in [34]. Such a device has the capability of
measuring the direction of the vector connecting a
satellite and an Earth-fixed landmark of known location.
A set of angles are measured at a fixed sampling rate
whenever a landmark is within the sateliite’s field of
view,

In {35] the possibility of acquiring onboard the
satellite, all the measurement information required for
estimation of both spacecraft’s attitude and orbital
ephemeris, is examined in detail. This is generally
achieved by using an Earth-observing multispectral
scanner, a star tracker and a set of strapdown gyros. The
information from these sensors can be transmitted to the
ground and processed by an estimation technique.
Alternatively a microcomputer onboard the satellite can
process this mformation utilizing a computationally
efficient, numerically stable, and accurate filtering
algorithm. Subsequently the estimated orbital states can
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be transmitted to the ground station for mission data
processing.

In [37] the use of satellite-to-satellite (STS) tracking
data is considered for orbit determination. An STS
tracking system makes measurements of such parameters
as range, range rate, angles. and direction cosines to a
spacecraft relative to a given tracking station. In two-way
tracking a signal is transmitted from a well surveyed
ground station to a spacecraft transponder which
frequently translates the signal for retransmission directly
back to the ground station or, as in the case of STS§
tracking, t0 another spacecraft. With a single synchronous
relay satellite. an STS tracking system is capable of
observing a near-Earth satellite during almost half of
every orbit. Similar coverage of a satellite in a high
inclination orbit would be difficult to obtain with a
ground based system: SARSAT system provides a
promising application of STS tracking system. Yet
another kind of autonomous system with data of angle
measurements between the moon and stars is considered
in [38].

Conventional data type is a set of azimuth, elevation.
range. and range-rate observables obtainable from a
groundbased observation site of known coordinates. The
angle measurements are with respect to a topocentric
coordinate system located at the observation site. Range
and range-rate can be specified in [C reference frame.
The ranging data provide the means of establishing
satellite position. The uncertainty is about 0.015 km rms.
Azimuth and elevation angles cannot be measured with
similar accuracy. Previous studies have shown that angle
data supplemented with range data achieve acceptable
accuracy in position estimation.

Occasionally various observables can be combined
from different ground stations in order to achieve desired
accuracies in position and velocity of a satellite. This
choice should be balanced against the increased
coniputational burden. In {39] thc use of combined
spacecraft-based optical observations and Earth-based
radiometric observations to achieve accurate orbit
determination of Voyager during the Jupiter encounter
approach phase is considered. The combination of both
data types from Voyager (I and I1} encounters results in a
Galilean satellite ephemeris significantly improved over
that available to voyager from Earth-based observations.

Other mandatory data and constants include:
coordinates of selected stars, landmark and ground
stations. Earth model and geopotential constants for
autonomous/nonautonomous orbit determination. It may
be noted that uncertainfies in these coordinates and
parameters may reflect as additional modeling errors.
These may be accounted for by estimating them as the
additional states.

C. Hardware

Vehicle Mounted Sensor Svstems (V455): The
equipment complex for an autonomous sateilite navigation

RAOL & SINHA: ON THE ORBIT DETERMINATION PROGBLEM

system consists mainly of sensors for observing
navigation quantities, and space-borne computer {SBC) t¢
process prestored and sensors data.

In this section we briefly describe some of the
VMSSs that can be used for attitude/orbit determination.
References [38. 41] contain an excellent account of two
such systems.

The space-sextant system (SSS) uses angle
measurements between the moon and second magnitude
(or brighter) stars in a Kalman navigation filter {(KNF) to
estimate vehicle position and velocity. The SSS is a
lightweight, low power, high performance, onboard
navigation sysfem. It has a very high level of autonomy.
It provides an accuracy of 0.241 kwm within 24 hours of
commencement of navigation and achieves about 1.8 km
(== | nm} accuracy within 10 minutes [38. 41]. It is
claimed [41] that the space-sexrant can be used also as a
sensor to allow spacecraft altitude detemiination to an
accuracy of | arcsec. It requires data storage for lunar
ephemeris and terrain height compensation if altimate
accuracy is required. Design concepts of the operational
space sextant are discussed in {38]}.

The passive ranging interferometer system {PRAIS}
{41] also uses a KNF. but it measures angles to existing
radiometric landmarks and signal time of arrival from
some of these landmarks with special characteristics. It is
a completely strapped down sensor which only requires
small antennas to be mounted on the Earth-pointing face

" of the spacecraft. The PRAIS navigation system uses

simullancous measurements to three landmark radars.
Pscudorange {PRA) and interferometer landmark tracker
(ILT) measurements are employed to each landmark. The
ILT measurements quickly reduce navigation errors while
the PAR measurements contribute t0 accurate steady state
performance. The PRA!S provides potential accuracy on
most orbits. up to about 0.015 km position error. It has
no moving parts.

Elecironics and Space-borne Computers: Autonomous
systems require electronics and computers for acquisition
and preprocessing of measurements and implementation
of Kalman filter type algorithms. In [38} some features of
the required electronics are described. In most of such
systems the electronics package is an integral pan of the
entire system.

I what follows, we briefly state the requirements and
characteristics of space-borne computers that may be
utilized for implementation of the filtering algorithm.

Spacecraft computers have evolved from simple. hard-
wired sequencers. to complex general-purpose machines
with large memories and redundant processors. The
reference [42] provides an excellent account of the SBCs
used for control. The performance of SECs measured by
such facfors as improved speed and larger memory has
improved more than a factor of 1000 in the last 12 years.
The cost. weight, and power to perform a given function
are decreasing significantly. As missions become more
complex and as spacecrafts operate for decp-space
missions. spacecrafts must be capable of greater
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autenomy. Some of these functions are: attitude/orbit
deternunation, image processing, feature extraction, data
compression.

The recent paper [43] is a state of the art survey on
SBCs. It compares space division (SD) space qualified
computers CDC 469, DELCO M362S, GEDEC PDP-11
{bit slice), LITTON 4516E. RCA SCP-234, and
Rockwell DF-224 on the basis of seven criteria:
throughput. memory, /O capability, power. rchability,
techaology, and radiation hardness. It also gives an
account of six candidate SBCs: ATAC-168, HTP, IBM,
RCA SCP-050. Rockwell IDF-224, and TELEDYNE
MECA 13, that have been or are being considered for
various SD programs. The process of selecting a satellite
computer system is explored in [44]. 1t describes the
programmaic requirement considerations and aiso sheds
lieht on new developments that will affect future SBC
systems,

0. Other Software

The ODP/QBOD require coordinate transformation
and numerical integration routines. If IC-6 set s used for
filter and U6 or U7 for the integration, then naturally
two-way coordinate transformation is required at every
instant of observation data processing. 1f coordinate set
other thun [C-6 is used, then transformation to 1C-6 is
required 1n order to obtain position and velocity of the
spacecraft. Details of such transformation equations/
matrices are given in [21, 30].

Numerical integration of dynamical equations is
required for calculating time-propagation of states. This is
generally accomplished by Runge-Kutta methods [45].
Other alternatives vsed are Euler and predictor-corrector
methods. In [46]) the authors study. among other things,
the effect of numerical integration step-size on the
accuracy of (U-D) algorithms (to be described later) in
orbii determination. For such algorithms, which
numerical integration methods are most efficiently applied
to the U-D differential equations [47] remains to be
studied.

IV. ORBIT ESTIMATORS

Now we are ready to state the orbit estimation

problem.

Let
x(n) = flx(),0) + n(1) 12}
() = hix(1),0) + »(1). (t3)

be the system and measurement models associated with
particular orbiting spacecraft and data tracking system.

Here x is the vector of n-states of the chosen
coordinate system and other augmented parameters; z is
the vector of observables; £,k are known, nonlinear
furictional relationships; and #n, v are process and
nedsurement noise vectors.
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Given these models, some a priori snformiation on
x(0). n. and v and the (noisy!) measurcmients. we reguire
the filtered estimates of x, the orbital states.

The position and velocity components of the satelhite
arc obtained from the orbital state estimates by suitable
transformations [21]. This is not required 1f the states are
in the 1C-6 parameter sct.

We next describe important features of some of the
commonly used estimation techniques to obtain the
filiered or smoothed estimates of the orbital states of a
satellite.

The references {10, 48-50] give lucid and detailed
exposition of various types of estimators for linear and
nonlimear problems. However, [4] is the only book form
account of many numerically stable and accurate filtering
algorithms [S51]. ft deals with square root information
filter (SRIF), UD filters (UDF}. and smoothers in great
detail and gives algorithms and partial FORTRAN
codings. Golub and Van Loan [52} is a very recent
treatise wherein basic factorization techntques can be
found.

In Table 11 we present salient features of some of the
commonly used orbit esumators.

For details of derivations and other theoretical as well
as numerical properties the cited references (Table 1,
column 4) may be consulted. We bniefly describé some
propertics and problems associated with these discrete-
time estimators relevant o orbit-determination
applications.

A. GLSDC Technique

The Gaussian least squares differential correction
(GLSDC) technique is used to iteratively estimate the
initial state [53]. It provides successive approximations
for the initial condition estimate:

x{tp) = x(1y) + Ax {(14)

where Ar = (ATWAY ' ATW Az
Az =1 - z,
and

A matrix of partial derivatives of observed
functions with respect to the states

W weighting matrix

7,z. actual and predicted measurements (vector).

. Numerical problems would arise if initial x (1} states’
are 100 far from the minimizing x or the matrix ATWA is
ill conditioned. Being batch mode, it needs all the
measurement data before it can be used to estimate x(0).
Hence it cannot be used for real-time filtering, Once the
initial state is accurately estimated, any good numerical
integration scheme can be used to predict the state-time
history over the entire measurement-data span. In order to
obtain accurate estimates this technique might require
many iterations.
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TADLLC 11
Estimators for OD

Estimator

Estimation

Mode

Convergence/Computa onal
Aspects

Applications

Gaussian least squares dif-
ferential correction tech-

nigue (GLSDC)
Extended Kalman filter
(EKF)

Adaptive filters (AF)

SRIF/SRCF

UD filter (UDE}

UDF/RTS smoother

U-13 (U-D differential) filter
(U-bE)

L-D filter (L.DF)

Sliding barch differential

correctiont technique
(SBDO)

Pugachev filter (PF}

Initial statg

State parameter

State-patameter/Q. R,
modeling errors

State parameter

Stale parameter

State parameter

State parameler

State parameler

Slate

States (nonlinear
modelsyunknown

parameters

Batch iterative

Recursive. lterations done to
improve accuracy

Recursive

Sequential

Recursive
lterations can be made to
improve accuracy

Forward pass-UD filier

Backward pass-RTS or RTS-
B smoother {64}

Does not need measurcment
data for this pass

Nonreal time

Bared oa propagation of UD
factars of continuous time
equanons

Centers around L-D factors
and exploits block rectan-
gular structure of H ma-
trix

Forgetting past observations

COtherwise same as differen-
tizl correction technique

Recursive

Not fail-safe

use better numerical algorithm

to calculate Ax

Prone to divergence

P may become nonpositive defi-

nite-use of patch-up tech-

niques to prevent divergence

Computationally efficient

Improvement over EKF compu-
tationa) burden increased over
EKF (estimates Q.R. mode!-
ing error adaptively 1o prevent

divergence)

Definite improvement over
EKF.

Computationally not burden-
some

uses square root of informa-
tion matrix A = P! or co-

variance matrix P

Similar to SRIF except that it
uses U-D factors of
P(=UDU")

Doer not involve square roots

Computationally efficient

Suitable for onboard applica-
tions

No convergence problems

(Backward sweep) smoothing
may improve accuracy

Computationally rot burden-
some

Computationally less efficient
than UDF

Many properties need to be ex-

plored

Computationally more efficient

than conventional LDF

Performance compares with
EKF

Complex calculations of gains
Filter simple

Numerical properties need to be

exphbred

To many nonlinear estima-
tion problems [53)

Numerous
For attitude/orbit estimation
[10, 19, 2, 22, 731

Orbit determination/reentry
trajectory [10. 56, 57]

*Apollo Lunar missions

Mariner 9 Murs orbiter

Mariner 10 Venus-Mercury
space probe

Amcraft navigation

*Viking Mars

Voyager Jupiter spacecriit

FPS-aided aircraft naviga-
tion

Seasat altimetry calibration

Aircraft and missile tracking

Yet to appcar

GPS {46}

70

TDRSS OROD [73]

{751

*See Applications References of [78].

B. Extended Kalman Filter

The filter is generally given in two algorithms.

Measurement update:

i=i + Kz~ i)
Ki = ‘PIHT(HrPIHT + RJ)ﬁI-
P, =P — KAPHDT,
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(states)
{gain)

(covanance)

Z: = h(Il"i),

(15)
(16) Py
(17y  where

2

Ir+|

Time update:

(predicted measurements).

(18)

=X+ J: flx(z]e ). 0)de, (state integration)  (19)

=®p,®+ 8,08/,

(20

{covartance)



x(t/1,_,) the one step predicted estimate of x,

I, =

£, = x(¢/1,)  the filter estimate

P,. P predicted and filter eftimate error
covariance matrtces

H, measurement matrix {4 = dk/3x7)

0.k process noise and measurement noise
covariance matrices

¢, state transition matrix (< =
eraL 0 F = AfrarT)

{ discrete-time index.

The filter obtains estimates of the states recursively
and can be uscd in real-time mode.

Inofi-line recursive iterative {ORI} mode the filter
starts processing data after all the measurements have
becn collected. Then stariing from the final state estimate
the filter is run backward in time to process measurement
data {or to predict the states) up to initial time. This can
be catled lorward-backward filtering {FBF). For nonlinear
problems this mode is used to improve the estimates’
accuracy. It is nut clear wherher this mode will always
converee to the same estimates as obtained by the batch
least squares formuolation.

Although the exiended Kalman filter (EKF} has been
apphied to nunicrous acrospace problems. the
phenomenon of divergence associated with its
implementation has caused a great deal of concern. When
crrors in"the niodcl build up over a period of time and
cawsc a significant degradation in the accurucy of the
cstiniatc. divergence is said to occur.

Divergence may occur due to {4]:

I) the use of incorrect 2 priori statistics and unmodeled
parameters (2.0, R chosen incorrectly. incomplete
knowledge of system models)

2) the presence of nonlincarities when linear models arc
used

3) the effect of computer roundoff due to finite word-
fength implementation,

The effects of type 1) are analyzed in 16-91. For
problems of type 2) iterated EKF. second-order filter
[55]. and J-adaptive filtcr [S7] have been proposed. The
problems of type 3) are elegantly addressed in [4].

In |58] a convergence analysis of the EKF is given
for the combined parameter and state estimation problem
for linear systems with unknown parameters.

C. Adaptive Filters

Adaptive estimation may be loosely defined as an
estimation or filtering process which can adapt to any
environment by appropriately changing or estimating the
systemm model while extracting all available information
from the data. An accurate model is a solution to the
problem of divergence due to type 2). The niodcl errors
covariance matrix Q can be determined so as to produce
coasistency between residuals and their statistics. Real-
time feedback is thus provided from the residuals to the

p—

filter gain. In [59] Mchra gives detailed exposition of
several adaptive filtering techniques. In {57} the J-
adaptive estimator is given. To the right-hand side of the
differential. or difference, equation representing system
niodcl is added a low frequency random forcing function
u (1) representing the niodcl errors:

x =fix.n) + G ul) (21

where G (1) represents the model errors.

The J-adaptive sequential estimator tracks this
function as well as the system state. thus adapting to any
observable model or enviroamental variations. It must be
noted here that the adaptive filterin? would increase the
computational burden.

Recently an adaptive robustizing approach to Kalman
filtering has bcen considered in [60}. A robust Kalman
filter based on the m-interval polynomial approximation
(MIPA) nicthod for unknown nun-Gaussian noise is
proposed. The MIPA Kalman filter is shown to be
computationally feasible. more efficient. and robust as
compared with other non-Gaussian filters. A recent
account on adaptive filtering is found in [61].

D. Factorization Methods

These techniques [4] mainty address the problem of
divergence due to effect of typce 3). mentioned earlicr.
The effccts of numerical errors are gencrally manifesied
in computed covariance miatrices that fail to retain
nonncgativity. There have been in use several methods to
improve accuracy and to maintain nonnegativity and
symmetry of the computer covariances. e.g.. periodic
testing and resetting of the diagonal and the off-diagonal
clements [21).

An alternative to such patching techniques is to
modify or replace the algorithm by one that is
numerically reliable. Such alternative algorithms involve
square-rooting or factorizing the covariance or
information matrices. The algorithms exhibit improved
numerical accuracies and reliability as compared to the
adhoc mcthods [4]. The factorization implicitly preserves
the symmetry and guarantees nonnegative eigenvalues Of
the covariance matrix. The improved behavior of the new
algorithm can be seen as follows. Suppcse the
computation involves the numbers ranging from 107 to
‘10", Due to square-root type factorization this range will
become 107%2 to 2. As a result of this. the. new
algorithm implemented in [-precision would obtain
accuracies that are obtainable with 2-precision
implementation of the conventional Kalman filter {4].

The references {17, 62 survey and compare discrete
square-root filters on the basis of operations count. We
briefly describe principles of some such filters,

SRIF: Consider a linear system corrupted by unit
covariance noise [63]

z = Ax + v; Alm, n)



where

E(v) = 0, E(w") = [ (identity). and m = n

If ¥ and P, are the a priori estmate and covariances,
then
P, = R;'RT (23)
and

(24)

file

I, 2R X =Rx+ v.
A computationally accurate method of solving (22) is
to construct an orthogonal transformation V,(¥¥' = 1),

such that

& "
0 m-=n
where R is upper triangular. and nonsingular when A has

full rank. ~.
Also,

(25)

ViAlz] = (26)

0 2

The importance of the array [R,.z.] is that one can
construct the minimum variance estimate of x,x and its
covariance P, from it. Finally. we have (details omitted):

i-R7: @7

rs

5, - (28)

RIVRT.
The pair {R.z) is called the information array. and Z

= Rx + v is called the data equation. The complete
description of SRIF is given in [4).

UDF: The UDF centers around factorizing and
updating the factors of covariance matrix P:

P =UDUT

where {/ is unit upper triangular matrix. and £ is the
diagonal matrix,

The measurement and time updating parts of the UDF
are given by {4, Theorems V.3.1 and V14.11.
respectively. These two algorithms together with the time

{29)

filter

parameicrs

exact values

conventinnal
Kalman fifter

propagation of states constitute the UDT‘,‘which is
algebraically equivalent to the Kalman filter but is
numerically reliable and accurate. In [64-66] accuracy,
sensitivity, stability. efficiency. error analysis, and cost
are further elaborated for UD¥Fs. The UDF does not
involve arithmetic square roots and hence it is
computationally more efficient than SRIF. It is recursive
and seems to be most suitable for the OBOD program.

The effect of a priori statistic and poor observability
on Kalman and UDFs is demonstrated by the following
example [64, © 1976 [FAC].

Let

(0 = 0 =@ (30)
where n is normalized and y, and y, are the observations
to be processed. The a prion statistic P is chosen to have
a large value of o*f where o = //¢ and / is an identity
matrix. This choice reflects the lack of information about
the system.

Partial results for the conventional Kaiman filter and
UDF are shown in the table at the bottom of this page.
It is obvious from the table that the Kalman filier
algorithm computes negative diagonal entrics in the
covariance matrix but UD factorization doesn’t. For
detailed comparison with otheriKalman type and
factorization algorithms, [64] must be consulted.

UDFIRTS Smoother: Smoothing is a non-reak-time
data processing scheme that uses all measurements
between O and T to estimate the state of a system at a
certain time ¢, where O = r = T. An optimal smoother
can be thought of as a suitable combination of two
optimal filters. We describe fixed interval smoother,
wherein the initial and final times 0 and T arc fixed and
the estimate x{#/7) orequivalently for discrctc-time
X{jIN), is sought.

The. UDF-RTS smoother [67] involves smoothing as a
backward-pass scan to a forward-pass UD filtering. It
uses UDF outputs. The backward-pass RTS recursion that
generates smooth estimates and estimate error covariance
is:

UD fuctorization
ﬁl’l’(’r

P, 1
covarkance a

B

-t +¢) 1
Tt Ar

P i a
covirtance | A § — ¢l +¢€)

¢ -

-7 ot

-1 +1j' s ! —u+al
=1 0 Art—(l+e€) 2

|

*Since oaly e UD facton are updaed | the vovarnees are not part of the alyorithm. o =

A= =2+ 22 H 07 Ay 1 - De.
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(31)

re=x, + GUx  vm X )

Pin = Pry + GUPy v~ Pyuy )G (32)
where

G =P, ® Py j=N=-1...0 (33)

with N the number of data points.

The variables without N are the outputs of the filter
and have their usual n ing {50, 67].

This is a fixed-interval snioother that does not use
measurements during a backward pass. The
decomposition of the linear modet dynamical equations
and maximum use of rank-! matrix modification yield a
new algorithm based on RTS smoother recursion [67]. It
is claimed that this new simoother is efficient, reliable,
and reduces computer storage. 1N {31, 68] we consider
the application of EKF, UDF. and thcse smoothers to
SARSAT orbit determination.

U-D Filier: This filter allows the integration of the
continuous state-emor covariance differcntial equations in
UDUT form. This feature combined with a triangular
measurement update algorithni obtains a complete square-
root estimation algorithm for which square roots arc
avoided. The derailed formulation of {he algorithm can be
found in [46]. The U-D continuous-time propagation
algorithm appears to be a promising solution to the
continuous-time fiiter problem. However, incosporation of
Markov colored noise and bias parameters and
development of methods for directly computing U-D
steady-state matrix factors remain 10 be studied. In this
context it will be interesting to study the technical
discussion that further illuminates various propertics of
continuous and discrete UDFs and compares them from
the perspectives of accuracy and efficiency (47, 69].

L-D Filrer: The measurement update algorithm for a
lower unit triangular matrix L is given in [70, 71]. Also
given is more efficient L-D algorithm that is superior to
the conventional one when the ratio between the
dimension of the state vector and the number of states
directly related to the measurements is greater than one.
The new algorithm takes the advantage of the block
rectangular structure of

where ""H 1s an #t Xr submatrix of H, the measurement
Tatrix associated with the measurement model. The

measurement vector z is dependent on the first r states
mly. This structure is exploited to arrive at the new

ilgorithm. It iS based on separating the conventional L-D
actors update scheme [4, 48] into a sequence of L-D
ubfactor updates. In a typical case of an inertial
iavigation system (INS) of 27 states with 3 measured
tates, the computational savings are by a factor of about
REFIIN

Yet another way of factorization is described in [72]:
1e matrix continued fraction expansion of a covariance

1atrix.

E. SBOC Technigue

In a very recent paper {73] an EKF and a shiding
batch differential corrector {SBDC) method arc compured
in terms of 1) nccuracy using a nominal tracking
schedule. effect of reducing the tracking schedule.

2) accuracy in the presence of anomalous or deleted
passes of data, 3) effect of onboard frequency standard
errors, and 4) effect of arge tracking and data relay
satellite system {TDRSS) ephemeris errors.

The SBDC is a variant of the conventional batch
differential correcton orbit determination. The data span
continues to stide forward, picking up 4 pass of new data
and dropping off a pass of old data. A pass of data means
a set of data collected within a shon time span. Only the
orbital elements thal were determined in a previous slide
are propagated forward to serve as starting values for the
next slide. Then a new solution is attempted using thcse
data. The details of the technique may be found in |73,

ref. 2-41.

F. Pugachev Filter

Pugachev considers the problem of conditionally

optimal estimation and extrapolation of the state variables
and of estimation of unknown parameters in nonlinear
systems described by differential equations [74]. It is
claimed that the general theory of conditionally optimal
estimation includes all the efficient methods of nonlinear
filtering. the respeclive filters being admissible optimal
filters in the corresponding classes.

Let a stochastic system be described by the first-order

difference equation {75]

Xiey = filx; %) (33)

where f; is a known, nonlinear function. and {y } isa

sequence Of independent random variables with known
distributions. The sequence of {z,} of random vectors

z; = hi(x;,v) (36)

is observed, h; being a known function.

An optimal estimate of x;,x; iS required. minimizing
the mean square error E{}%; — x,;{?) in the class of
functions of x, ..., x;_,, determined by difference
equations of the form

., =Sp+Y; (37
for all the values of &, and y . the integer ; and the
funtion {; being given. and

B = Ci(‘fi‘ T -f‘,‘+’,._;.z,'). (38)

The optimal values of filter gain §; and Y, are given
by
5 = LK™

i
= Hloln - 81 gh

{39)
(40

i

where
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L = E(x;y, — E(xie )BT
E(B — EBNRT
€ = EPB)

K, 42)

met? = E(X;yp)s

(43)

and £ indicates expectation.

It is obvious that the filter gain computations are quite
involved. If they are not required t0 be done in real-time,
then it can be easily seen from (37) and {38} that the
Pugachev filter is computationally very simple.

The numerical properties and computational aspects of
thiy new filter have not yet been fully explored. The orbit
determination problem. being nonlinear, offers a potential
application of this filter. The filter recursion, being
simple, can be easily implemented on a microcompirter.
However, the filter gain computation seems to be a very
compiex process. The application of this filter could not
be traced except in {73] where it is used for a linear
problem.

Remarks: There have been many other types of
estimators in use for the problem of orbit determination
(OD). We chose to compare only those estimation
techniques which have be¢n widely used and/or follow a
sort of evolutionary pattern. Table 1] reveals that the first
five types of filters have been applied to numerous
acrospace problems. The remaining algorithms or their
applications are relatively new. These techniques offer
options and opponunities for further research on their
theorettcal claims, numerical and computational
properties. and implementation.

V. COMPUTATIONAL ASPECTS

We briefly discuss some computational aspects related
to micasurement data editing and filter implementation.

Data Editing

An QDM must include features of data editing. The
editing may be built into the OD program or may be
accomplished prior to beginning the filtering. It is
common to use the current orbit estimate to fomi a set of
measurement residuals on which to perform the editing.
The measurement data is ignored if its residual is larger
than some specified value or if its residual deviates from
the mean residual for that measurement type by morc
than some number of standard deviations [76].

If measurements are available more frequently than
they can be processed, then prefiltering or data
compression is applied. An average of the measurements
{over cycle time of filter computation) is used every cycle
time. [t is interesting to note that' the onginal noise is
smooihed, but an additionat error due to smoothing of the
signal occurs [§0. ch. 8}]. Many other filter
implementation aspects are also discussed 1M {30]. hMore
frequent dada can also be handled in a two-loop
implementation of the EXKF [81].
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CIPR

Filter

—

If a Kaiman filter type algorithm is to be used as a
batch-processor then the observations are processed at the
end of each satellite pass. This docs not ir 2 real-time
requirement on the SBC. However. if arbita: esttmates
are required in real-time. say for online corrective action.
then a reasonably kist processor would be required. The
entire computation for estirsation of states per
measurement data should be done well within one
sampling interval. If ohservarions are avzilable at a very
fast rate and if all of them are to be considered then the
choice becomes very crucial. Computational requirements
for implementation of the discrete Kalman filter are given
in{77]. The time and storage requirements have been
thoroughly analyzed. Logic times are also given. Using
this infomiation in ceajunction with the clock rate;
arithmetic operation times. and instruction cycle time of a
given SBC. the tatal computation tune required for the
filter to process a single (or vector) observation can be
estimated. Similar calculations can be performed for
factorization methods based on [4, 63].

Although the need for real-time orbit estimation may
not be great. Kalman filtering and equivalently
factorization methods (cspecially U-D filter) offer several
advantages over the wcightcd least-squares methods for
OBOD. For OBOD/SBC the major software design
constraints might be processor weight. size. and power;
hence computationally eftictent and numerically reliable
orbit estimators have much 1o offer.

Vi. APPLICATION REVIEW

Most of the techniques discussed in Section 1V have
been applied to various acrospace problems: orbit
determination, attitude estimation, interplanctary
navigation of the Viking-Mars and Voyager-Jupiter
spacecraft. GPS-aided aircraft navipation, seasat
altimetry, calibration. aircraft and missile tracking. etc.
[18, 21. 22. 34. 39. 56, 57. 73. 78]. Also scc
applications references of {78].

In Table IV we collect representative application
results of some estimatars for orbit determination and
related problems. These results arc presented with respeci
to some major aspects of ODP/OBOD which we have |
described in the previous sections. It may be noted that
the information not discussed or only implicitly
mentioned in the relevant reference is denoted by a dash.

One of the earliest papers on OBOD is [34}. It i
presents an analysis of the accuracies obtainable with an !
ad hoc autonomous orbit navigation system. The analysis
was made realistic by including various types of errors if
initial condition, sensor, models, algerithm, and
computations. Digital simulation of the actual navigation
algorithms was performed with all error sources includet
Authors also gave some opinions on computational
aspects and SBC requirciments.
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crmor models is also
studied.

The paper by White et al. {35] addressed the problem
of joint attitude and orbit estimation using stars and
landmarks. Their twelve-state approach to joint attitude-
orbit determination achieved acceptable filter
performance. Although star measurements did not directly
affect the ephemeris-components, they provided the
necessary attitude accuracy needed to optimally utilize the
landmark information. This is an interesting application
result for OBOD.

Reference {79] compares four filtering algorithms for
their performance in orbit prediction. It highlights the

numerical deficiencies of the conventional and stabilized
Kalman algorithms. It is important to note that accuracies
of the U-D filter using single precision (I-p) arithmetic
consistently matched the double precision results of
conventional filters. The U-D filter has excellent
numerical properties and is computationally as efficient as
Kalman filter. It is also relatively insensitive to the
variations in the a priori statistics. The authors give
systematic and realistic simulation results to support their
claims; actually the claims are the results of their
exhaustive study of the numerical and computational
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aspects of these filters. They study a complete 19-state (9
dynamic and 10 bias parameters) model. scaling of the a
prion state and data covariances. and reduce{dimqnsion
problems. in every case of this coniprehenside study the
factorization algorithms outperformed all the Kalman
algorithms. Similar studies for SARSAT OD are
underway.

An Aside: An interesting study of performance
degradation in digitally implemented Kalman filter was
presented in {80]. The causes of diver,eence were
investigated. A software was developed for the PDP- 11/
45 computer system which can perform various arithmetic
operations as if the processor were of any given
wordlength between I and 62 bits. The performance
analysis was dons for 4. 8. 12, and 16 bit wordlengths.
The simulation results were compared with analytical
prediction and the agreement was found to be good.
These results should be useful in deciding what word-
length processor is required for a particular application to
miecet accuracy specifications.  Similar studies for other
algorithms would shed more light on their numerical
properties. Such investigations would be very valuable for
OBOD projects. Further research could be done in this
direction.

Vonbun et al. [37] present results of using an STS
tracking system data for orbit determination. The new
tracking system type is offered as an alternative to
gruund-based tracking system. The results of the ATS-6/
GEOS-3 and ATS-6/NIMBUS-6 STS tracking orbit
determination experiments arc presented. User satellite
orbits were determined with accuracies comparable to
whut is obtainable from ground tracking sysiems utilizing
a Bayesian least squares estimation technique with a good
a priort estimate of states of a relay satellite.

Tapley and Peters {46] compare the performance of
EKF. UDF. and U-D ¢U-D continuous) filters in terms of
efficiency and accuracy. The U-D filter is offered as an
alternative to UDF. Although not faster. it was claimed to
yield greater accuracy than UDF. Additional study is
required to test the stability and adaptability of the
algorithm. The authors study the effect of step size-of the
modified Euler integrator on position and velocity errors.
We tabulate these results only for the case of step size
equal to 3 s.

Another GPS study is represented in [81]. The authors
use sequential piecewise recursive {SPWR] filter that has
two-loop implementation. It updates the state and error

covariance at different rates. This improves the navigation.

accuracy by processing all available measurements
without increasing the computational load on the
processor. Real-time system implementation is also
discussed. Assume that four satellites (GPS-NAVSTAR})
arc being tracked sequentially. The filter gains for each
satellite are assumed to ke initialized during the signal-
acquisition phase. During the steady-state operation. the
receiver is making measurements on each satellite, and
these measurements are incorporated one at a time in the
navigation-filter fast loop. In parallel with the fast loop.
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the covariance is updated in real-time, and the filter gain
is computed in the slow loop for the satellites in the same
sequence as their measurements are incorporated into the
fast loop. In all simulations and field tests presented, the
algorithm performed reliably.

Reference [21] gives results of using various
parameter sets for system model and measurement types
in EKF to estimate orbital states of near-Earth, polar orbit
satellite. Required accuracies are obtainable for all the
parameter sets. However. only use of range and/or range
rate data did not achieve acceptable accuracy in the
satellite's position. The best data set was considered to be
of observables: azimuth, elevation, and range (from
ground-based site). Reference [22} deals with the similar
problem but uses only range rate data and compares the
performance of Epoch time filter (ETF) and EKF for
simulated as well as real data. ETF did not meet the
SARSAT accuracy specification: 1 km position error.
However. EKF did better than the spectfications. This
orbit estimator was baselined for the Canadian SARSAT
LUT (Local User Terminal) [22]. These two references
are an excellent study on SARSAT OD.

Dunham ¢t al. |73] tackle the probleni of OBOD with
TDRSS. They compare EKF and SBDC estimators for
two types of orbits: a high-inclination. near-circular orbit
with an altitude of 700 km (Landsat-4) and a moderately
inclined. fower altitude orbit. the Gamnia Ray
Observatory (GR(). The TDRSS is a system of three
tracking and duta relay satelhites to be mamntained in
circular. near-cquatorial. geosynchronous orbits. Two
tracking mwdes were studied lor use in OBOD: one-way
Doppler and two-way range andor Doppler. The one-way
Doppler measurements would be extracted onboard the
user spacecraft from tracking signals originating an the
ground. relayed through a TDRS. and received by the
user spacecraft. The two-way data would be extracted and
time tagged on the ground from the round-trip
propagation of the tracking signals; the resulting data arc
collected and relayed back to the user spacecraft through
the command link. The conclusion of their study was that
the EKF and SBDC pertormed simifarly when similar
data were given.

Scanning these results we find that-in many instances
the aspects of filter implementation, computation time.
and numerical problems have not been discussed
explicitly. That the wordlength of the digital computer on
which the algorithm is implemented plays an important
role in a filter’s performance, is well established by the
results of {79, 80|. Since these aspects assume greater
significance for an OBOD project. they must be well
attended to.

Vil. CONCLUDING REMARKS

We have addressed the problem of GD/QBQD in the
tight of its constituents and features of promising
alternatives. Our review of estimators and their
representaiive application results is meant to be viewed

-



from the common perspectives of accuracy. reliabifity,
and efficiency. The techniques discussed span a large
evolutionary frame of time and development:
conventional to modern practices in system models. data
types. estimators. and orbit determination. We have
mainly focused our attention on merits and demerits of
various aiternatives offered for OD#OBOD. Our csplicit
tabular approach makes this very clear. Due to space
limitation we have not included details regarding ‘models
and algorithms of filters. We have highlighted the
imporant aspects of OBOD. In particular. stability and
accuracy are crucial lo OBOD implementation and
performance success. The factorization methods fe.g.,
UDF) being numerically stable and accurate and having
long since established their reliability and utility offer
promising alternatives for OBOD methodology. Further
research is required on the theoretical claims. numerical
and computational propenies. as well as implementation
aspects in respect to many contemporary alternatives
being offered for OD/OBOD.
It is hoped that this exposition will help rescurchers

evolve an ODM with good numerical properties,

APPENDIX
The auxiliary eguations related to USM are given as

sin A = egieqs/ P

cos A = (e}, —e3;)/B
Ver = Rycos A + Rpqsin A
Vo = Rpcos A — RysinA + C
C . R
P = ?— w, = q,;/V.a, w; = CVi/u
e? )
and
_. fo1€03 ~ €pépy s 2
= G g

The local sidereal time or the instantaneous longitude of
the site is given by {30}.

10
8 =0, + 0,7 + 6,T2 +(f)(£; + A

8, = 99°.6909833
0, = 36000°.7689
8, = 0°.000038708
_J.D. - 2415020

T .
< 36505 o™
J.D. = Julian Date
a9 )
r i 0.25068477 deg/mmin.

The £+ matrix is given by

21

~sin B cos @ 0
Er = | —cos 8-sin®; ~sin @ sin®; cos P,
cos 8 cos P;  sin © cos @ sin &y
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