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Abstract

We present algorithms to reconstruct the planar cross section of a simply connected
object from data points measured by rays. The rays are semi-infinite curves representing,
for example, the laser beam or the articulated arms of a robot moving around the object.
This paper shows that the information provided by the rays is crucial (though generally
neglected) when solving 2-dimensional reconstruction problems. The main property of the
rays is that they induce a total order on the measured points. This order is shown to
be computable in optimal time O(nlogn). The algorithm is fully dynamic and allows the
insertion or the deletion of a point in O(logn) time.

From this order a polygonal approximation of the object can be deduced in a straight-
forward manner. However, if not enough data are available or if the points belong to several
connected objects, this polygonal approximation may not be a simple polygon or may in-
tersect the rays. This can be checked in O(n log n) time.

The order induced by the rays can also be used to find a strategy for discovering the
exact shape of a simple (but not necessarily convex) polygon by means of a minimal number
of probes. When each probe outcome consists of a contact point, a ray measuring that point
and the normal to the object at the point, we have shown that 3n — 3 probes are necessary
and sufficient if the object has n non colinear edges. Each probe can be determined in
O(log n) time yielding an O(n log n)-time O(n)-space algorithm. When each probe outcome
consists of a contact point and a ray measuring that point but not the normal, the same
strategy can still be applied. Under a mild condition, 5n — 2 probes are sufficient to discover
the shape of the object in this case and, without this condition, 5n — 2 probes allow to
discover a shape which is almost surely the actual shape of the object.

*This work was done while this author was visiting INRIA Sophia-Antipolis
1This author has been partly supported by the CEE ESPRIT Project P-940
!Unité de recherche associée au CNRS (URA 725)
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A propos de ’ordre induit par un ensemble de
rayons
Application au sondage de polygones non
convexes
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Résumé

On présente, dans cet article, des algorithmes permettant de reconstruire une section
plane d’un objet simplement connexe & partir de mesures effectuées par des rayons. Un
rayon est une courbe semi-infinie représentant, par exemple, un faisceau laser ou le bras
d’un robot servant & mesurer I'objet. On montre que I'information fournie par les rayons
est cruciale (bien que généralement négligée) pour résoudre les problemes de reconstruction
bidimensionnels. La propriété essentielle des rayons est d’induire une relation d’ordre total
sur les points mesurés. Cet ordre peut étre calculé en temps O(n log n), ce qui est optimal.
L’algorithme est dynamique et permet d’insérer ou de supprimer un point en temps O(log n).

On peut déduire directement de cet ordre une approximation polygonale de I’objet.
Cependant, si I’on ne dispose pas de suffisamment de mesures ou si les points appartiennent
a plusieurs objets, cette approximation polygonale peut ne pas étre un polygone simple ou
peut intersecter les rayons. Ceci peut étre testé en temps O(nlog n).

L’ordre induit par les rayons peut également &tre utilisé pour définir une stratégie capable
de découvrir, a I’aide de sondages simples, la forme exacte de 'objet si celui-ci est un polygone
simple (mais pas nécessairement convexe). Lorsque le résultat de chaque sondage consiste
en les coordonnées du point de contact, un rayon servant & mesurer ce point et la normale a
Pobjet en ce point, on montre qu’il faut et qu’il suffit de sonder 3n — 3 fois Pobjet si celui-ci
est constitué de n arétes non colinéaires. Chaque sondage est déterminé en temps O(logn),
ce qui conduit & un algorithme de complexité O(nlogn) en temps et O(n) en place. Lorsque
le résultat des sondages ne contient pas d’information sur la normale, la méme stratégie
s’applique encore. Dans ce cas et sous une hypothése assez faible, 5n ~ 2 sondages sont
suffisants pour découvrir la forme; sans cette hypothése, on montre que ces 5n — 2 sondages
permettent de découvrir une forme qui est presque surement la forme exacte de 'objet.



1 Introduction

Let us consider a robot equipped with a sensing device, moving around an unknown
object. By means of its sensor, the robot probes the object and the problem is to
reconstruct, from the probe responses, the shape or some aspect of the unknown
object. A variety of subproblems can be distinguished, depending on the model of
the sensor and on the constraints on the type of the object. In this paper, we restrict
our attention to 2-dimensional variants of the problem and assume that the sensor
probes in a plane.

Let us consider the typical situation where each probe response consists of the
coordinates of a point on the boundary of the object (a “finger probe”, according
to Skiena’s taxonomy [12]). In order to reconstruct the shape of the object, it is
crucial to recover, from the probe responses, the order of the measured points as they
appear on the boundary of the object. Clearly, without this order, it is impossible
to infer the shape or even a reasonable approximation of the shape and we must
content ourselves with heuristics or with methods that are only guaranteed to work
for sufficiently dense sets of points [4,10]. On the other hand, having this order
will allow to compute a polygonal approximation of the object by connecting the
measured points in their order.

The order the points appear on the boundary of the object is, for some classes
of objects, implicitly contained in the data. If the object is convex, the order is
simply the order the points appear on their convex hull. The order is also implicitly
contained in the data points if, as shown by O’Rourke [9], the object is an orthogonal
polygon! (i.e., each vertex is incident to exactly one horizontal edge and one vertical
edge).

In order to study more general objects, we prefer not to impose constraints on the
shape of the object but, instead, to use more powerful probes. This is not to say that
new sensing devices are necessarily required. In fact, this paper is motivated by the
observation that, in most situations, the information necessary to recover the order
is implicitly contained in the probe. More precisely, the information is contained
in some rays which served measuring the points. A ray is any semi-infinite curve
which has the measured point as its origin and which does not intersect the interior
of the object (see Figure 1). In case of an optical device, the rays are half straight
lines between the sensor (supposed to be at infinity) and the points - the optical
rays. If the object is not transparent, these rays cannot intersect the interior of
the object. In other situations, the robot may simply touch the object with the
tip of its arm(s). In that case, the rays consist in a set of polygonal lines issued
from the contact points, which represent the different positions of the arm(s) when
touching the object. Notice that, in this case, the number of line segments of a
polygonal line is bounded by the maximal number-of articulated bodies of the robot

In fact, O’Rourke proved the result for a family of disjoint orthogonal polygons.



arm(s). A similar situation occurs when a mobile robot moves along some path until
it encounters the boundary of an object. The path followed by the robot is a ray.

Figure 1: A robot probing an object with rays

The information provided by the rays is crucial for reconstructing shapes. In-
deed, we will show in Section 2.2 that the rays induce a total order on the points, the
same as the order the points appear along the boundary of the object. Moreover,
this order can be computed in optimal O(nlogn) time if the number of measures
is n. The algorithm presented in Section 2.3 is fully dynamic and allows the inser-
tion or even the deletion of a measured point in O(logn) time. From this order a
polygonal approximation of the object can be deduced in a straightforward manner
as mentionned above. However, if not enough data are available or if the points
belong to several connected objects, this polygonal approximation may not be a
simple polygon or may intersect the rays. This can be checked in O(nlogn) time as
is shown in Section 2.4.

When the object is known to be piece-wise linear, the order induced by the rays
can also be used to find a good strategy for discovering the exact shape of the object.
This problem is often referred to as the probing problem in the literature and has
been studied in the case of a convex polygonal object: Cole and Yap [6] showed
that the shape of a convex polygon with n edges can be determined with no more
than 3n probes; Bernstein [3] has improved this result if the polygon is restricted
to a finite set and Dobkin, Edelsbrunner and Yap (7] have considered the case of
convex polytopes in multidimensionnal space. A work of synthesis of the field of
geometric probing as well as a collection of new results can be found in Skiena’
Ph.D. Thesis [12]. In Section 3, we show how the order induced by the rays can



be used to generalize the results of Cole and Yap to non convex polygons with no
colinear edges. It is proved that, if each probe outcome consists of a contact point,
a ray measuring that point and the normal to the object at the point, 3n — 3 probes
are necessary (Section 3.4) and sufficient (Section 3.2). In Section 3.3, we prove that
each probe can be determined in O(logn) time yielding an O(nlogn)-time O(n)-
space algorithm. If the normals are not available, it is proved that the same strategy
can still be applied. Under a mild condition, 5» — 2 probes are sufficient to discover
the shape of the object in this case. Without this condition, 57 — 2 probes allow to
discover a shape which is almost surely the actual shape of the object.

Let us give a few preliminary notations, remarks and general assumptions which
will be made through the whole paper. In the two dimensional plane, let P be a
set of n points p;...p, and L be a set of n semi-infinite curves, called rays, l;...l,,
such that /; originates at point p;. According to physical constraints, we always
consider that the points of P lie on the boundary of a real solid object and that
the rays never intersect the interior of the object?. We assume that the n points
belong to a unique simply connected object without holes. From a theoretical point
of view, the ray can be any simple semi-infinite continuous curve originating at a
point of P and ending at a point at infinity. The restriction to simple curves is in
fact not essential and done for simplicity. For the purpose of practical reconstruction
algorithms, we shall restrict our presentation to polygonal rays although the method
works for more general curves; the last edges of these polygonal lines are supposed
to be semi-infinite straight lines. Moreover, our complexity results assume that the
number of segments of each ray is bounded by a constant.

2 The contour recenstruction problem

2.1 Statement of the problem

For the given set of points P and the set of rays L, the aim is to find a polygonal
approximation of the object boundary, called a polygonal contour in the sequel,
which is a simple polygon having the points of P as vertices and intersecting none
of the rays of the set L. Such a polygonal contour does not exist for any given set
of data (P,L). There are two typical situations in which no polygonal solution to
the contour problem can be found.

The first one is shown in Figure 2. In that case, there are two rays, say ray
l, measuring point a and ray /, measuring point b, which intersect in at least one
point at finite distance. Such a pair of rays partitions the plane into more than one
connected regions. Let Wy, be the union of the regions which do not contain points
a and b; W, is the empty region if rays /, and I, do not intersect in a finite point
and a simple wedge if [, and [, are straight intersecting rays. If some points, like

2For short, we will omit “the interior of” in the sequel.



point ¢ in Figure 2, are measured in the region Wy, then obviously the data points
belong to more than one object because no continuous curve can join points in Wab
to points a and b without intersecting ray I, or ray /;. We shall say that the region
Wy is hidden by rays !, and .

In the sequel, we call legal a set of data (P, L) for which no point lies in a hidden
region. In other words, a set of data (P, L) is legal if any pair of measured points
(a,b) can be joined by a continuous curve without intersection with the set of rays
L (except at points @ and b with respectively the rays I, and !/, measuring these
points).

lb la

[+

Figure 2: The case where the data points belong to more than one object

In the second situation, shown in Figure 3, the data are legal and there is a
simple contour passing through all the points of P and intersecting no ray of L but
this contour cannot be drawn with straight line segments joining the points of P.
Such a situation arises when too few data are available: for example, in Figure 4,
the addition of a new point b to the set of data restore the existence of a solution
to the contour problem. In that case, we say that the contour problem admits
only a topological solution. A topological contour on a set of points P is a cyclic
ordering of the points of P such that there is a simple closed curve passing through
all the points of P in that order and not intersecting the rays. Such a curve is called
a representation of the topological contour and is oriented counterclockwise. A
topological contour becomes a linear ordering of the points as soon as one particular
point has been chosen as the origin on the contour. A topological contour on a set
of points P is a solution of the problem contour (P, L) if there is a representation of
this contour which has no intersection with the set of rays L.

In this section, we shall first prove that any legal contour problem admits a unique
topological solution. Then, we present an algorithm which finds the topological
solution of a legal contour problem of size n in time O(nlog n) which is shown to be



Figure 3: Too few data are available

Figure 4: Adding a new point to restore the existence of a solution to the contour
problem



optimal. Furthermore, we say that a legal set of data (P, L) is complete if the closed
polygon which is the (unique) piece-wise linear representation of the topological
solution is actually a solution of the contour problem. In case of illegal or incomplete
data sets, this algorithm yields a polygon which either is not simple or intersects
some of the rays. Both situations can be detected a posteriori through a serie of
simple tests performed on the obtained polygon in time O(nlogn). Unfortunately,
in case of failure, these simple tests do not distinguish between illegal and incomplete
data. '

2.2 Existence and uniqueness of the topological contour of any legal
set of data

Let (P, L) be a legal set of data. We first prove a lemma which is a necessary and
sufficient condition for two points a and b to be consecutive along the topological
contour solution of the problem (P,L) . A few definitions are needed. For any pair
of points (a,b), let ", be a simple curve joining a to b without intersecting the rays
of L. The curve ¥,,, together with the rays l; and l, measuring respectively the
points a and b partitions the plane into three regions : the first one is the (eventually
empty) region Wy, which is hidden by rays I, and Iy, the other two, called Hgp and
H,y, arise when splitting the complementary region of Wap; Hop (resp., H,) is the
region to the right (resp. to the left) of 3°,; assumed to be oriented from a to b (See
Figure 5).

Eab

Figure 5: For the definition of Wyy,Hab and X,

Lemma 1 The two points a and b are consecutive on the topological contour solution
of the problem (P, L) if and only if there erists a simple curve 3, such that :
1) the curve 3 intersects no ray of L;



2) the region H,, contains no point of P in its interior.

Proof : Assume first that ¢ and b are consecutive points on the topological contour
solution of the problem (P,L). Let } be a representation of this topological solution
and let 3~ be the part of 3 joining a to b. Then, by definition, 3, intersects no
ray of L and furthermore the interior of the region H,, is totally included in the
outside of the object bounded by 3" and thus contains no point of P.

Conversely, assume that there is a curve }_, joining a to b and satisfying both
conditions of Lemma 1. Assume for a contradiction that there is a solution of the
problem (P, L) in which a and b are not consecutive. Let 3’ be a representation of
this topological solution; then "’ goes at least through another point ¢ of P between
a and b; let Y., be the part of 3"’ joining a to b (See Figure 6). The point ¢, which
cannot belong to the hidden region W,;, either belongs to H,;, which contradicts
the second condition of Lemma 1, or belongs to H,;. In this latter case, the ray
l¢, measuring ¢, which is on the right side when going from a to b on ¥/, ,,, must

necessarily intersect 3, which contradicts the first condition of Lemma 1. O
/
¢ ach

ntE=IPne
PL '.-----..

Zab

* -
SRl SR i

Figure 6: For the proof of Lemma 1

Lemma 1 can be generalized in a straightforward way. Let 2 41..qm De a simple
curve joining the points ¢i,...,gm of P in that order. A necessary and sufficient
condition for 3, . to be part of a representation of the topological solution of
the problem (P, L) is that :

1. qu_“qm intersects no ray of L (except the ray /; measuring point ¢; at this
point for ¢ = 1,...,m)

2. Hy . qm = UZT! Hyqipy contains no point of P.



Let us come now to the existence and uniqueness of a topological solution for any
legal contour problem. More precisely, we shall prove the following theorem :

Theorem 1 For any legal set of data (P,L), the set of rays L induces a total cyclic
ordering of the points of P. This total cyclic order is the unique topological solution
of the contour problem (P,L).

Proof : Let us choose the point a of P as the origin. For any point ¢; of P — {a},
let 3-,,; be a simple curve joining @ to ¢; without intersecting the rays of L. For any
pair (g;, g;) of points of P — {a}, either ¢; lies inside the region H,,; or g; lies inside
the region H,,,. Indeed, assume that ¢; does not lie inside the region Hyg,, then g;
lies in H,,, because the set of data is legal. Now the ray I; of ¢; does not intersect
2 aq; Which implies that g; lies in the region H,; (see Figure 7). We shall denote by
gi<ag; the relation “g; lies in H,,;”. Because the data are legal, no point of P lie
in the hidden region Wy,,.. Furthermore, if the two curves }°,, and }_,,. intersect
each other in some points distinct from a, no point of P can lie in the interior of a
region totally bounded by these two curves because the ray of such a point would
necessarily intersect 3_,,. or 3., . Thus, the relation ¢i<ag; is equivalent to the
fact that the subset P(\H,,, is includéd in the subset P(H,,, which proves the
transitivity of this relation. The relation <, is therefore a total order relation on
the points of P — {a}.

Figure 7: ¢; lies in the region H,,;

The order relation <, is independent of the actual choice of the curves 3, and
Eqi% provided that they do not intersect the rays of L. Indeed any choice of these
curves yields the same subsets of points P(\Ha, and P(\H,,,, because no point of
P lie in the interior of a region of the plane totally bounded by these curves. Let



us now show that this ordering is a topological solution of the contour problem and
that this solution is unique. Let ¢; be the minimum of P — {a} for the order <,;
then obviously Hg,, contains no point of P and g¢; is the unique point of P having
this property. Then, from Lemma 1, we know that the successor of a on the contour
is g, and that it is uniquely defined. Now for any pair (g;,g;) of points of P — {a}
such that ¢;<,q; we have (see Figure 8) :

P\Hag; = (PNHaq, ) U{g: (PN Hoiq,)

where the unions are disjoint unions. This is easily shown using the same kind of
arguments as above. Equivalently, if card() is the number of elements of a set, we
have :

card(P(\Hay,) = card(P(\Hag,) + 1 + card(PNHyq,)
Then the successor of ¢; in the order <, is the unique point ¢; such that
card(PN\H,y;) = card(PNH,g) + 1

which is equivalent to say that card(PHgq,) = 0. Thus, from Lemma 1, the
successor of ¢; on the topological solution of the problem (P, L) is uniquely defined
as being the successor of ¢; in the order <,. 0

an,‘ z“q i

Figure 8: The order relation is independent of the actual choice of 3°,,. and 3_,, %

2.3 An O(nlogn) algorithm for the contour reconstruction problem

In this section we propose an algorithm which, for any legal set of data (P, L)
provides the ordering of the points of P corresponding to the topological solution

10



of the contour_problem (P, L). This algorithm, called Algorithm Contour, is in fact
an incremental sorting algorithm, where the data points are introduced one by one
into a balanced tree structure (namely, an AVL tree), which maintains the points
processed so far, in the order induced by their measuring rays. The data structure
uses O(n) space and the whole algorithm runs in time O(nlogn) which is shown to
be optimal. Moreover, the data structure is fully dynamic and allows the insertion
as well as the deletion of data points in time O(logn) per insertion or deletion. Our
analysis assumes that the rays are polygonal lines with at most k edges, the last
edge of each ray being a semi-infinite straight line. In fact, the same algorithm and
its complexity analysis can be applied to more general ray curves as long as two
rays intersect in at most a bounded number of points each of which can be found in
constant time.

The correctness of this incremental algorithm relies on the fact, stated in Lemma
2 just below, that the topological solution of the contour problem for any subset
(P’, L") of the legal set of data (P, L) is a subsequence of the topological solution of
the problem (P, L).

Lemma 2 Let (P’,L') be any subset of the legal set of data (P,L). The topologi-
cal solution of the contour problem (P',L') is a subsequence of the solution of the
problem (P,L).

Proof : Let a be a point of P chosen as the origin. Let ¢; and ¢; be two points of
P’ such that ¢; precedes ¢; in the order induced on the set of points P by the set
of rays L (g;<.q;). Then for any choice of the curves 3°, . and an,- which do not
intersect the rays of the set L, we have :

P(Haq: CP[Hay;

which implies that
P'(\Hag; CP'[Heg

This, from the proof of Theorem 1, is equivalent to saying that ¢; precedes ¢; in the
order induced by the subset of rays L’ on the subset of points P’. )

Let us now present one of the basic ingredients of our method. It is an elemen-
tary algorithm, called Function Threepoints, which solves the contour problem for a
reduced data set consisting of three measured points.

Let a,b,c be three points measured, respectively, by the rays l,,/; and I, which
together form a legal data set. Function Threepoints will answer the following ques-
tion : which one of the two sequences abc or acb is the solution of the contour problem
({a,b,¢}, {la,s,1.}). To answer this question, Function Threepoints searches which
one of the two points b or ¢ is the successor of point a on the contour by constructing

11



a simple curve 3 which joins point @ to either b or ¢ and satisfies the condition of
Lemma 1.

The curve ¥ is constructed as follows : let us consider the generalized arrange-
ment formed by the three rays l,, 1, and I together with the circle T which is the line
at infinity. This arrangement is made of generalized edges which are the connected
portions delimited on each of these four curves by its intersections with the three
others. The curve ¥ follows some of the edges of this arrangement always staying
at a small distance € of the rays and turning left each time an intersection point
is encountered. More precisely, the curve }_, starting from point a, follows ray I,
towards infinity at distance € on the left side of I, (assumed to be oriented from a
to infinity) until it reaches (at distance € ) the first intersection point on l;. At this
point, 3 turns left and then follows the intersecting curve at distance € until the
next intersection point is reached and so on. (See Figure 9 for examples).

Figure 9: Tllustrations of the construction of £ by Function Threepoints

By construction, the curve ) is a simple curve which follows each edge of the
arrangement at most once and cannot return to the point a which is at the origin of
a ray. As the number of edges of each ray is bounded by a constant, the same holds
for the number of edges in the arrangement. Thus 3 will necessarily reach either
point b or point ¢ after a finite bounded number of left turns.
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The curve " intersects none of the ray lq,l; and I and delimit with the rays
measuring its endpoints a region H which is such that H — (Wl UWpUWe,) is
arbitrarily small and thus includes no point of the three points set. Thus, it follows
from Lemma 1, that the point reached by 3" is the successor of point a on the
contour.

From the complexity point of view, since the number of edges of each ray is
bounded, the number of intersections between two rays is also bounded and the above
arrafigement, together with the path 3, can be constructed in constant time. This
discussion can be summarized by the following pseudo-code for function Threepoints
and the subsequent Lemma :

Function Threepoints({a,b,c},{ls,ls,I.})

input : three points a,b,c and their measuring rays l,, 1y, 1. forming together a legal
data set

output : The solution of this three point contour problem

1. Construct the arrangement formed by the three rays la, /s, together with the
line at infinity I';

2. Construct the path Y joining a to either b or ¢ as described above;

3. If _ reaches point b the solution is abc else the solution is acb.

Lemma 3 Function Threepoints provides the topological solution of a three points
contour problem in constant time if the number of intersections between two rays is
bounded and if each one of these intersections can be found in constant time.

Let us come now to the description of Algorithm Contour. In this algorithm, the
function Threepoints plays the role of the comparison function which is needed by
any sorting algorithm. Indeed, in view of Lemma 3, a call to this function for any
three points subset ({a,b,c}, {lo,,1:}) of (P, L) provides the ordering of the three
points a,b and ¢ on the contour solution of the problem (P, L); in other words, this
function compares b to ¢ according to the total order induced by the set of rays L
once point ¢ has been chosen as its origin.

Before going into the details of the algorithm, we have to make precise the data
structure used to maintain the topological contour which is the current solution of
the subproblem corresponding to the already processed points. This structure is a
balanced tree, namely an AVL tree, which we shall call the contour tree. In each
node V of this tree we store a pair of two processed points (b(V),e(V)) such that
(see Figure 10) : :
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1. The leaves of the contour tree store the (topological) edges of the current
contour. That is, if V is a leaf, the two points (V') and e(V) are consecutive
in that order along the current contour. Furthermore, the order of the leaves
in a traversal of the tree is the order of the edges on the contour.

2. For any internal node V, except for the root of the tree, the points b(V') and
e(V) are respectively the first and last point of the portion of the contour
spanned by the leaves of the subtree rooted at node V. For consistency, the
point @ which is chosen as origin on the contour is stored twice in the root of
the contour tree, that is : b(root) = e(root) = a.

Figure 10: A contour tree

Here is the description of Algorithm Contour.

Step 1: In an initial step, three points a,b,c are chosen from the set P, one of
which, say point a for instance, is to be the origin for the description of the contour.
A first call to the function Threepoints is issued with arguments corresponding to
these three points and the contour tree is initiated with three leaves corresponding
to the edges ab, bc and ca, or ac, cb and ba in accordance with the permutation of
a,b and c output by this function. For each of the two possible permutations, two
initial configurations of the contour tree are possible but that is of no importance;
these configurations are shown in Figure 11 in the case that the ordering of the three
initial points is abc.

Step 2: The other points of the data set are introduced one by one in the structure.
To introduce point 2 measured by ray l;, we follow a path from the root of the
contour tree to the leaf storing the edge of the current contour where point z is
to be inserted. At each traversed internal node , the path is guided further by a
call to function Threepoints. The reached leaf, V, is turned into an internal node
with a leaf corresponding to the edge (b(V),z) as leftson and a leaf corresponding
to (z,e(V)) as rightson.

14
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Figure 11: Initial configurations of a contour tree

After each such insertion, the tree is rebalanced using the rotation process com-
mon to all AVL trees. In addition, during an elementary right or left rotation, we
have to update the points e(V) and b(V) of one of the concerned nodes. This is
done by using for instance the label of its sons as it is illustrated in Figure 12 which
shows the two possible cases of elementary rebalancing processes. '

ae
ae
ab @
é ce — @ ce
ab \bc cd “wde
cd de
(a)
ae ae
ab be ge
de g ce
— —
b cd de ab\bc fcd yce

Figure 12: Hlustration of the rebalancing process

Step 3: When all the data points have been introduced, a simple traversal of the
resulting contour tree provides the topological contour which is the solution of the
contour problem (P, L) if the data are legal.
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Theorem 2 Algorithm Contour provides the topological contour solution of a legal
set of data (P, L) of size n in time O(nlogn). The data structure uses O(n) space
and may be updated in time O(logn) when adding or deleting a point from the data
set. These results are asymptotically optimal in the worst-case.

Proof : From the above discussion, it is clear that Algorithm Contour provides
the topological solution of the contour problem (P,L) if the data are legal. The
analysis of the worst case complexity of this algorithm is straightforward. Step 1 is
a call to the function Threepoints which, from Lemma 3, takes constant time and
the initialization of the data structure is obviously also performed in constant time.
In Step 2, the insertion of each new point causes first a path to be followed from the
root to a leaf of the contour tree which, since the structure is balanced, causes at
most O(logn) calls to the function Threepoints. Then, the point is inserted in the
structure; the ensuing rebalancing process involves at most O(log n) rotations, each
of which is performed in constant time. Thus, the overall cost of Step 2 is O(n log n)
time. Step 3 is a simple traversal of the tree, linear in the size of the contour tree
which is obviously O(n). Putting these things together shows that the worst case
time complexity of Algorithm Contour is O(nlogn).

The insertion of a new data point is performed in Step 2 and the above analysis
shows that the worst case time complexity of this operation is O(logn). The deletion
of a measured point from the data structure can also be done in O(logn) time as

follows : two paths are followed from the root to the two leaves in the tree where
point z appears. These two paths are guided as above by calls to the function
Threepoints and they coincide up to a node called the fork. From this node, the
point z appear as point b(V) (resp. as point (V') ) on all the following nodes of
the left (resp. right ) path. At each occurence, r is replaced by its successor z’ on
the contour. This leaves a trivial leaf labelled (2',2’) which has just to be deleted
together with its sibling. Then, the tree is rebalanced. As in the case of an insertion,
each path is traversed after at most O(logn) calls to the function Threepoints and
the rebalancing process involves at most O(logn) rotations which proves the claim.

The optimality of the algorithm comes from the fact that sorting is reducible in
O(n) time to the contour problem. Consider a set of n points p1,...,Pn pictured in
Figure 13, which consists of n-1 collinear points and another, say q, not on the same
‘line. Consider the corresponding rays ly,...,In, 1y, taken to be parallel half straight
lines, normal to the line py, ..., Pn; l1,..., I liein the half plane not containing g¢; the
direction of [, is opposite to the direction of ly,...,1,,. The edge list produced by an
algorithm solving the contour problem can be used to sort the p; in O(n) additional
operations . o

2.4 Testing a posteriori the solution of the contour problem

If the set of data (P, L) is not legal there exists no solution to the contour problem,
not even a topological solution. If the data are legal but not complete, the solution
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Figure 13: For the lower bound

of the contour problem is only topological and cannot be represented by a simple
polygon. In both cases, the ordering obtained by a blind application of the above
algorithm corresponds to a polygon which either is not simple or intersects some
of the rays. The simplicity of the contour can be tested in O(nlog n) time using a
plane sweep algorithm to detect an eventual intersection between the edges, such as
the line segment intersection test described by Preparata and Shamos [11].

In order to check if a ray intersects the contour, we use the following result of
Chazelle and Guibas [5] : There ezists an O(n) space data structure representing a
simple polygon Il which can be computed in time O(nlogn) and which, given a pair
(p,u) of a point p and a direction u, can be used to find the first edge of I hit by
the ray from p in the direction u in time Oflogn).

We apply this result to all the segments of all the rays of L. Let s be such a
segment, belonging to some ray l,, issued from point p; let a be the end-point of s
encountered first when the ray is traversed from p, and b the other end-point of s.
We apply the result of Chazelle and Guibas to the pair (a,a — b), where a — b is
the direction of the half-line § issued from @ and containing b, and find in O(logn)
time the first edge, say e, of the contour hit by 6. If the intersection between e
and § belongs to s, we have found a ray which intersects the contour; the solution
is not valid. Otherwise, we consider another ray segment. Because the number of
segments per ray is bounded by a constant, this test takes at most O(nlogn) time.
We have shown :

Theorem 3 The validity of the solution to a contour problem can be checked in
Of(nlogn) time.

Unfortunately, in case of failure of one of the above tests (test for simplicity and
test for non intersection with the set of rays), it is not possible in time O(nlogn) to
make the distinction between the case of illegal data and the case of incomplete data.
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This point is discussed at length, in a companion paper, for the case of straight line
rays [2].

Remark An important practical case of legal but incomplete data arises when the
robot has only seen or touched too small a portion of the object (see Figure 14). In
that case, the topological solution of the contour problem can be represented by an
open polygonal line including all the measured points and closed by an additional
curve. In a previous paper [1] we have shown in detail how to slightly modify
Algorithm Contour to handle this case.

Figure 14: An important case of legal but incomplete data

3 Probing simple polygons

3.1 Statement of the problem

Section 2 was concerned with finding a polygonal approximation of an arbitrary
object shape from a set of given probes. Though the algorithm of Section 2 was
dynamic and allowed insertions and deletions of points, the probes were imposed and
the algorithm didn’t take care of determining the probes. In this section, we want
to discover the exact shape of an object, known to be a simple but not necessarily
convex polygon, by means of a minimum (finite) number of on-line probes. “On-
line” means here that the sequence of probes is determined by the algorithm, and
that each individual probeis computed from the knowledge provided by the previous
probes.

One probes here along a half line, called the probe path, whose origin is some
point O; of the plane. When the probe is issued, the probing device responds with
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the first point p;, called the contact point, where the probe path encounters the
boundary C of the object and gives also the normal n; to C' at p; when it is defined.
The sensory device is supposed to be able to detect when p; is a vertex of C, in which
case the object responds with two normals instead of one, namely the normals to
the edges incident to p;. An example of such a device may be a finger with a tactile
sensor at its tip. In the next subsection (Subsection 3.2), we show that, under some
mild conditions which are stated below, we can define a probing strategy which
ensures to fully discover the exact shape of the object in at most 3n — 3 probes
where n denotes the number of edges of the object. It is important to realize that
n is a priori unknown and will be discovered at the same time as the exact shape of
the object. Here are the required conditions :

Condition 1. The oriented supporting lines of the edges of C are all distinct®.
Notice that two supporting lines may be identical if their orientations are
opposite.

Condition 2. A point in the interior of C is given. Without loss of generality, we
take this point as the origin.

These two conditions are made to ensure that the probing problem is solvable in
a finite number of steps. Indeed, without the first condition, a small detail of the
object may still have been missed after any finite number of probes. Another way
to circumvent this difficulty, that we do not follow here, would be to assume that
the edges of the object have at least a minimal finite length. The second condition
allows one to isolate the problem of discovering the shape of the object from the
problem of locating it within the workspace. Without this condition, we have no
idea where C is located and an unbounded number of probes can be required to find
it.

In the following subsections, we show that each successive probe needed in this
strategy can be determined in time O(log n) (Subsection 3.3) and that our strategy is
optimal in the sense that 3n — 3 probes may be actually necessary in some adversary
worst case (Subsection 3.4).

The kind of response assumed here requires a powerful probing device; previous
work on the subject [6,12] has assumed simpler probes, most notably “finger probes”,
which return only the first contact point. In Section 3.5, we show that, under a mild
condition on the ability of the probing device, our algorithm can work for those
simple probes. More precisely, we show that, under that condition, 5n — 2 probes
are sufficient to discover the shape of the object in this case and that, without this
condition, 5n — 2 probes allow to discover a shape which is almost surely the actual
shape of the object.

3C is supposed to be oriented counterclockwise and the edges and their supporting lines
accordingly.
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A last point about this problem, that is not considered here but will be in a
forthcoming paper, is the problem of optimizing the trajectory of the robot. Indeed,
we show here that each new probe can be computed in time O(logn) but that
does not presume anything about the time needed by the robot to move to the
right position O; and to execute such a probe, except if the robot can jump from
one position to another in O(1) time, as can do a robot moving in 3-d space but
constrained to probe in a plane, in which case each probe can be specified and
executed in O(log n) time.

3.2 Upper bound on the number of probes

Our probing strategy is based on the use of the total order induced on the set of
contact points by the set of probed paths. To make use of the results of the previous
section, each new probe is chosen so that the outcoming contact point p; can be
associated with a semi-infinite ray I; ending at p; and known not to intersect the
interior of the object. The origin O; of the current probe path is chosen to be either
a point at infinity or to belong to a previous probe path. Ray I; is the concatenation
of a prefix (made of portions of previous probe paths) and of an extra segment,
the portion of the current probe path connecting O; to p;. In the sequel, we shall
consider that a probe outcome, noted w; = (p;,n;,!;), includes three components :
the contact point p; , the normal n; to the boundary C of the object at p; and the
semi-infinite ray /; ending at p;.

Given a probe outcome w; = (p;,ni,!;), we call the line D;, normal to n; and
passing through p;, the supporting line of w;. When necessary, D; will be oriented
so as to let I; on its right side in the neighborhood of p;. If p; belongs to the edge
e;j of C, we say that e; has been discovered.

Let us consider a set of s probes whose outcomes @y, ..., @, are indexed according
to the order induced by the corresponding rays ly,...,l;. If at least one probe had
been performed on each edge of C, it would be easy to obtain C by the following
simple procedure A, which computes a list V containing the ordered set of vertices
of C (indices are taken modulo s):

Procedure A

1. V:= 0;

2. fori=1,..,sdoif D; # D;y then add D;(\D;y;1 to V;
3. end.

However, if some edges have not been discovered yet, Procedure A yields vertices
that do not belong to the object. Roughly speaking, our strategy consists in issuing
probes that aim these potential vertices in order to either confirm them as actual
vertices of the object or to discover new edges.
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We start with three probes. The first two probes are performed along straight
line rays with opposite directions and both passing through the origin. Let Dy and
D, denote the two supporting lines of the two corresponding probe outcome @)
and @, I = Dy\D; (possibly at infinity). The third probe is performed along a
directed straight line passing through the origin and I (directed in such a way that
the origin is reached before I). The three corresponding contact points py, p2,Ps
belong to three distinct edges of C.

At a given stage of the algorithm some edges have been discovered. The rays
associated with the probes induce an ordering of the contact points and also of the
discovered edges (the ordering along C). The intersection I between the supporting
lines Dy and D, of two successive contact points is called a corner and is a potential
vertex of C'. The algorithm maintains an ordered list of corners L and, at each step,
constructs a new probe path which will either confirm the first corner I of L as being
a vertex of C, or will probe a new point on a not yet discovered edge. In the first
case, we simply report the vertex and delete I from Lj; in the latter, two new corners
are discovered and are inserted in L.

Let I = Dy(\D, be the current first corner of list L. The two lines define
four wedges R (with p; and p; on its boundary), § (with p; but not p; on its
boundary), T (with neither p; nor p; on its boundary) and U (with p2 but not p; on
its boundary). Let @; = (p1,h,71) and @, = (p2,l2, n2) be the two probe outcomes
whose supporting lines are D and D; and let e; and e; be the edges of C containing
p1 and p; respectively. The two points p; and p; are adjacent in the order induced
by the set of rays, at this stage of the algorithm. Therefore, from Lemma 1, the
region Hyz limited by the ray li, the ray Iy, the portion Ci2 of the boundary of
C between p, and py, and lying to the right when traversing C12 from p; to pz, is
known to contain no contact point of the previous probes and no confirmed vertex.
Furthermore, the contact point p of a probe (p # p1 and p # p2), is to be inserted
between p; and p on the boundary of C if and only if p lies inside Hys.

Notice that p cannot belong to /; nor to [, since otherwise it would have been
already found by a previous probe.

We denote by hqy the set of points which belong to the boundary of Hi; (con-
sidered as a closed region) but not to Cia. hyz is considered to be a connected curve
(which may include points at infinity) oriented from p; to p;.

Qur aim now is to exhibit probe paths that will either confirm I as being a vertex
of C or discover a new edge of C. Let D be a straight line passing through I and
contained in R|JT. D intersects the segment p;p;. We orient D so that py is on the
left side of D and p; on its right side. Let ¥ = hy2|JC12. 7 is a simple closed curve
(possibly containing points at infinity). From the Jordan theorem, D intersects vy
in an even number of points Oy,...,02*. In the case that his contains the point
at infinity of D, one intersection point is at infinity: we take it to be O;. Let 7;

*We assume that D intersects v properly ; otherwise, we slightly move D.
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(i = 1,...,2k) be the vector tangent to y at O;, oriented in the same way as hiz, Ci2
and thus 4. To each intersection point 0; (i = 1,...,2k), we associate a sign, + or
-, according as the orientation of the frame (D, i) is positive or not (see Figure 15).
From the Jordan theorem, the sequence of signs X(7y) of the intersections between ¥y
and D, sorted along D, is an alternating sequence of+and~: +—-+-+—...+—.

T Y(h)=+-—+++-—+-
D D D,
1
U - 0, — h12
[ Cra
P2 S
B f 4!

R

Figure 15: The sequence of signs

hi2 is a simple piece of curve joining the two points p; and p;. Because py and
py are on different sides of D, it follows from Jordan theorem that hi2 intersects
D in an odd number of points. Let X(hy2) be the corresponding sequence of signs.
The number of + signs in E(h12) is exactly one more than the number of — signs.
Moreover, £(h;2) necessarily starts with a + sign because Hg lies on the right side
of Cy2 (oriented from py to p2).and thus D intersects h12 before it intersects Cha.
Hence, £(hy2) necessarily terminates by + sign (Case 1) or contains two consecutive
+ sign (Case 2). Because the sequence of signs of 7 is an alternating sequence of
+ and -, there exist in both cases two intersection points, successive along D, such
that the first one is an intersection point between D and hyz and has + sign and the
second one is an intersection between D and Cj; and has - sign. We rename these
two points O and p respectively. Notice that, in Case 1, O is the last intersection
point between hy2 and D; in Case 2, O is the first of two successive intersection
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points with signs +; thus O can be determined from hyz and D. A

Let u be the half line supported by D, with the same orientation as D and
starting at O. We associate with g a probing ray ! which is exactly the portion of
it between O and p if O is a point at infinity and, otherwise, the concatenation of y
with the infinite portion of the ray l; (i=1 or 2) passing through O. From the above
discussion, it is clear that u intersects the boundary of C for the first time at point
p and that p belongs to Hiz. So pi, p, p2 are encountered in that order along the
boundary of C. Let @ = (p,1,n) be the corresponding probe outcome.

We distinguish four possible cases, depending whether p belongs to e, ez, both
or none. Notice that, due to Condition 1 above, p belongs to e; iff p belongs to D;
and n = n;.

Case 1: pEe; and pE€ e

In this case, p = I. I is confirmed as a vertex of C. Due to Condition 1, we are
guaranteed that the edges containing p; and p; are adjacent along C and that T is
their common vertex.

Case 2: p&e, and pd e,

The supporting line D(w) of the probe outcome is distinct from D, and D,. More-
over, it is distinct from all the supporting lines of the previous probes, which means
that we have discovered a new edge. Indeed, let us suppose the contrary. Let
o' = (p',I',n') be a probe outcome whose supporting line D(w') = D(w). Due
to Condition 1 above, the contact points p and p' belong to the same edge of C.
Moreover, due to the construction of g, p € Hjz and so we have py < p < p2. Thus
we have also p; < p’ < ps, which contradicts the fact that p; and -p; are consecutive
in the order induced by the rays.

Case 3: p€e, and p ¢ e,

In this case p = I but is not a vertex of C. Thus we have not confirmed I as a
vertex of C and we have not discover any new edge. We need another probe. Let
I, be the half-plane on the right side of Dy, when oriented as described in Section
3.1. We distinguish two cases according to wether p; belongs to II; or not. In both
cases, we exhibit a new probe path p' which is guaranteed to discover a new edge
of the boundary of C between p; and p;. p' will be supported by a straight line D’
passing through I and contained in SJU.

Subcase 3.1: p; € II;

The situation is depicted in Figure 16. In this case, D' is oriented from § to U. Let
' be the half line supported by D’ and starting at I. The contact point probed by
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p' is p'. The corresponding ray !’ is the concatenation of Ip' and I. Using arguments
similar to those of Case 2, the new probe necessarily discovers a new edge of C
(between p; and p2).

Figure 16: Case 3.1

Subcase 3.2: p;, ¢ II;

The situation is depicted in Figure 17. We now orient D’ from U to §. As in Case
2, among the intersections between D’ and the closed Jordan curve hi2 UCi2, there
exist two successive intersection points along D’ such that the first point, O, is an
intersection point with + sign between D' and hi; and the second one, p/, is an
intersection point with — sign between D’ and Cj;. We take O’ as the origin of u'.
The contact point probed by p' is p’. The corresponding ray I’ is simply O'p’ if O’
is at infinity or the concatenation of O'p’ with the infinite part of the ray passing
through O’ otherwise. Using arguments similar to those of Case 2, the new probe
necessarily discovers a new edge of C' (between p; and p2).

Case 4: p¢ e, and pE e,

This case is analogous to the previous one. The indices 1 and 2 have simply to be
exchanged as well as the wedges U and §S.

In conclusion, each time a corner is checked, we either confirm the corner as a
vertex of C' by means of one probe and this corner will never be probed again or we
discover a new edge by means of at most two probes. Thus to discover C we need at
most one probe per vertex and two probes per edge, except for the first three edges
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Figure 17: Case 3.2

which are discovered by means of only one probe each. This proves the following
theorem :

Theorem 4 3n — 3 probes are sufficient to determine the ezact shape of a simple
polygon with n non colinear edges.

3.3 Complexity analysis

The above strategy guaranties that a finite number of probes are performed. How-
ever, in order to achieve an effective algorithm, we need to make precise how to
construct the probe paths. We show now that we can restrict ourselves to some
polygonal rays and that each ray can be determined in O(logn) time yielding an
overall O(nlogn) time algorithm.

More precisely, at each step, the new probe path p and, eventually, the additional
probe path u’ are constructed as described in the previous section. We take a straight
oriented line D contained in RUT.  is a half line supported by D, with the same
orientation as D. Its origin O is an intersection point between D and hy; with sign
+ which either is the last intersection between D and hi; or immediately precedes
another intersection between D and hyo with sign +. The additional probe path ',
if needed, is taken to be supported by a straight line D’ contained in S{JU. The
origin O’ is either the corner I (Subcases 3.1 and 4.1) or a point defined in a way
similar to the way O has been defined above (we simply have to exchange the roles
of D and D’).

Lemma 4 The probes can be constructed in such a way that, at each step of the
algorithm, hyo is a polygonal convez curve (i.e., the angle between two successive
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segments of h1a, in the order they are encountered when going from p; to py, is less
than 180 degrees).

Proof : The proof is by induction on the number of steps (one step corresponding
to one of the cases 1, 2, 3 or 4).

Clearly, the lemma holds after the initialization. Let us suppose that k steps
have been performed and that the above claim holds. Let us consider now step
k+1.

Assume first that Step k + 1 corresponds to Case 1 or 2. Once the origin O of p
has been chosen (as described in the previous section), u is a half line with a point
O of hy, as its origin and lying on the right side of hy; (oriented as usual from p;
to p1), in the neighborhood of O. The new probe path p, ending at the contact
point p, splits the polygonal line h;; into two new polygonal lines Ay, and hyz. The
angles arising on each of those lines are exactly the angles of 2,2 except at vertex O
where the angle arising on hy, and the angle arising on hy2 sum to the angle arising
on hqy. Thus these two new angles are also convex. The same arguments hold for
both probes in Subcases 3.1 and 3.2 and similarly in Subcases 4.1 and 4.2. The
first probe path splits the polygonal chains hy2 into two polygonal chains hy; and
hi,. The second probe p’ will further split either hy; (Subcases 3.1 and 3.2) or Ay
(Subcases 4.1 and 4.2) into two convex polygonal chains. This completes the proof.
]

A direct consequence of the fact that hyp is a convex curve is that, either D
intersects hy2 only once or the first two intersections between D and hjz along D
have + signs . Similarly, in Subcases 3.2 and 4.2, either D' intersects hj2 only once
or the first two intersections between D' and h;, along D’ have + signs . This proves
the following lemma:

Lemma 5 We can take, as the origin of u, the point of intersection between his
and D first encountered when marching along D. In Subcases 3.2 and 4.2, we can
take, as the origin of p', the point of intersection between hyz and D' encountered
first when marching along D' .

Let H be the current set of polygonal chains h;;4; between pairs of points on
the boundary of C' that are consecutive at this stage.

Lemma 6 H can be stored in a dynamic structure of size O(n) such that:
1. The first intersection between an oriented line D (or D') and a polygonal
chain h; ;41 can be found in O(logn) time; '
2. The structure can be updated in O(log n) time after each new probe.

Proof : Let us first describe the data structure used to store set H. Each chain h; ;41
is considered as the concatenation of two subchains Aj;,, and h:";il h; ;41 (resp.,
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h:ﬂ,l) consists of the portion of h; ;41 belonging exclusively to the ray I; (resp., liy1)-
Let sp; 4, D€ the point of h; ;41 where rays I; and l;4, separate. The two subchains
hi 4y and hi*l, are themselves decomposed into an ordered list of subchains (called
subsubchains) as follows. The first subsubchain is the polygonal line between sy, ;
and the first local extremum with respect to the z-axis, encountered when marching
along the chain from s, 5,,, towards the measured point. The last subsubchain is
the polygonal line between the last local extremum and the measured point. The
other subsubchains join two successive local extremum. Figure 18 illustrates these
definitions : hy2 is decomposed into two subchains h},=$p, p» — P120d h?,=8p, p, —
pa. hl, is decomposed into five subsubchains, S, p, = el, el el (i=1,2,3),
el — p1. hi, is decomposed into five subsubchains, s, p, — e, el > el (i =
1,2,3), €2 — p;. Each of these subsubchains is stored in a concatenable queue.

X —azxis

Figure 18: For the notion of subsubchains

Since the total number of segments of the polygonal chains h;is1 is O(n), the whole
data structure can be implemented so as to require O(n) space.

Let us show that this structure allows us to achieve the two goals of the Lemma.
Let D be an oriented line. Since h::,i+1 and h:ﬂ,l are convex, it is clear that D
intersects each new subsubchain in at most two points and that these intersections
can be computed in O(logn) time by binary search. Furthermore, we claim that the
first intersection between D and hj i41, encountered when marching along D, belongs
to the first three subsubchains of either A ;,; or hi%},. Indeed, let us consider the

convex hull CH(h;;41) of the chain hijy1 :
1. The point sy, p,,, belongs to CH(h; ;1) as is easily shown by induction.

2. From the convexity of h;it1, CH(hii41) is in fact a part of h;i+1 plus one
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bridging edge.

3. Because D intersects the segment p;p;;; leaving point p; on its left side and
pis1 on its right side®, D intersects h; ;41 for the first time in the portion of
this chain which belongs to C H(h i41).

4. The portion of h; ;43 which belongs to CH (h, i+1) can only include edges of
the first three subsubchains of k%, , and hitl Th-

This proves the claim. Thus to find the first intersection of D with h, ,+1, it is
sufficient to search the three first concatenable queues of hi;,; and hl t+1- This
proves the first part of the lemma.

Let p be a new contact point, between p; and p;11. The data structure has to
be updated in order to include the four subchains A% , A% , (corresponding to the
pair (p;,p)) and B, ., hp:;,’+1 (corresponding to the pair (p,pi41)) and to remove
the subchains hf;,, and hz t11. Without loss of generality, assume for instance that
the point O where the ray measuring p separates from I; or /i41, belongs to hi 1
To update the data structure, we need to perform the following steps:

1. The polygonal chain hi 441 is cut into two parts at point O. This entails
splitting the concatenable queue associated with the subsubchain containing

0.
2. The new chain hEi  is the part of hf’,- +1» denoted h::f?_,)_l, which joins O to p;.

3. The chain h, , consists of only one subsubchain, namely the segment Op. s, ,
is identical to O.

" 4. The chain b}, s formed by concatenating the first part h(,l_*),1 of Al i1
(joining $p; piy; to O) and segment Op. spp,,, is identical to sp, p,,. In this
operation, we have to check whether or not O is a local extremum of hJ . .
If O is not a local extremum, Op is simply appended to the last subsubchain
of h:(l})_l, if O is a local extremum, Op itself is a subsubchain, namely the last

(1)

subsubchain in the list of subsubchains of k; b1

5. The chain A5, is simply the previous chain hpil,, .
Checking for a local extremum can be done in constant time while splitting or
concatenating concatenable queues can be done in O(logn) time. Thus, updating
the data structure, after the probing of a new point p, can be done in O(logn) time.
This proves the second part of the lemma. _ o

We can state now the main result of this section :

*In the case of the additional probe u’, needed in Case 3.2 (resp., Case 4.2), the same argument
holds, provided that we rename p; (tesp., pi+1) the corner I, intersection of D; and Diy,.
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Theorem 5 FEach of the at most 3n ~ 3 probes can be determined in O(logn) time
yielding an algorithm with overall complezity O(nlog n) time and Ofn) storage for
discovering the ezact shape of a simple polygon with n non colinear edges.

Proof : In each of the cases 1, 2 or 3 of Section 3.2, the probe path p is defined as
soon as its origin O is found. From Lemma 6, the origin O of and thus g itself
can be computed in O(logn) time. In Subcase 3.1 (resp., 4.1), the second probe p
can be taken to be the bissector of U(resp., §) with its origin at I and thus can be
computed in constant time. In Subcases 3.2 and 4.2, it follows from Lemma 3 that
the origin O’ of y’ and thus p' itself can be computed in O(log n) time.

When a probe with outcome @ = (p,/,n) discovers a new edge between two
edges e; and ez, the two pairs (p1,p) and (p, p2) are new pairs of consecutive points
in the order induced by the rays. Thus updating the list of corners takes constant
time.

For each pair of consecutive contact points (in the order induced by the rays,
the corresponding polygonal line hy; is stored as a concatenable queue. Updating
the data structure, when the new polygonal lines hy, and hy2 are constructed, can
be done in O(logn) time. With Theorem 1, we conclude that the overall time
complexity of the algorithm is O(nlogn) time.

At each step of the algorithm, the number of ray segments is equal to the number
of contact points already probed which is known to be less than 3n — 3. Thus the
total number of edges of all the polygonal lines h; ;4 is at most 6n — 6 and the
storage complexity of the algorithm is O(n). o

It is to be noticed that Theorem 5 holds though we cannot bound by a constant
the number of segments of a ray, which may be O(n). This is obtained by expressing
our probes in an implicit way, as the concatenation of a prefix plus an extra segment.
Specifying all probes individually would require (n?) space and time.

3.4 Lower bound on the number of probes

Polygon C is not completely explored as long as we do not have a contact point on
each edge and a contact point at each vertex for, otherwise, we might have missed
an edge of C (of potentially arbitrary small size). Thus a trivial lower bound on
‘the number of probes needed to discover a n-sided polygon is 2n. However, we
show, in this section, that whatever the probing strategy may be, 3n -3 probes may
be necessary in the worst-case, which proves that the results of the two previous
sections are optimal.

Let us consider a probing strategy S that tries to discover the exact shape of
C by means of a sequence of probes. Suppose that i — 1 probes have already been
performed. At this stage, some edges of C have been discovered. The rays associated
with the probes induce an ordering of the discovered edges (the same as the one on
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C). As in Section 3.2, the intersection I between the supporting lines Dy and D2 of
two successive contact points is called a corner and is a potential vertex of C. Either
this corner is a vertex of C or some new edge has to be discovered between edge e;
and edge e;. When this corner is not a vertex of C and belongs to only one of the
edges e; or ez, we can always choose the lengths of e; and e so that two probes
are necessary to discover this new edge. Our objective is to construct a polygon C
where this adverse situation is encountered n — 3 times.

The construction is done by induction on the number of corners which are actual
vertices of C. Let C be the current estimate of C' provided by an application of
Algorithm A (i.e., C passes through all the contact points, vertices and corners
found so far). At each step, C is chosen so that C satisfies the following induction
hypophesis :

Induction hypophesis : All the corners of C are actual vertices of C except one,
which is a conver corner (a corner between two successive points p; and piy1 1S
convez if the angle (n;,n;4,) between the oriented normals is in 10, x[ modulo 27).

In the best case, three initial probes p1, p2, ps belong to three distinct edges. We
can always choose C so that the three corners are convex, two of them being actual
vertices of C' - a situation which fulfills the h’ypothesis.

Let us suppose that, at a given stage, C has k + 1 vertices and satisfies the
induction hypothesis. Let I be the convex corner of C which is not a vertex of C.
I is the intersection of the supporting lines of Dy and D; of the successive contact
points py and p,. We can always choose C so that the two following conditions are
satisfied :

1. at least two probes are necessary to discover a new edge e (with supporting
line D.) between p; and ps;

2. one of the two new corners (D1, D) or (De, D2) is actually a vertex of C while
the other is a convex corner.

Let p be the probe aiming at discovering e. We first notice that the origin of u cannot
belong to C, otherwise we would choose C to contain also this origin. Moreover,
the inductive hypothesis implies that, from p, to p;, the boundaries Cy and 6'-2\1 of,
respectively, C and C coincide. Therefore, if 4 does not intersect the triangle pyIp2,
p either hits the object on Cy; or we choose C so that misses the object. In both
cases, no new edge is discovered. Otherwise, let p be the first intersection between
¢ and pyIps. If pis different from I and belongs to D; (i=1 or 2), we take e; to be
long enough to contain p. Thus no new edge has been discovered. If p = I, at least
one of the supporting lines D; (i=1 or 2) is oriented so that, in a neighborhood of
I, p is contained in the half right plane limited by D;. We take the corresponding
edge e; to be long enough to contain I. Again, no new edge has been discovered.

30



Thus, in all cases, at least two probes are necessary to discover a new edge between
P and pa.

Let us now show that we can choose the edge e, which is to be discovered next,
in such a way that the above Condition 2 is satisfied. This implies that the inductive
hypothesis is restored at the next stage. Remember that, in the adverse situation
we consider, either e; or e; contains the corner I. Assume that e; contains I while
e, does not (the other case is quite similar). Let us choose a point K on the half line
supported by D;, originating at I and which does not contain p; and let us choose
a point L on the segment p,I supported by Ds. Let us consider the closed curve C’
formed by the segment p, K, the segment K'L, the segment Lp; and the portion Cy
of the boundary of C. Let u’ be a probe that discovers a new edge e between p; and
p2- The origin of 4’ cannot belong to C’ and moreover, y' must necessarily intersect
C’; otherwise C is chosen so that p' misses the object. Moreover, ¢’ must hit C’ for
the first time at a point p of K L; otherwise, either ' intersects Cy, in which case
no new edge is discovered or ' intersects IK (resp., Lpz), in which case we choose
the length of edge e; (resp., e2) so that p' intersects e; (resp., e3) and thus does not
discover any new edge. Point p will be the contact point of the probe p'. The edge
e containing p is chosen to be supported by line (K'L) and to have L as one of its
end points. This implies that L is an actual vertex of C. After this probe, all the
vertices of the current estimate C are actual vertices of C, except for the point K,
which is a convex corner. This achieves the inductive proof. m]

Let us evaluate the number of probes necessary to discover C. Three initial
probes are needed to discover the first three edges of C. Then, each new edge
requires two additional probes to be discovered. Lastly, n more probes are needed
to probe the vertices of C'. Thus we have:

Theorem 8 Every probe algorithm which determines the shape of a polygon with n
edges makes at least 3n — 3 probes in the worst-case.

3.5 About the probe model

It is to be noted that the exact number, 3n — 3, of probes which are sufficient
and necessary, in the worst case, to completely specify the shape of a non convex
polygonal object is strongly related to the kind of probe outcomes which is assumed.
The probing algorithm developped by Cole and Yap for convex objects assumes a
simple finger probe model whose outcome consists only of the coordinates of a point
on the boundary of the object but contains no information on the direction of the
normal at that point. The main originality of the method presented in this paper is
the use of the total order induced on the set of points by the set of rays and one of
the interesting questions which may be further raised is : how this order can be used
if no information about the direction of the normal at a contact point is available?
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Figure 19: The lower bound

Without additional hypothesis, the problem of probing non convex objects with
a finite number of finger probes has no solution. Indeed, if some points have been
found on the same straight line, nothing can tell if they actually belong to the same
edge of the object or not, even if it is assumed, as above (Condition 1), that the
boundary of the object does not include colinear edges. Thus, after any number of
probes, small edges of an object may have been missed.

Nevertheless, we show in this subsection that our method can still be applied
to the problem of probing without information on the normal directions provided
that, in addition to the two conditions stated in Subsection 3.1, the following third
condition is fulfilled :

Condition 3. Whenever a probe outcomes includes a point p which is colinear with
two previously probed points, the probing device can tell if those three colinear
points belong to the same edge of the object or not.

More precisely, we prove the following theorem :

Theorem 7 Provided that Conditions 1, 2 of Subsection 3.1 and Condition 3 above
are fulfilled, the exact shape of a non convez polygon can be found with at most 5n—2
simple probes. Each probe can be determined in O(logn) time yielding an algorithm
with overall complezity O(nlogn) time and O(n) storage.

Proof: Roughly speaking, we apply to this new probing problem the same strategy
as above : at any stage, the algorithm maintains a list of the so far probed points,
sorted according to the order induced by the rays, and issues a new ray aiming to
probe something at a given place in this order.

An edge is said to be confirmed when at least three points of the edge have been
probed and it is said to be discovered when only one or two points of the edge have
been probed. It is to be noticed that our probe model cannot detect that a contact
point is a vertex. However, if the intersection point of the supporting lines of two
confirmed edges has been probed and, thanks to Condition 3, appears to belong to
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both edges, it is necessarily a vertex of the object and will be said to be confirmed
as a vertex.

The algorithm begins with three probes which ensure that the three outcoming
points belong to at least two distinct edges of the boundary of the object : for
instance, the first two probes can be straight lines aiming at the origin O from two
opposite directions. Ther, the algorithm consider the first pair (p1, p2) of consecutive
contact points which do not belong to the same confirmed edge and distinguish three
cases :

Case 1. p; and p; belong to two confirmed edges e; and e; of the boundary of the
object. In that case, the supporting lines Dy (resp. Dg) of ey (resp. eq) are
known but the corner Dy [} D is not yet a confirmed vertex and the situation
is the same as in the previous problem : a new probe aiming at Dy N D, is
issued and will either confirm this point as a vertex of the object or a new
edge lying between p; and p; is discovered by means of at most two probes.

Case 2. One of the points, say py for instance (the other case is quite symetrical),
belongs to a confirmed edge e; while the other, p; does not. Let D; be the
oriented line supporting e; and let T[] (resp. II7) be the half plane to the left
(resp. to the right) of D;. If p; lies in N} (resp. in IIT), the algorithm issues
- in a way similar to that of Section 3.2 — a new probe whose probe path u is
included in Hqya NTI{ (resp. in H12(II7) : p is supported by a line D parallel
to Dy, intersecting the segment p;p; and oriented so that p; lies on its left
side and p; on its right side. This new probe yields a contact point p which
is between p; and p; on the boundary of the object and does not belong to
e;. If the three points p;, p and p, or the three points p, p; and the sucessor
of py are found to be colinear and on the same edge, that edge is confirmed,
otherwise p belongs to a new edge, not yet discovered.

Case 8. Both points p; and p; do not yet belong to a confirmed -edge. In this
case, a new probe is issued within Hy2 and the outcoming contact point will
either confirm an edge (which may be detected by one of the following triple
of points (predecessor of p1, p1, p) or (p1, P, p2) or (p, pz, successor of p2)), or
discovers a new edge.

In all cases, a new probe will never outcomes a point on a confirmed edge except
when a vertex is probed or if a new edge is to be surely discovered by the next
probe. As the first three probes discover at least two edges, this ensures that the
exact shape of the object is fully discovered in at most 5n — 2 edges.

As in Section 3.3, each probe is determined by intersecting an oriented line D
with a convex curve hyz. Lemmae 4, 5, and 6 of Section 3.3 still hold, thus proving
the complexity result. a
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Condition 3 needs some explanation. First of all, let us point out that, because
C has no colinear edge, the situation where three points pi, p2, p3, not belonging
to the same edge of C, are colinear is unlikely and not stable, i.e. disappears if
we slightly move one of the points along C. More precisely, we have the following
lemma :

Lemma 7 Let C be the submanifold of the 3-dimensional manifold C x C' X C
consisting of all triples (p1, p2, p3) of points belonging to C but not to the same edge
of C. Let f be the mapping

Iy — T2 X3 — X2
Y1—Y Ys-— Y

(pl7p27p3)€él’ ER

£-Y(0) is a 2-dimensional linear submanifold of C. In particular, f~1(0) has measure
0.

Proof : Notice that f(p1,p2,p3) = 0 if and only if p1, p2 and ps are on a same line.
It is plain to show that 0 is a regular value of f, i.e. we cannot have simultaneously
f = 6f = 0. Due to the Preimage theorem [8, page 21], f£~1(0) is a submanifold of
C, with dim f’1(0)=dimC’—dimR. As C is a manifold of dimension 3, we achieve
the proof. 0

Thus, without assuming Condition 3, we can discover, by means of at most 5n—2
probes, a shape that, in almost all cases, will be identical to C.

In order to have a purely deterministic algorithm, we need to effectively achieve
Condition 3. For any three colinear points, p1, p2, p3, this can be done by means of
an additional probe along the half line p; — pz, ps, if we assume further that a probe
which goes along an edge and not its interior has no contact point on the edge. In
such a case, 6n — 2 probes will be sufficient.

4 Conclusion

This paper has shown that the information provided by the rays is crucial (though
generally neglected) when solving 2-dimensional reconstruction problems. The main
property of the rays is that they induce a total order on the measured points when
the points belong to a simply connected object. This order has been shown to be
computable in optimal time O(nlogn). The algorithm is fully dynamic and allows
the insertion or to deletion of a point in O(logn) time.

From this order a polygonal approximation of the object can be deduced in a
straightforward manner. However, if not enough data are available or if the points
belong to several connected objects (the data are said to be illegal in this case), this
polygonal approximation may not be a simple polygon or may intersect the rays.
This can be checked in O(nlogn) time.
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Though we have constrained each ray to comprise a bounded number of line
segments, the method still works if the rays each consists of a finite number of simple
curves. The complexity results (except for the validity test) hold, provided that a
line segment and a curved segment and two curved segments can be intersected in
constant time. :

The order induced by the rays has also been used to find a strategy for discovering
the exact shape of a simple (but not necessarily convex) polygon by means of a
minimal number of probes. When each probe outcome consists of a contact point, a
ray measuring that point and the normal to the object at the point, we have shown
that 3n — 3 probes are necessary and sufficient if the object has n non colinear
edges. Each probe can be determined in O(logn) time yielding an O(nlog n)-time
O(n)-space algorithm. When each probe outcome consists of a contact point and a
ray measuring that point but not the normal, the same strategy can still be applied.
Under a mild condition, 5n — 2 probes are sufficient to discover the shape of the
object in this case and, without this condition, 5n — 2 probes allow to discover a
shape which is almost surely the actual shape of the object.
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