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ON THE ORIGIN AND DEVELOPMENT
OF SUBFACTORS AND QUANTUM TOPOLOGY

VAUGHAN JONES

Abstract. We give an account of the beginning of subfactor theory and
TQFT and some more recent developments.

1. Introduction

In 2008 the Mathematical Sciences Research Institute at Berkeley celebrated the
25th anniversary of its opening. Among the celebrations there were talks dealing
with some of the programs MSRI has run over the years. This article is a slightly
enhanced version of the talk I gave which recalled the 1984–1985 programs on
operator algebras and low dimensional topology and briefly surveyed some of the
outcomes of the interaction between these two programs. These include the subject
of topological quantum field theory (TQFT) and the interactions of subfactor theory
with physics, but I do not wish to suggest that these areas have been more important
than other developments in operator algebras or topology—it is just that they have
been the ones I have been most involved in.

In writing this article it was immediately obvious that any kind of comprehensive
survey of either operator algebraic developments or topological ones would be a huge
task, so I have tried to preserve the informal nature of the talk, no doubt preserving
some of its inaccuracies and incompleteness, but hopefully never being misleading.
The article is entirely unbalanced in the way it treats the early developments and
the more recent ones, but I have included many references that should allow the
reader to track down what has been going on. I apologise to the many people who
have made major contributions that are not mentioned here.

2. Before the 1984–1985 MSRI year

Not long before the MSRI year there had been the rediscovery in subfactors of the
“Temperley-Lieb” algebra, as presented by the following generators and relations:

e2
i = e∗i = ei, i = 1, 2, · · · , n,

eiej = ejei, if |i − j| ≥ 2,

eiei±1ei = τei, for 1 ≤ i < n.
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310 VAUGHAN JONES

The first relation means that when represented on Hilbert space the ei are n or-
thogonal projections onto closed subspaces. The second says that the subspaces
are orthogonal modulo their intersection if |i − j| ≥ 2. The third says that the
“angle” between ith and (i + 1)th subspaces is determined by the number τ ∈ R.
Thus these three relations are purely geometric in nature. The subfactor context
also provided a trace tr on the algebra generated by the ei’s uniquely defined by

tr(wen+1) = τ tr(w) if w is a word on e1, e2, ..., en.

By a geometric or an algebraic analysis it can be shown that for infinitely many
ei’s to exist as above, 1

τ must be either ≥ 4 or one of the numbers

4 cos2 π/k for k = 3, 4, 5, · · · .

Wenzl in [We87] showed that these restrictions apply even without the trace.
Temperley and Lieb came across almost exactly the same relations (though with-

out the trace) in work on solvable models in two-dimensional statistical mechanics.
The ei’s occur as elementary “transfer matrices” corresponding to adding a single
interaction between spins on a lattice. They showed that the same algebra underlies
the Potts model and Lieb’s ice-type model and deduced a mathematical equivalence
between the two models. See [TL70] and chapter 12 of [Ba82]. In subfactors the
ei’s arose as orthogonal projections in a canonical tower of algebras arising from a
subfactor N ⊆ M of a II1 factor M . The number τ in the relations is the reciprocal
of what is known as the index [M : N ] of N in M . The tower of II1 factors is
constructed in an inductive way in which each step depends on the last two but is
independent of the previous steps. The ei’s are the conditional expectations from
each step to the preceding one. See [Jon83].

(A II1 factor M is a unital *-algebra of bounded operators on a Hilbert space
closed in the topology of pointwise convergence, whose centre is just multiples of
the identity and which possesses a trace, a linear function from M to C which
vanishes on commutators. One also requires M to be infinite dimensional since the
n× n matrices satisfy all these conditions. An example is the closure for pointwise
convergence of the group algebra of the free group on two or more generators, acting
on the Hilbert space of square summable functions on the group in the obvious way.)

The above result immediately shows that the index [M : N ] must be ≥ 4 or in
the above set of numbers.

One may also construct by hand infinite families of projections, with a trace,
satisfying the above relations. The algebra they generate is a II1 factor. A subfactor
realising the appropriate index value is obtained by taking the algebra generated
by all the ei’s with i ≥ 2.

The (finite-dimensinoal) algebras An defined by 1, e1, e2, ..., en, are easily de-
scribed inductively in terms of “Bratteli diagrams” which give the irreducible rep-
resentations of An as vertices of a graph with edges according to how a representa-
tion of An restricts to An−1. The main picture is the following truncated Pascal’s
triangle which works for all τ < 1/4.
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For instance, the 2 and 1 in the third row correspond to a two-dimensional
and a one-dimensional irreducible representation of A2, the two-dimensional one
containing both the one-dimensional irreducible representations of A1.

For 1/τ = 4 cos2 π/k, one further truncates the diagram on the right by removing
a “1” and all its descendants. Thus, for instance, for 1/τ = 4 cos2 π/7 one obtains
the following.
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The first irrational index value, 4 cos2 π/5, gives a Bratteli diagram with just
two columns, all the entries being Fibonacci numbers.

The braid group is the group presented on generators σ1, σ2, · · · , σn−1, with
relations

σiσj = σjσi, if |i − j| ≥ 2,

σiσi+1σi = σi+1σiσi+1, for 1 ≤ i < n.

Compare these relations with the ei ones above:

eiej = ejei, if |i − j| ≥ 2,

eiei±1ei = τei, for 1 ≤ i < n.

To get a representation of the braid group, try sending σi to

tei − (1 − ei).

A simple calculation shows that this works iff τ =
t

(1 + t)2
.
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312 VAUGHAN JONES

Note that if ei were diagonalised, σi would look look like⎛
⎜⎜⎜⎜⎝

t 0 0
0 t 0 · · ·
0 0 t
· · · −1 0

0 −1

⎞
⎟⎟⎟⎟⎠ .

(Note: 0 < τ ≤ 1/4 means 0 < t < ∞, while 1/τ = 4 cos2 π/k means t = e±
2πi
k .)

So these braid group representations are manifestly unitary if t = e±
2πi
k and not

otherwise. Their decomposition into irreducibles and restrictions from Bn to Bn−1

are of course given by the Bratteli diagrams.
The braid group Bn is also given topologically by isotopy classes of ways of

joining points on a given horizontal level to the same points on another level. Thus
a picture of a braid in B4 is as below.

The curves joining the points are called the strings of the braid and they are
never allowed to have a horizontal tangent vector. The generators σi above are
just the braids with all strings vertical except those joining the ith and (i + 1)th
points which they join with a single crossing in between, with some convention
about positivity of crossings. One may take a braid and turn it into a knot (or link
in general) by tying the tops to the bottoms as depicted below.

→

For α ∈ Bn, we call α the oriented link so obtained. By a theorem of Alexander
any oriented link in R

3 may be represented in this way.
If α is represented in the Temperley-Lieb algebra as above, by a theorem of

Markov (see [Bi75]),
(normalisation)tr(α)

gives an invariant of the knot (or link) α. If the link has an odd number of
components it is a Laurent polynomial in t, written VL(t) for a link L. If the
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number of components is even, VL(t) is
√

t times a Laurent polynomial in t. For
the trefoil knot K shown below,

VK(t) = t + t3 − t4.

Passing from a knot to its mirror image changes the variable in the polynomial from
t to 1/t so this simple polynomial distinguishes between the trefoil and its mirror
image.

It is amusing that the key ingredient making the above braid representation–knot
invariant work is the compatibility of our trace on the Temperley-Lieb algebra and
the changes of braid in Markov’s theorem. But the formula defining the trace is
also strongly reminiscent of the Markov condition in the theory of Markov chains. . .
different Markov’s—both Andrey Andreyevitch—father and son! (Thanks to Garry
Tee, University of Auckland, for this information.) The case for naming such a trace
a Markov trace is doubly compelling!

This summarises what was known going into the year 1984–1985. Then things
moved fast, with most of the action involving MSRI.

3. MSRI year 1984–1985

1) The polynomial VL(t) was extended to a two-variable generalisation, the
HOMFLYPT polynomial, which also contained the Alexander polynomial (see
[HOMFLY85]).

2) Several applications including braid index estimates and answers to some
questions about Conway’s “skein theory” (see [FW87], [Mor86]).

3) Observation from statistical mechanical models that VL(t) is essentially inde-
pendent of the orientation of L (see [LM86]). These were soon followed by Kauff-
man’s great diagrammatic insights:

a) VL(t) is essentially an unoriented invariant, simply the result of replacing a
crossing by no crossing in both ways:

Here the pointed brackets represent the invariant of what is enclosed. It is known
as the “Kauffman bracket”. Once an orientation is given to the knot, its Kauffman
bracket can be easily renormalised to give VL(t) with t = A4.

b) The Temperley-Lieb algebra can be realised entirely diagrammatically as pic-
tured below.
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314 VAUGHAN JONES

They use braid-like concatenation as multiplication.
Closed loops in the diagrams appear under concatenation and cannot be avoided.

But they are simply handled by removing a closed loop at a time and multiplying
by a factor δ = −A2 − A−2. In particular the generator ei is represented thus.

... ...
1
δ

And in the same breath, Kauffman discovered another two-variable knot poly-
nomial ([Kau90]) which is essentially an unoriented link invariant renormalisable
just as one goes between the Kauffman bracket and VL(t).

His diagrammatics soon led to the solution of a Tait conjecture about alternating
knots; see [Kau87], [Mur87], [Th87]. The Tait conjectures were completely solved
more recently by Menasco and Thistlethwaite; see [MeTh93].

On the subfactor side, progress was made by Ocneanu and Wenzl. Ocneanu’s
approach to the HOMFLYPT polynomial saw it as coming from the Hecke algebra
([Jo87]) and isolated a sequence of one-variable polynomials understood to have
something to do with SU(n), the polynomial VL(t) being the case n = 2. Ocneanu
and Wenzl (see [HOMFLY85] and [We88]) used the corresponding Hecke algebras to

construct new subfactors of indices
sin2 kπ/�

sin2 π/�
with the case SU(2) corresponding to

the subfactors of index 4 cos2 π/n described above. The Temperley-Lieb algebra in
this case is seen as a quotient of the Hecke algebra. This in turn suggested that one
consider a sequence of one-variable specialisations of the HOMFLYPT polynomial
which should be related to SU(n) with VL(t) corresponding to SU(2). The sense
in which SU(n) appeared was quite clear in the operator algebra context through
the work of Baker and Powers ([BaPo86]) as the II1 factor coming from the fixed
points of the infinite tensor product action of SU(n) on the n × n matrices.

The principal graph of a subfactor emerged, being the graph An for the subfactors
constructed from the Temperley-Lieb algebra. It encodes induction-restriction of
bimodules between N and M . Ocneanu gave a complete classification of subfactors
in index < 4 by Coxeter graphs of types An, D2n, E6, and E8 and showed that the
graphs D2n+1 and E7 do not occur as principal graphs.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SUBFACTORS AND QUANTUM TOPOLOGY 315

To see the principal graph arising, look again at these Bratelli graphs.
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The diagonal chain of 1’s is the principal graph for this factor—the Coxeter graph
A6.

Wassermann considered the full Baker-Powers example for any compact group
and privileged unitary representation, and he identified the principal graph from
the representation theory—the vertices are all the irreducible representations and
the edges occur according to multiplicity of containment of 1 in the tensor product
with the privileged representation. The special case of closed subgroups of SU(2)
realising the extended Coxeter graphs appeared in [GHJ89].

This completes a summary of what happened during the MSRI period 1984–1985
in this area. There was much continuing activity, but the following aspects were
unsatisfactory:

i) A “context” was needed for subfactors.
The constructions were all somewhat ad hoc and combinatorial. One would have

liked to see the subfactors arising somehow in some other part of operator algebras,
especially unitary group representations.

ii) A topological interpretation was needed for VL(t) and the other polynomials.
Conway’s skein theory could be adapted to give a genuinely three-dimensional

development of all the polynomials but, like the subfactor picture at this time,
it was ultimately combinatorial and there was little contact with the rest of low-
dimensional topology.

4. 1985–1988

For the work we are considering, this year was one of consolidation and organ-
isation. Probably the most notable unifying influence was the theory of quan-
tum groups developed by Jimbo, Woronowicz, and Drinfeld. Quantum groups
are noncommutative non-cocommutative Hopf algebras. The tensor product on
representations is thus non-commutative, but one requires a commutativity up to
isomorphism. It is the intertwiners implementing this weak commutatitivity that
contain the rich structural and numerical data—enough to provide lots of new
inputs into the Baxter method of solving two-dimensional statistical mechanical
models ([Ba82]). The three mathematicians above obtained examples of such Hopf
algebras as deformations of the enveloping algebras of semisimple Lie algebras. I
do not wish to go into the theory any more here, as much has been said and written
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316 VAUGHAN JONES

about quantum groups. (For a look at these developments from the point of view
of subfactors, see [Jo07].) Suffice it to say that the following picture emerged.

To every irreducible finite-dimensional representation of a simple Lie group/alge-
bra there is

1) A one-parameter family of subfactors. (Sawin [Saw95])
2) A knot polynomial with direct statistical mechanical sum formula (Rosso

[Ro88]). For links one can put representations on individual components.
3) A braid group representation with Markov trace.
The values of the deformation parameter “q” of most interest are the nth roots of

unity, especially those closest to 1. They are a bit tricky to handle in the quantum
group picture as the deformation parameter is no longer a formal variable and
semisimplicity is lost. But in the subfactor picture, these roots of unity are singled
out by the positivity condition of the trace/inner product, which also takes out all
the non-semisimple clutter. (See [We98] and [Xu98] for the complete picture.)

The HOMFLYPT two-variable polynomial is related to sl(n) in its identity
representation—for each n the corresponding polynomial is a specialisation of HOM-
FLYPT and put together they determine it. The Kauffman two-variable polynomial
is related to the orthogonal and symplectic algebras in the same way.

To jump ahead into the 1990s, it was in the subfactor arena that enduring
“sporadic” objects were discovered by Haagerup (and Haagerup and Asaeda, see
[HaAs99]) of index 5+

√
13

2 and principal graphs are illustrated here.

These objects remain “exotic” creatures in the zoo, untouched by quantum
groups or any non–von Neumann algebra approach.

During this period 1985–1988, another subject closely related to quantum groups
made its presence felt, and that was conformal field theory.

The foundational paper is that of Belavin-Polyakov-Zamolodchikov (see [BPZ80])
and a central example is the treatment of Wess-Zumino-Witten theory in [KZ84].
But for those with less physics background, the paper by Tsuchiya and Kanie
[TK88] was influential. In it they obtained the braid group representations (at
roots of unity) that we have discussed, as monodromy for the n-point functions
in [KZ84]. This led to the strong suspicion that both subfactors and the knot
polynomials were intimately related to conformal field theory.

In an even more murky connection at the time, Fredenhagen, Rehren, and
Schroer ([FRS89]) and Longo ([Lo89]), suggested that braid groups and subfac-
tors should crop up in general low-dimensional quantum field theory (QFT), in the
Haag-Kastler algebraic QFT framework following Doplicher, Haag, and Roberts
([DHR74] and [DHR71]). In this approach to QFT one supposes that to suitable
regions of space-time there are von Neumann algebras of observables “localised”
in the regions. These algebras are subject to certain general axioms, perhaps the
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most important of which is that observables localised in regions of space-time which
cannot be connected by a message going at less than the speed of light have to com-
mute. It is remarkable how much structure can be obtained from this axiomatic
approach. See for instance the book by Haag [Ha96].

The idea of Doplicher, Haag, and Roberts was to investigate “statistics” of quan-
tum fields by examining how they behave when their support regions are inter-
changed. This led to representations of the symmetric group and proper endo-
morphisms of von Neumann algebras. Fredenhagen, Rehren, Schroer, and Longo
proposed that in lower dimensions the braid group would replace the symmetric
group and the endomorphisms should be ones onto the subfactors we have dis-
cussed above.

5. 1988, Atiyah, Segal, Witten

Segal had proposed a penetrating system of axioms for conformal field theory
based on a cobordism idea, and Atiyah and Witten developed a version which should
work in a purely topological situation where the Segal theory required a complex
structure. The two theories, conformal and topological, were closely related in that
the gross structure of a conformal field theory provides a topological quantum field
theory in dimension three. I do not want to go into all this here as a lot has been said
and written about TQFT. But at least it has to be said that an extraordinary formal
expression of this theory was obtained by Witten [Wt89] giving an interpretation of
VL(t), at t = e2πi/k, as a functional integral in a (2 + 1)-dimensional gauge theory,
gauge group SU(2) (as expected), with Chern-Simons action, the knot invariant
being the expected value of the trace of the monodromy along the components of
the link which now became known as “Wilson loops”.

Here is Witten’s formula in all its glory:

VL(e2πi/(�+2)) =
∫

DA exp (
i�

4π

∫
S3

Tr(A ∧ dA +
2
3
A ∧ A ∧ A))W,

where the integral is over all Lie algebra valued 1-forms modulo gauge transfor-
mations and W is the product of the traces of parallel transport using A along
each of the components of the link, each one being assigned the two-dimensional
representation of SU(2).

The functional integral in the above formula may or may not exist but it is the
role of TQFT to provide a context for such a beast. Replacing S3 in Witten’s
formula by any 3-manifold gives an invariant of a link in that manifold—why not?
To the unbeliever, the formula itself could be taken as mumbo-jumbo, but the
TQFT reading of it provided real pay dirt in the form of an explicit formula for
the extension of VL(t) to links in an arbitrary 3-manifold via surgery on links
or Heegard splitting! These formulae were completely verified by Reshetikhin and
Turaev in [RT91] so that the unbeliever had no way to doubt that Witten’s formula
had meaning. The more so because Witten attacked the formula by the much-
used perturbative methods of quantum field theory to obtain another approach
intimately linked to the Vassiliev theory we shall mention briefly below. Also,
building on work of Lickorish ([Li97]), Blanchet, Habegger, Masbaum, and Vogel
in [BHMV92] developed all the ingredients of a TQFT (vector spaces for surfaces,
vectors in those spaces when the surface bounds a 3-manifold . . . ) in a hands-on
way simply by considering systems of links in 3-manifolds with boundary subject
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to the Kauffman bracket relation and a root of unity condition (which, remember,
came straight from the subfactor analysis of the Temperley-Lieb algebra).

A slightly simpler version of the TQFT framework was applied by Turaev and
Viro [TV92] and Ocneanu [Oc87] to obtain 3-manifold invariants from general cate-
gorical data as provided, for instance, by a subfactor—where the required positiviity
was built in. Thus, to every subfactor with a finite principal graph (such as those
of Haagerup and Haagerup-Asaeda) there is a TQFT. The meaning of these theo-
ries remains somewhat obscure in general, though they can give classical invariants
like enumerating representations of the fundamental group of the manifold. Tak-
ing the abstraction one level further, Calegari, Freedman, and Walker in [CFW08]
have shown that TQFTs are powerful enough to separate 3-manifolds, though in
dimension 4 there are counterexamples to such an approach.

6. MSRI meeting January 1989 and the work of Wassermann

In January 1989 there was a workshop at MSRI which brought together many of
the key actors in the above stories, for instance Atiyah, Bott, Witten, Jimbo, Miwa,
Kauffman, Faddeev, Wassermann. . . . This meeting greatly clarified the situation,
and those of us who had felt out of the loop finally got over the feeling that the
Russians and the Japanese knew something that we didn’t. As a direct result of
this meeting, the subfactor side of the picture finally opened up. Wassermann and
I were struggling to interpret the ei subfactors as fixed-point algebras in the spirit
of Baker-Powers but in the context of conformal field theory where loop groups
replaced compact groups as clearly suggested by Pressley and Segal in [PS86].
After many false leads we came up with a conjecture in the theory of loop group
representations only to realise that it was entirely in the spirit of Fredenhagen,
Rehren, and Schroer with endomorphisms, braid groups and all! The conjecture
was proved completely by Wassermann in the more general SU(n) case; see [Wa98].
Here is the result for SU(2). I give some detail as not enough has been said or
written about this beautiful theory.

The loop group LSU(2) is the group of all C∞ maps (loops) from the circle S1 to
the compact simply connected group SU(2). (A first shot at the Lie algebra of this
group would be functions to the Lie algebra of SU(2) which are polynomials in the
circle variable z.) LSU(2) has a beautiful family of irreducible infinite-dimensional
unitary projective representations which are characterised by the fact that they
extend to the obvious semidirect product of LSU(2) and S1 in such a way that the
Fourier decomposition of the representation has only positive Fourier modes (“pos-
itivity of the energy”). This “discrete series” of representations is parametrised by
two discrete variables: (i) the “level” � which determines the central extension of
LSU(2) implicated in the projective representation; and (ii) the “spin” j, the usual
half-integer used to parametrise the irreducible representations of SU(2), which
occur as the fixed points for the action of S1 on the Hilbert space.

(On the Lie algebra level the extensions to the semidirect product with S1, and
the central extension required to handle projective representations, define precisely
the affine Kac-Moody Lie algebra corresponding to sl(2).)

It is of considerable importance that for a given �, only finitely many values of
j arise, in fact 2j ≤ l. This means that for fixed � the spins could be thought of
as the vertices of a Coxeter graph A�+2, hinting at a connection with the principal
graph of a subfactor.
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If one takes a closed interval I on the circle, let Ic denote the closed interval
which is the closure of the complement of I and let LI be the subgroup of loops
which are the identity on Ic. If π on Hj is one of the discrete series representations
above, π(LI) and π(LI) commute with each other. (Because π is projective this is
not obvious—this is where simple connectedness comes in.) If one can show that the
von Neumann algbera L′′

I generated by π(LI) is a factor, then we have a subfactor

π(LI)′′ ⊆ π(LIc)′

(as always in von Neumann algberas ′ denotes the commutant of a set of operators).
Wassermann showed that as � and j vary, these subfactors realise the values

sin2 yπ/(� + 2)
sin2 π/(� + 2)

, and much more; see [Wa98].

To be able to get started, it is crucial that the representations involved be mani-
festly unitary. For this the well-developed theory of representations of C∗-algebras
is available. One begins with the simple-minded unitary repsentation of LSU(2) on
L(S1)⊗Vj , Vj being the spin j representation of SU(2). One then applies fermionic
second quantisation—LSU(2) acts functorially on the C∗-algebra of the canonical
anticommutation relations for this Hilbert space. This algebra has an irreducible
representation constructed from the “quasi-free” state with covariance operator be-
ing the projection P onto holomorphic functions. A loop group element preserves
the equivalence class of this representation of the CAR algebra iff its commutator
with P is Hilbert-Schmidt. Thus we get a unitary projective representation of all
loops with this commutator property which turns out to be a “half-differentiability”
property. All the discrete series representations can be found in these ones and their
tensor powers.

The most difficult technical part of the proof is simply to prove finite index of
the subfactor. Wassermann achieves this by using the Connes tensor product of
Hilbert spaces over von Neumann algebras ([Co94]) to construct what is known as
the “fusion” of two discrete series representations of LSU(2) to produce another
of the same level. One shows that all representations with fixed level are unitarily
equivalent upon restriction to an LI . By identifying I of one representation with
Ic of another, one may form the Connes tensor product Hj1 ⊗{LI}′′ Hj2 which
inherits a bimodule structure over {LI}′′ − {LIc}′′. One shows that this bimodule
structure is in fact the restriction of and action of all of LSU(2) to obtain the fused
representation.

To do this extension to LSU(2), Wassermann observed that the definition of
the Connes tensor product actually uses the four-point functions of conformal field
theory and identifies the {LI}′′−{LIc}′′ bimodule using the Kniznik-Zamolodchikov
equation!

The connection with quantum field theory is as follows. The circle S1 is a one-
dimensional space-time and the algebras π(LI)′′ are the algebras of observables
localised in the interval I. Two intervals are causally separated if they are dis-
joint. So in fact this is an instance of the Fredenhagen-Rehren-Schroer theory, with
braiding and endomorphisms as predicted!

7. Some more recent developments

We record some bullet points among many developments in these areas beyond
what we have discussed above.
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• Turning again to topology, a new ingredient entered the game in the early
1990’s—Vassiliev theory. Thinking of knots as smooth functions from S1 to R3,
in [Va95], Vassiliev began the study of the algebraic topology of this space and
obtained new knot invariants. Birman and Lin furthered this study and the concept
of a “finite type invariant” emerged; see [BL93]. The idea is to extend any additive
knot invariant Inv to an invariant of immersed curves with at worst double point
singularities by locally setting

Inv = Inv − Inv .

Then Inv is of finite type n if it vanishes on immersed curves with n double points.
The knot polynomials are a source of finite-type invariants but it was shown by

Vogel in [Vo01] that there are others. Kontsevich discovered a beautiful general
integral formula for finite-type invariants, thinking of them more as a perturbative
expansion of a functional integral; see [Kon93].

Bar-Natan put everything together in a stunningly comprehensible paper [BN95]
which made the whole theory broadly accessible and showed that one could con-
struct knot invariants by studying “chord diagrams” modulo certain linear relations.

All this has to a certain extent been extended to knots and links in arbitrary
3-manifolds, though I believe that, beyond homology 3-spheres, things remain a
little murky.

• Another major problem in this area is to understand how the Witten-Reshe-
tikhin-Turaev invariant depends on the root of unity. In the best of all worlds, there
would be a holomorphic function of q of which it is the boundary value, but this
appears to be too naive. Recent progress has been made by Garoufalidis [Ga07].

There are various conjectures concerning the asymptotic behaviour of the Witten-
Reshetikhin-Turaev invariants and how they relate to other geometric or topolog-
ical invariants. Let me mention Kashaev’s volume conjecture (just for knots); see
[Kash96]. If K is a knot with hyperbolic complement, one looks at

VSU2 , k dimensional representation (eπi/k)

(the value of t is the value for which the invariant of an unknot is zero (!)).
Then as k → ∞, the asymptotic growth of this number is controlled by the hyper-
bolic volume. The result is known for some small knots by explicit computations.
The experts are not entirely in agreement as to how it should be true.

• The question of linearity of the braid group was settled by Bigelow and
Krammer ([Bi01], [Kr02]) by showing that the braid group representation associated
with the two-variable Kauffman polynomial is faithful. It remains open whether
the representation in the Temperley-Lieb algebra is faithful (for generic values of
the parameter).

• A more recent development has been Khovanov homology ([Khov00]). This

uses the basic Kauffman resolution of a crossing but “categori-

fies” it in that the basic invariant associated to a link is a graded complex and
the relation between the complexes at a crossing is an exact sequence between the
three complexes. The invariant ends up, at least in the hands of Bar-Natan, being
a complex up to homotopy equivalence. The Euler characteristic of the complex
is VL(t). Bar-Natan’s version is highly calculable by a “planar algebra” approach.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SUBFACTORS AND QUANTUM TOPOLOGY 321

Khovanov and others have extended categorification to many other knot invariants
and beyond. It is strictly more powerful than the corresponding Euler characteris-
tic polynomials, and it looks like it is the arena for connections with gauge theory,
e.g. Floer homology; see [Ras05].

What about subfactors?
The 1990’s saw deep classification results by Sorin Popa who showed that in

“amenable” cases (both the factor, the subfactor, and the principal graph), the
subfactor is completely classified by what is known as the “standard invariant”
(an enrichment of the principal graphs containing not just the bimodules and
their tensor powers but intertwiners between them). These results extend Connes’
breakthrough results from the 1970’s classifying automorphisms and group actions
([Po94],[Co75]).

The subfactors of index < 4 have the Coxeter graphs A-D-E as principal graphs
and can be thought of as some kind of quantum truncation of the finite subgroups
of SU(2). Zuber et al. found some analogues of such behaviour for finite subgroups
of SU(3); see [DFZ90]. Ocneanu gave complete results for SU(3) and higher in
[Oc00]. This gives a rich family of subfactors with finite principal graphs, falling
into several series and exceptional cases.

Bisch and I investigated the implications of the existence of an intermediate
subfactor and discovered a Temperley-Lieb generalisation called the Fuss-Catalan
algebra; see [BiJo97]. It was used to give statistical mechanical models in [diF98]
but seems to have nothing to do with knot theory. Severe restrictions on the
positions of more than just one intermediate subfactor were discovered in [GrJ07].

I spent many years with some but little success in an attempt to use subfactors to
provide information on a large variety of combinatorial objects. Things like Latin
squares and Hadamard matrices can be used to construct subfactors and the hope
still is that the subfactor invariants—the standard invariant referred to above—can
be exploited to say something about the combinatorial object (which may or may
not possess ordinary group symmetry). The stumbling block is computational—for
instance, how do you compute the principal graph? If one only wants information
near the beginning of the principal graph there is no problem, but the computational
complexity of the calculation seems to grow exponentially the further out one goes.
Even the first couple of relative commutants did give some interesting information;
see [BBJ97]. This program may eventually prove fruitful, but one thing it did
lead to was the development of planar algebras which provided a very convenient
axiomatisation of the standard invariant of a subfactor and a useful technique for
analysing their structure. It is similar in spirit to Conway’s “skein theory”.

• Planar algebra is based on the notion of a planar tangle. Here is an example:
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The idea is that a planar algebra is a (graded) vector space Pn whose elements
may be used as “inputs” of any planar tangle, which responds with an output. It is
a theorem ([Jon99]) that the standard invariant of a subfactor is a planar algebra.
So given A, B, C in the standard invariant (i.e. each one in Pn for some n which
may differ for A, B and C) in this case in P2, P3, and P2, respectively, the picture

C

A
B

represents another element of the standard invariant (in this case in P3). As another
example the tangle below gives an associative algebra structure AB on each Pn (P4

in the example):

B

A

Given a planar algebra there is a well-known way to (try to) construct a factor
and subfactor whose standard invariant is the given planar algebra. One uses the
above algebra structure on each Pn, embeds them unitally one in the next, and
takes a completion of the union. It works well in the “finite depth” case (where
the dimension-generating function for the Pn’s is rational), but not in general.
Popa in [Po95] gave another construction which works in general but produces a
rather different kind of II1 factor. In a recent interaction with random matrices
and Voiculescu’s free probability, an alternative to Popa’s construction was found
involving a graded product on the planar algebra; see [GJS07].

• Finally, we mention the approach of Freedman et al. to building a quantum
computer ([FKLW03]). The main technical difficulty with the usual qubit approach
is to get a large enough system of quantum bits—be they electrons, protons, ions,
or whatever—to interact strongly with each other and not the environment for
the duration of the calculation. The idea is to overcome this problem (and some
error-correcting difficulties) by spreading the calculation out in a two-dimensional
quantum fluid and replacing qubits by quasi-particles. Since the system is two-
dimensional, interchanging the quasi-particles will be governed by a unitary braid
group representation, most likely at first one of the ones we have discussed as they
are the simplest. By observing the evolution of an appropriate braid, one may do a
computation, and in [FKLW03] it is shown that, if the braid group representation is
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the one we have described for an index 4 cos2 π/5 subfactor, any computation that
could be done by any other quantum computer could be done using such a quantum
fluid. It is a fascinating question simply in physics to know if such “non-abelian
anyonic” quantum systems exist. If they do, they will surely be observed first at
extremely low temperatures.

In spite of all the progress in and around TQFT one basic question remains as
open today as it was in 1984: is there a knot K with VK(t) = 1?

Note though that the problem for links with more than one component was
solved by Thistlethwaite in [Th01]; see also [EKT03].
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