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0. INTRODUCTION 

In [M], V. Muller proved the following theorem. 

Theorem. Let T be a bounded operator on a complex Banach space X with 
spectral radius r(T) = 1. Then for all 0 < e < 1 and (an) G CQ of norm one there is 
a norm one vector x G X such that 

\\Tkx\\ž(l-e)\ctk\, Vfc = 0 , l , 2 , . . . 

For bounded operators on a Hilbert space, the above result was proved by 
Beauzamy [B, Thm. III.2.A.1]. He also shows that if there is no point spectrum on 
{\z\ = 1}, such an x can be found in any ball of radius one. 

For an application of the Theorem to stability theory of semigroups of operators, 
see [N]. 

The proof given in [M] relies on results from Fredholm theory. In fact, in case 
re(T) < r(T) = 1, where re(T) is the essential spectral radius, there is an unimodular 
eigenvalue, and the theorem is trivial. The actual proof therefore concentrates on 
the case re(T) = r(T). 

For power bounded operators T, we will give a completely elementary proof of the 
Theorem. We do not use spectral theory, and our method works for both real and 
complex Banach spaces. In the case of a real Banach space, we define r(T) = r(Tc), 
where TQ is the complexification of T; cf. [Ru]. 

This research was supported by the Netherlands Organization for Scientific Research 
(NWO). 
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As usual, c0 denotes the Banach space of all sequences a = (an)n
<L0 that converge 

to zero, with norm ||a|| = sup |an | . 

1. P R O O F OF THE THEOREM FOR POWER BOUNDED OPERATORS 

Lemma 1. Suppose T is a bounded operator on a real or complex Banach space 
X with r(T) = 1. Then there exists a constant C > 0 with the following property. 
For each sequence a G c0 of norm one there exists a norm one vector x G X and a 
subsequence (n*.) such that 

| |T n ^ | |^C7|a f c | , V* = 0,1 ,2 , . . . 

P r o o f . First note that we may assume without loss of generality that T n —•> 0 
strongly. In particular, by the uniform boundedness theorem there is a constant M 
such that sup | |Tn | | = M < oo. Let a G c0 be of norm one. Fix 0 < c < | M _ 1 , fix 

n 

0 < S < c and choose m so large that 

oo oo 

2-m+i + MJ2 2~mi <s a n d __22_mi < l +s-
i = l i = 0 

(In fact, the second is implied by the first). 
Put N_i = - 1 , M_i = - 1 . Choose N0 ^ 0 such that |a;| ^ 2 " m , Vi ^ N0. 
In the complex case, r(T) ^ 1 implies that | |Tn | | ^ 1 for all n G rU In the real case, 

we use that ||TC|| ^ 2||T|| to conclude that r(T) ^ 1 implies | |Tn | | ^ \ for all n e M. 
In either case, the choice of c implies that there is a norm one vector x0 G X such 
that | | rN o_o| | ^ cM. For all n = 0,1,...,No we have | |Tnx0 | | ^ M ^ H T ^ o l l ^ c. 
Put Uj := j , j = 0, . . . ,N0 . Since lim||Tn£0 | | = 0, we may choose M0 such that 

| |Tnx0 | | sC 2~m , for all n ^ M0. 
Inductively, suppose norm one vectors „o,-Ci,.. .,.r/_i G X, and numbers N0 < 

Ni < . . . < N/_i and ni < n2 < . . . < n^l_l and M 0 , . . .,M/_i have been chosen 
subject to the following conditions: 

(a) lce.il ^ 2-m<'+1>, Vi ^ Nj; j = 0 , 1 , . . . , / - 1; 
(b) nA/._1+i ^ M j _ i , Vj = 0 , 1 , . . . , / - 1; 
(c) | |T n%-| | > c, Vfc = N.--1 + 1, . . . , Nj; j = 0, . . . , I - 1. 
(d) | |rn_.i | | ^ 2" m ^ ' + 2 ) , V0 ^ i <: j and n ^ My, j -= 0,1, . . . , / - 1. 

Choose N, > N/_i + 1 such that |a;| ^ 2-m< /+1), Vi ^ N/. Then (a) holds for the 
induction variable I. Choose a norm one vector xi G X and numbers n ^ . ^ i < . . . < 
n/v, such that nNl_l+\ > nAr,_,, nAt,_1+i ^ M/_i (this is (b)) and 

| | T n ^ / | | ^ c , k = N/_i + l , . . . ,N / . 
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Then (c) is satisfied. Finally, choose M/ such that 

| | T n ^ | | <: 2 " m ( / + 2 ) , VO ^ i <: l and n ^ Mt. 

Then again (a)-(d) hold for the value I. Continue this process by induction. Put 

CO 

x — ^ ^ ^ x j . 
j=0 

Now let k be a fixed integer and choose j ^ 0 such that Nj_i + 1 ^ k ^ Nj. If j ^ 1, 
then by (a) and the fact that k ^ Nj-i we have, 

2 ~ m j _ 2-7n[(j-l)-(-l] >> 
Ctkì 

In case j = 0, note that this inequality holds trivially. By (b) we have nk ^ 
^/Vj-i+i ^ Mj-i and consequently, by (d), for all 0 ^ i ^ j - 1 we have ||TnA;.x;|| ^ 

2-m(j+i) Therefore, 
j-i 

^ 2 - m i | | T n , x . | | ^ 2 - m ( j + l ) + l> 

i=0 

Also, we have the trivial estimate 
CO 

— mi Y, 2-mf||Tn^i|| ^ 2 " m i M ^ 2 
i=j + l i=l 

Therefore, 

CO 

| | T n ^ | | > 2~mj(c - 2 ~ m + 1 - M ^ 2 " m i ) >2-mj(c-6) ^ |afc |(c-<J). 

Finally, observe that x has norm ^ ~^ 2~mj ^ 1 + 5. Hence, by rescaling x to a 
3=0 

norm one vector, for the rescaled x we obtain 

HI^ll > fij^KI-

This proves the theorem, with C = (c — 5)/(l + 5). • 

Theorem 1.2. Let T he a power bounded operator on a real or complex Banach 
space X with r(T) = 1. Then for all s > 0 and all a G c0 of norm one, there exists 
a norm one vector x G X such that 

\\Thx\\ > (1 - e)\akl V* = 0 ,1 ,2 , . . . 
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P r o o f . Step 1. Put sup ||Tn|| = M < oo. Define the equivalent norm 1 • || on X 

by | x | = sup||Tna;||. Then ||x|| < | x | < M||z|| and | T | < 1. Let (/?„) be a norm 
n 

one sequence in c$ such that (3n I 0 and /3n ^ | a n | for all n. By the Lemma, there 
exists a vector x of ||| • |-norm one and a subsequence (nk) such that |||Tnfcx| > C/3k. 
Set c := CM~l. We have ||a;|| ^ 1, and for all k we have 

||T**|| > A f ^ T ^ I £ M - ^ T ^ x l £ c/3fc £ c|afc|. 

Step 2. We will now show that the constant c can actually be replaced by 1 — e. 
Let 0 < e < 1 be arbitrary and fix a norm one (an) G Co. Fix some <5 > 0 such that 
(1 — S)(l + S)~l ^ 1 — e. We start by choosing integers 0 = Mo < Mi < such 
that |afc| ^ (1 + S)~n whenever k ^ Mn. Next, choose integers 0 = No < Ni < . . . 
in such a way that Nn ^ Mn for each n and Nm + Nn ^ Nm+n for all n, ra. Define 
the norm one element (/3n) G Go by /?*. = (1 + S)~n whenever Nn ^ k < Nn+i. Note 
that /3 ̂  |a|. 

We claim that / 3 m + n ^ (1 + S)~1f3mpn. Indeed, choose km and kn such that Nkui ^ 
ra ^ Nfcm+1 and Nkn ^ n ^ Nfcn+1. Then 0m = (1 + *)-*•» and /?n = (1 + <$)-*», 
whereas from ra+n < Nfcm+1+Nfcn+1 ^ Nfcm+fcn+2 wehave/3m + n ^ (l+tf)"*"--*'1-1. 
This proves the claim. 

Now choose a norm one vector y E X such that ||Tfcy|| ^ c/3k for all k, where c is 
the constant of Step 1. Let 

* Pfc 

Note that 7 ^ c; moreover, for all k we have ||Ffct/|| ^ 7l3fc. Choose an index k0 such 
that 

7&o > - _ r 

l|Tfcoy|| -

and put a; = \\Tkoy\\~lTkoy. Then for all n we have 

l|r"l|| = !!F3f»l^l*(1-^*(1-e)KI 

D 
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2. T H E WEAK CASE 

In this section, we will give some partial answers as to whether every operator T 
with r(T) ^ 1 has weak orbits that converge to zero arbitrarily slowly. 

Lemma 2 .1 . [N, Cor. 2.5] Let X be a real or complex Banach space. Let (3n ^ 0, 
oo 

n G N, and assume that ^ / 3 n = co. If 1 ^ p < oo and T is a bounded operator 
71 = 0 

such that 
oo 

J2pn\(x*,Tnx)\p < oo, Vxex <X* e X*, 
71 = 0 

thenr(T) < 1. 

Theorem 2.2. Let T be a bounded operator on a real or compex Banach space 
X with r(T) = 1. Let a G c0 be of norm one. Then each sequence (nk) has 
a subsequence (n^.) with the property that there exist norm one vectors x G X, 
x* G X* such that 

\(x*,Tn^x)\>\akjl j = 0 , 1 , . . . 

P r o o f . By replacing an by sup \ak\, we may assume that a0 = 1 and an I 0. 

Put No := - 1 and for k = 1, 2 , . . . put 

Nfc := max{n G N : a n ) A:-1}. 

Then for 0 ^ n ^ Ni we have an = 1 and for k ^ 1 and Nk + 1 ^ n ^ N^+i we have 
(k + l ) - 1 ^ an < k'1. Define the sequence (/3n) by (3n = 1, n = 0 , . . . , Ni, and 

(3n := k'x(Nk+1 - Nk)~\ n = Nk + 1,. . .,N*+i; fc = 1,2,... 

oo 

Then ^ f3n = oo, and 
71 = 0 

OO oo 

Y, ocn(5n <: N! + 1 + ]T(N* + 1 - Nk) • k~l • k-x(Nk+i - Nk)~l < oo. 
71 = 0 /C = l 

Let (nk) be any given sequence, and define (/3n) by 

{ /3A;, if j = nk for some k; 

0, else. 
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oo _ oo 

Then J2 0j — ^2 Pn = oo. By Lemma 2.1, there exist x G A and x* G K* such 
j = 0 n = 0 

that 
oo oo 

j = 0 fc=0 

oo 

Since ^ o:n/3n < oo, there have to be infinitely many indices nk for which 
n = 0 

| ( : r* ,F^:r) |^a f c . 

This proves the theorem. • 

In the case of a positive operator on a Banach lattice the full weak analogue of 
the Theorem holds. This is the content of our next result. 

Theorem 2.3. Let T be a positive operator on a real or complex Banach lattice 
with r(T) = 1. Then for each e > 0 and a G CQ of norm one, there exist norm one 
vectors 0 ^ x G X and 0 ^ x* G X* such that 

(x\Tnx) £ ( l - e ) | a n | , n = 0 , l , 2 , . . . 

P r o o f . We may assume that an \, 0. Also, we may assume that X is complex. 
Indeed, if X is real we consider the complexification Fc on Xc, and observe that 
positive vectors in Â c in fact belong to the real part X. 

Choose 6 > 0 such that (I + 5)~2(l — 5) ^ 1 - e. By considering approximate 
eigenvectors, it is easy to see (cf. [N, Lemma 2.1]) that for each NGN, there exist 
norm one vectors 0 ^ xN G X and 0 ^ xN G A* such that 

(x*N,TnxN) ^ 1 - < J , n = 0, l , . . . ,N . 

The proof can now be given along the lines of Lemma 1.1; the positivity simplifies 
the argument. 

oo 

Choose m such that £ 2 _ m n ^ 1 + S. For each k = 0 , 1 , . . . , let 
n = 0 

Nh = max{n eU: an> 2" 2 m / c }, 

and choose norm one vectors 0 ^ xk G A and 0 ^ x*h G A"* such that 

(x*k,T
nxk) ^ 1 - t f , n = 0,l,...,1Vfc+1. 
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Set x = (1 + S)-1 £ 2-mkxk and x* = (1 + S)~x ~~ 2-mkx*k. Then both x and x* 
k=0 k=0 

are positive vectors of norm ^ 1. Fix n E N. If 0 ^ n ^ N0, then 

(x\Tnx) > (1 + S)-2(x*0, Tnx0) £ (1 + S)~2(l -5)^l-e = (I- e)an. 

We used that an = 1 for n = 0, . . . , N0. If n ^ N0 + 1, say N7- + 1 ^ n ^ Nj+x for 
some j , then an < a ^ + i < 2-2771-7 and consequently, 

(x\Tnx) >2-2rnj(\ + S)-2(x],Tnxj) ^2-2mj(l-e) ^ (1 - e)an. 

D 

Theorem 2.3 fails for arbitrary operators, at least in the case of real scalars. Indeed, 
we have the following counterexample in X = U2. 

Example 2.4. Let 7 G [0,2K) be a number such that 7/(2TC) is irrational. Let 
Ty be rotation over 7 in X = U2. Let C > 0 be an arbitrary real number. For 
x,y £ (R2 on norm one, let n(x,y) denote the first integer such that 

\C~x,y)\<-

Because the orbit n 1—•» Tnx is dense in the unit circle by the assumption on 7, the 
numbers n(x,y) indeed exist. We claim that 

N := sup{n(x, y): ||x|| = ||H|| = 1} < 00. 

Indeed, suppose not. Then for each n € N there are xn, yn of norm one such that 

\(Tkxn,yn)\> | , 0 < f c < n . 

Choose a subsequence (nj) such that xUj -+ x and ynj -+ y, and fix k. Then for all 
j such that iij ^ k we have 

\(T*x,y)\ > \(T^xnj,yni)\ - \(T*xnj,ynj)\ 

- I(Tfc(x - xni),y)\-\(T*xnj ,y-ynj)\. 

Letting j —> 00 we obtain 

\(T*x,y)\>^, VfcGM. 

This contradicts the finiteness of n(x,y). Now let a e c0 be the vector 

a = ( l , l , . . . , 1 , 0 , 0 , . . . ) , 
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where an = 1 for 0 ^ n ^ TV and an = 0 for n > TV. Then for all norm one vectors 
x, y £ (R2 there is a k = k(:r, u) £ 0,..., IV such that 

|<T.>,y>|<C|a*| . 

As it turns out, this example works because T7 is unitary. To see why, we need 
some terminology Let H be a real or complex Hilbert space. An operator T on 
H is called an isometry if \\Tx\\ = ||:r|| for all x £ H or equivalently, if T*T = I. 
The operator T is called an unilateral shift if there is an orthogonal decomposition 
H = 0 Hn such that THn C Hn+i and the map T: Hn -» Hn+i is an isometry 

nGN 

for all n £ rU We have the so-called Wold decomposition: If T is an isometry on 
a Hilbert space H, then there is an orthogonal decomposition H = H0 ® Hi with 
THi C Hi, z = 0,1, such that T0 := T|#0 is unitary and Ti := T\HX is an unilateral 
shift. For a proof we refer to [SF], Theorem 1.1. 

Now we have the following result: Let T be a non-unitary isometry on a real or 
complex Hilbert space H. Then for all e > 0 and a £ Co of norm one, there exist 
norm one vectors x £ H, y £ H, such that 

(*) \(Tnx,y)\>(l-e)\an\, Vn £ N. 

Indeed, let H = Ho 0 Hi be the Wold decomposition. Since T is not unitary, Hi is 
non-empty. By considering the restriction of T to Hi, we therefore may assume that 
T is an unilateral shift on H. 

Let H = 0 Hn be an orthogonal decomposition of H such that T: Hn -» Hn+i 
nGN 

is an isometry. Fix an arbitrary norm one vector x0 £ Ho and put xn := T nx 0 . The 
closed linear span of {xn: n £ N} is isometric to I2 and the restriction of T to this 
span acts as the shift on I2. Therefore, we can apply Theorem 2.3. 

In fact, inspecting the proof of Theorem 2.3 for the shift operator on I2, it is 
not hard to see that in fact we can find an 0 ^ x £ I2 of norm one such that 
(Tnx, x) ^ (1 — e) |a n | for all n. This implies that one can even achieve x = y in (*). 
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