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Abstract

The origin of the friction between sliding bodies establishes an outstanding scientific problem. In this article, we demonstrate 

that the energy loss in each microscopic slip event between the bodies readily follows from the dephasing of phonons that 

are generated in the slip process. The dephasing mechanism directly links the typical timescales of the lattice vibrations with 

those of the experienced energy ‘dissipation’ and manifests itself as if the slip-induced motion were close to critically damped.
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1 Introduction

Friction continues to fascinate engineers and scientists in 

spite of its seeming simplicity. We are taught that sliding 

friction involves the conversion of mechanical energy into 

heat [1, 2] and that this conversion necessarily is irrevers-

ible [3]. The microscopic picture that is usually associated 

with this conversion involves phonons [4–6] that are excited 

within the sliding bodies, typically through mechanical 

instabilities, such as stick–slip events. Due to phonon cou-

pling and the associated, finite phonon lifetimes [7–10], the 

energy that specific phonon modes acquire from these insta-

bilities is thought to be quickly redistributed over the full 

spectrum of possible phonons.

The coupling between a specific degree of freedom, e.g., 

associated with the motion of a sliding body, and the other 

degrees of freedom of a system, such as the amplitudes and 

phases of all vibrational eigenmodes of the body itself and 

those of the solid over which the body is forced to move, can 

be treated theoretically as the coupling to a bath of harmonic 

oscillators. This formulation introduces the combination of 

all other degrees of freedom as a thermal or harmonic bath. 

From this description, one readily derives the generalized 

Langevin equation and the fluctuation–dissipation theorem 

that relates the strength of thermal fluctuations to the dis-

sipation rate [11, 12].
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In this article, we concentrate on the bath of harmonic 

oscillators, i.e., on the full spectrum of vibrational modes in 

either of the two bodies that are sliding over each other, and 

ask the question which modes are really coupled directly to 

a specific slip event and how they manage to carry away the 

energy invested in them in such an event so efficiently that 

it becomes effectively irretrievable for re-use in later slip 

events. The tempting answer to the latter question seems 

that again coupling between phonons, i.e., finite phonon life-

times, would be at play, which would re-establish thermal 

equilibrium after each slip event. Instead, we will demon-

strate that there is a more natural explanation.

Finite phonon lifetimes derive from the anharmonicity of 

the interaction between atoms in solids and from the pres-

ence of impurities and other structural defects. Whereas 

anharmonicity is an intrinsic material property, defect den-

sities and impurity concentrations often vary over orders of 

magnitude, usually without a strong influence on friction. 

This should be taken as a serious indication that the internal 

redistribution of mechanical energy is not primarily due to 

the thermalization of phonons. Energy line widths meas-

ured by inelastic neutron scattering on bulk phonons [7–10] 

and by inelastic helium atom or electron scattering on sur-

face phonons [13] show that in spite of all anharmonicities 

and structural non-idealities, these mechanical eigenmodes 

‘live’ for tens of vibrational periods or more. In order to 

redistribute the energy rapidly enough to cause significant 

friction, however, phonons would have to be close to criti-

cally damped, i.e., convert their energy into other phonons 

on a timescale of one or just a few vibrational periods. Such 

strong damping is predicted theoretically only for the vibra-

tions of isolated adsorbate atoms on a semi-infinite solid [2], 

but is not characteristic for the surface or interior of the solid 

itself. Near-critical damping [14–16] also forms an essential 

ingredient in the interpretation of friction force microscopy 

(FFM) images, in which atomic stick–slip patterns are rou-

tinely observed [15–17], with occasional slips of the FFM 

tip over two or more lattice spacings [17–19]. Again, details 

of the materials and their structural perfection, both for the 

tip and the substrate, seem not to be of critical importance.

In the following, we present an alternative non-thermody-

namic view on the redistribution of energy within a sliding 

body, accompanying a slip event. We treat the dynamics in 

terms of the dephasing of phonons that are excited in the slip 

event. While being consistent with the formulation of damp-

ing due to the coupling to a thermal bath, our description 

leaves out phonon coupling altogether. In the calculations 

presented in this article, near-critically damped motion nev-

ertheless emerges and we show that this is a natural conse-

quence of our description of slip events as the simultaneous 

excitation of a large number of vibrational eigenmodes. This 

result invites us to speculate about new methods to modify 

friction, simply by manipulating the spectrum of available, 

vibrational eigenmodes.

2  Model System: Harmonium

In order to reduce frictional contact dynamics to its very 

essence, we performed a combined theoretical and numeri-

cal study of the simplest possible model system in which 

friction might arise, namely that of two initially static slabs 

of an idealized, completely regular solid material, made of 

atoms that interact with each other through short-ranged, 

exclusively harmonic forces. By construction, our system 

contains neither anharmonicities, nor defects, impurities, 

or adsorbate layers. This renders the lifetime of all phon-

ons infinite. Our calculations nevertheless indicate that slip 

events are followed by behavior that is best described as 

very rapid, near-critical damping. We show that this damp-

ing originates from the progressive destructive interference 

of the phonons that are excited in the slabs by the slip events.

We refer to our harmonic model substance as harmonium, 

(Hr). The Hr is organized in a body-centered cubic (bcc) lat-

tice, with a dimensionless cubic lattice constant of unity. In 

order to ensure stability of the bcc lattice, harmonic forces 

are introduced between nearest- and next-nearest-neighbor 

atom pairs with dimensionless spring coefficients of 2 and 1 

respectively (see Appendix 3). We imagine mechanical con-

tact to be established between the (001) surfaces of two iden-

tical, infinite slabs of this material, touching each other only 

via two individual Hr atoms, one on each of the two surfaces. 

In the calculation, each slab is represented by a periodically 

repeated rectangular block, containing N atoms. We keep 

the situation completely symmetric between the two con-

tacting slabs, so that we can concentrate fully on one of the 

two. One stick–slip cycle then corresponds to a sequence 

with a stick-phase, in which the slab is first deformed via 

an external force exerted on the contacting Hr atom at the 

surface, followed by a slip event in which the external force 

is suddenly reduced to zero. We follow the resulting motion 

of all Hr atoms in the slab, paying specific attention to the 

characteristic time scales of their response. Note, that our 

geometry also represents the situation in which an FFM tip 

is responsible for the initial surface deformation in the slab. 

In that case, our calculations describe the motion in the slab, 

following the slip event of the tip.

Figure 1a shows the configuration in the harmonium slab, 

prior to the slip event. In this example, a (dimensionless) 

lateral force of 0.1 (see Appendix 3) is exerted along the 

[100] surface direction on the central surface atom, which 

is displaced as a consequence. An accompanying deforma-

tion pattern is also visible within the slab that decays with 

distance to that atom. The configuration shown in Fig. 1a is 

the equilibrium displacement pattern for the specific lateral 
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force exerted on the central surface atom. This is a stationary 

pattern; the atoms are all standing still.

3  Near‑Critical Damping in Harmonium

3.1  Numerical Results

At t = 0, the external force is removed—the ‘slip’ event—

and we numerically evaluate the equations of motion of all 

atoms in the system. Our first observation is that the defor-

mation pattern rapidly accelerates back, as is illustrated 

by the movie (available online). The solid black curve in 

Fig. 1b shows the displacement of the central surface atom 

along the [100] direction as a function of time. We see that 

the atom overshoots the zero position and goes through 

a rapidly damped oscillation. The occurrence of a small 

number of zero-crossings shows that the motion is slightly 

underdamped.

As strong as the damping may seem in Fig. 1b, we have 

performed our calculation without any explicit damping on 

the motion of any of the atoms. In fact, the motion for each 

atom was obtained by simply integrating Newton’s equations 

along the x-, y-, and z-directions, i.e., along [100], [010] and 

[001], in response to the forces exerted on the atom by its 

direct and next-nearest neighbors. No velocity-related terms 

entered this description [14]. Also, we have left out all other 

‘hidden’ forms of damping, for example via a thermostat in 

the calculation or via absorbing boundary conditions [20, 

21] (see Appendix 3 for more details). We observe near-

critical damping, even in the complete absence of an explicit 

damping mechanism.

At this point we have to acknowledge that there is one 

mild, implicit form of anharmonicity, which we cannot avoid 

in our calculations. It reflects the simple fact that a displace-

ment of an atom along one direction changes the directions 

of most of the nearest- and next-nearest-neighbor bonds that 

the atom is involved in. This leads to higher-order contri-

butions to the forces on the atoms that make the response 

of the lattice deviate increasingly from perfectly harmonic 

with increasing amplitudes of displacement. By repeating 

our calculations for various values of the initial displacement 

amplitude (or, equivalently, for various values of the initial 

external force), we could easily verify that this higher-order 

effect is not causing the damping observed in Fig. 1b.

3.2  Lattice Dynamics Results

We now turn to the dashed blue curve in Fig. 1b, which 

indicates the result of an alternative computation of the 

response of the distorted lattice to the removal of the exter-

nal force at t = 0. Underlying this curve is a calculation of 

the complete set of 3N − 6 ≈ 3N  phonons, the mechanical 

eigenmodes of our harmonium slab. The result of the pho-

non calculation is represented by the dispersion curves in 

Fig. 1c and in Fig. 3 in Appendix 3. They show the angular 

frequencies of the lattice vibrations �
(

kx, ky

)

 as a function 

of the parallel wave vector 
(

kx, ky

)

 along the three sym-

metry directions of the reciprocal surface unit cell. The 

curves display the typical combination of bulk phonon 

bands and a small number of surface modes, associated 

with the two free surfaces of the slab. This calculation 

is completely harmonic; also the subtle anharmonicity is 

absent that was present in the solid black curve in Fig. 1b. 

Fig. 1  Analysis of a single-atom slip event in a harmonium slab. 

a Perspective view of the starting configuration of our calculations. 

The displayed block of atoms has two free surfaces (upper and lower) 

and is periodically repeated along the [100]- and [010]-directions. In 

a, one quarter of the atoms are removed to provide a view into the 

material. The entire configuration is slightly distorted due to a force 

along the [100] direction, exerted on the central atom in the top sur-

face. The colors indicate the displacements of the atoms, |Δ�|, rela-

tive to that of the central (red) atom, ||Δ����

|
| . b Displacement of the 

central atom along the [100] direction as a function of time. Two cal-

culations are shown, for the numerical integration of the equations of 

motion and for a fully phonon-based calculation. c Phonon dispersion 

curves, showing the frequencies of the mechanical eigenmodes of the 

periodically repeated block of panel (a) versus inverse wavelength. 

Symbols Γ, X and M refer to symmetry points in the Brillouin zone 

of the block (see Fig. 3 in Appendix 3). The blue circles indicate the 

amounts of potential energy invested in each eigenmode for the dis-

torted pattern of panel (a) (logarithmic scale). Only values are shown 

greater than  10−15 with respect to the maximum value
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For each vibrational mode �
(

kx, ky

)

 , our calculation also 

provides the polarization vector that contains the relative 

amplitudes, directions and phases with which all atoms in 

the slab participate in that vibration. Since the eigenmodes 

form a complete set, each configuration of the slab can 

be expressed as a unique combination of amplitudes and 

phases of the 3N phonons. If we perform this projection 

operation on the initial configuration of Fig. 1a, we obtain 

a complete picture of the phonons that are excited by the 

external, lateral force on the central atom. This is indicated 

in Fig. 1c, which displays the same dispersion curves as 

Fig. 3, but also shows their relative amplitudes. From the 

perspective of the phonons, the only change at t = 0, when 

the external force is removed, is that they all commence 

their periodic time evolution. This fully harmonic time 

evolution is nearly indistinguishable from the result of the 

integrated Newton equations of motion, as is illustrated by 

the close match between the dashed blue curve in Fig. 1b 

and the solid black curve. Again, we observe near-critical 

damping of the motion of the central surface atom, this 

time for a rigorously harmonic system.

We should stress that the outcome of our calculations 

does not depend on the strength of the springs or the value 

of the atomic mass. When these parameters are changed 

by arbitrary factors, the horizontal and vertical axes of 

Fig. 1b and the vertical axis of Fig. 1c are rescaled, but 

apart from this, both figures remain completely unchanged 

and the near-critically damped character of the motion is 

not affected.

3.3  Phonon Dephasing

There is a natural reason for the observed damping, which 

should be regarded as an inherent property of solids. The 

spatial localization of the initial deformation pattern, i.e., 

the mere fact that the frictional contact is local, necessar-

ily makes that the pattern is composed of contributions 

from a variety of phonons with different wavelengths. Each 

individual phonon is a collective vibrational mode of the 

entire slab and is fully delocalized over the slab. It is only 

by combining a large number of phonons that a localized 

deformation can emerge at all. This local concentration of 

displacement occurs exclusively at the place and time where 

the phonons are largely in phase, so that their displacements 

add up constructively. Everywhere else the phase relation 

between the phonons is ‘random’ or sufficiently close to ran-

dom that no significant displacement results. This special 

combination of place and time is that of the central surface 

atom that is exposed to the external force and the time origin 

t = 0, at which the displacement is at its maximum and slip 

starts. At this point all phonons start to evolve in time, each 

one with its own angular frequency �
(

kx, ky

)

 . Because these 

frequencies are all different, the phonons rapidly run out of 

phase with each other, thus quickly reducing the displace-

ment amplitude of the central atom. The observed damping 

is the direct result of the dephasing of the excited phon-

ons with respect to each other. If all frequencies between 

0 and the maximum phonon frequency �
max

 were repre-

sented equally strongly in this process, we should expect the 

central atom to oscillate effectively with a frequency in the 

order of 1∕2�max and a dephasing rate in the same order 

of magnitude, which would render the oscillation critically 

damped. Figure 1c shows that the excited phonons are not 

Fig. 2  ‘Wave front’ of atomic motion after a single-atom slip event. a 

Three snapshots of the ‘wave front’, defined by the outermost atoms 

with kinetic energies above  10−14. In the third snapshot, at t = 6, the 

front has already reached the sides of the 30 × 20 × 20 atom supercell, 

which marks the stage where finite-size effects should be expected 

to progressively affect the results. b Radius of gyration of the ‘wave 

front’ in snapshots as those in panel (a), plotted as a function of time. 

The red and black data are for two different threshold levels of the 

kinetic energy, namely the value of  10−14 (red), illustrated in panel 

(a), and a significantly higher value of  10−10 (black). The differences 

are minor. The blue line is a linear fit to the red data points for times 

above t = 2. It shows that the wave front expands radially at a constant 

speed of 1.2
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distributed completely evenly over all available frequencies, 

which explains why the observed oscillation is somewhat 

underdamped.

Since the phonons are all completely delocalized over the 

entire system, one might expect that the potential energy that 

is invested by the external force would also be delocalized. 

This is certainly not the case. It is the region directly around 

the central surface atom that carries the largest distortions 

and hence the highest potential energy per deformed bond. 

After t = 0, it is the same region where the atoms develop 

the highest velocities, i.e., the highest kinetic energies. When 

the phase matching is lost progressively for the central sur-

face atom, a wave front travels outwards. Figure 2a shows 

snapshots of the surface of this front, obtained from our 

calculations as the outer contour of atoms with kinetic ener-

gies above a certain, low threshold value, in this case  10−14 

(see Appendix 4). At each point in time, the maximum of 

the outgoing wave resides somewhat inside this shell and 

corresponds to the surface at which the phases match best. 

The wave travels out at a group velocity that is, like the 

dephasing rate of the central surface atom, determined by 

the frequency differences between the excited phonons 

and, in addition, also by their wavelength differences. One 

should expect polarization effects to be visible in the form 

of anisotropy of the wave velocity, for example with the 

wave running out faster along the [100] axis of the initial 

surface displacement, due to the stronger longitudinal char-

acter of the wave in that direction, and slower along the two 

perpendicular directions, [010] and [001], due to the more 

transverse character along those. However, the size of our 

periodically repeated block was too modest to measure this 

anisotropy sufficiently accurately. Therefore, we have only 

determined the orientational average of the velocity of the 

outgoing wave, as is illustrated in Fig. 2b. We find that the 

front expands radially with a constant velocity of 1.2. This 

velocity is in the order of the average value of �∕|k| for the 

excited phonons, which should be regarded as the appropri-

ate, effective speed of sound for this wave.

3.4  Larger Contact Sizes

The single-atom contact that we have considered so far 

forms an extreme case that can be addressed experimentally 

only through special instruments such as an atomic force 

microscope or a friction force microscope. Importantly, 

our results carry a much more generic character and are 

also relevant for larger contacts. This is illustrated in Fig. 4 

(see Appendix 3), in which the central 3 × 3 surface atoms 

were subjected to an initial collective displacement along 

the [100] direction. Qualitatively, the time evolution of the 

displacement of the central surface atom is rather similar 

to the single-atom case (Fig. 1a), but the motion proceeds 

a factor ~ 2 more slowly. Also the dephasing is slower, by 

approximately the same factor, so that the motion is again 

somewhat underdamped. Figure 4 shows that the larger con-

tact is associated with a clear selection of the wavelengths 

of the phonons that are excited; these are concentrated near 

the Γ-point and correspond to wavelengths of approximately 

3 lattice spacings and larger. Again, the phonon-based time 

evolution is nearly identical to the result of the direct inte-

gration of the equations of motion.

The change from the single-atom contact to the 3 × 3-atom 

contact illustrates an element of inherent scaling that we 

expect to hold even up to typical tribological contacts with 

micrometer-size asperities and larger. The size of the contact 

is a measure for the spatial scale, both along and perpen-

dicular to the surface, of the elastic deformation patterns 

that result from forces on that contact. The motion induced 

by the slip event of a macroscopic contact can therefore be 

viewed as a coarse-grained version of the response that we 

have followed for the single-atom contact and the 3 × 3-atom 

contact. The coarse-graining involves the effective volume 

and mass of the regions in the solid that are set into rela-

tive motion, the effective spring coefficients that describe 

their interactions with each other and the resulting wave-

lengths and frequencies of the vibrational eigenmodes with 

which they predominantly move. Even though each of these 

quantities scales in its own way with the contact size, the 

qualitative feature remains unchanged, that the slip motion 

is composed of a superposition of eigenmodes; they result in 

a damped oscillation with a frequency that is some average 

over these eigenfrequencies and with a dephasing rate that is 

determined by the typical difference between these eigenfre-

quencies. As the 3 × 3-atom contact illustrates, the effective 

frequency is lower for larger contacts and the dephasing rate 

is lower in the same manner. As the effective frequency and 

the dephasing rate are intimately related, their ratio can-

not change much with contact size, which renders the slip 

motion close to critically damped for all contact sizes.

4  Summary and Discussion

The main conclusion from this work is that the dephasing 

of excited phonons forms a natural ‘recipe’ for damping. 

The essentially new and non-trivial element is that this 

mechanism occurs in purely linear systems, even though 

its consequences may seem similar to those of the dynamic 

stochastization, well-known for nonlinear systems [22, 23]. 

Our observation has been made here in the context of fric-

tion, but it applies to all cases where the wave packet of 

phonons that is excited in a process contains a sufficiently 

large number of phonons with different frequencies. Other 

examples of surface phenomena that should be expected to 

obey similar ‘rules’ are surface diffusion, the adsorption 

of atoms and molecules on surfaces and surface chemical 
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reactions [24]. Damping of motion involved in phenomena 

inside three-dimensional materials, for example bulk dif-

fusion or internal structural changes, or the deposition of 

energy and momentum by an impinging ion, should behave 

similarly. In the examples presented in this article the result-

ing dephasing rate is close to the maximum of critical damp-

ing that is possible in this way. The dephasing takes place on 

the timescale of a small number of vibrational periods, i.e., 

well before the finite lifetime of the excited phonons would 

become noticeable. Due to this dephasing, the energy and 

momentum that are invested in the initial displacements are 

irretrievably ‘lost’ on a rapid timescale that is fully decou-

pled from the slow thermalization of the excess energy by 

conversion of the excited phonon wave packet in the appro-

priate thermal (Bose–Einstein) distribution of phonons. 

Interestingly, the thermalization depends on a multitude of 

subtle properties of the solids involved, such as the anhar-

monicity of the interatomic potentials and the character and 

density of defects and impurities that can act as scattering 

centers for the phonons. The inherent nature of the phonon 

dephasing makes the resulting damping mechanism quite 

robust with respect to these subtleties and therefore very 

similar even for widely different materials.

The dephasing mechanism invites us to speculate about 

approaches to modify friction, for example via the contact 

geometry. One possibility lies in the dimensionality of the 

materials, such as for graphene and other layered materials 

with the strongly two-dimensional nature of their phononic 

eigenstates. Another possibility is offered by the prospect 

of nanostructuring contacting surfaces into geometries that 

strongly confine those phonons that are excited during the 

stick–slip process. Both elements are explicitly present in 

the spectacular reduction in friction, recently observed by 

Wada et al. [25].
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Appendix 1

The Friction Force Microscope

The instrument that seems most suitable to search for the 

microscopic origin of friction is the so-called friction force 

microscope (FFM). In an FFM experiment, a sharp tip is 

forced to slide over a counter-surface. The normal force, with 

which the tip is pressed against the surface, is held constant 

at a pre-selected, adjustable value. The tip is made to perform 

a two-dimensional scanning motion, while the lateral forces 

are recorded, thus building up a two-dimensional lateral force 

map. In such experiments, one routinely obtains lateral force 

patterns with atomic periodicities [15–17, 26, 27]. Usually, 

these patterns display a saw-tooth character that is referred 

to as ‘stick–slip’ motion; the interaction with the counter-

surface holds the tip in a local (atomic-scale) potential energy 

minimum until the lateral force is high enough to make it 

slip into the next minimum. The mere fact that this process 

repeats itself from one potential energy minimum to the next 

seems to indicate that the energy that is released during the 

slip event is quickly dissipated, so that the tip has to start 

again at or near the bottom of the next potential energy mini-

mum. What is seen on the atomic-scale in the FFM also hap-

pens on longer length scales in macroscopic friction geom-

etries, as we are familiar with from the squeaking of hinges 

and the stick–slip motion in earthquake dynamics.

Appendix 2

Dissipation

A popular model that captures the essence of this stick–slip 

behavior has been introduced independently by Tomlinson 

and Prandtl in the nineteen twenties [28, 29]. The Tom-

linson-Prandtl model assumes that the excess mechanical 

energy that is released during the slip phase in the stick–slip 

motion is removed from the system ‘instantaneously’. Inter-

estingly, this assumption works well on all length scales, 

which makes this a popular model also for the description 

of FFM experiments [16, 26].

A more general theoretical approach to motion with dis-

sipation is given by the familiar Langevin equation,

Here, the motion is described by the time-dependent coordi-

nate U(t), � is the position-dependent potential energy and � 

is the damping coefficient. Thermal fluctuations contribute a 

random force R(t) . In the simple form, given here, the equa-

tion contains a damping term that corresponds to a force that 

points against the direction of motion and is proportional to 

(1)mÜ(t) = −∇𝛷 − 𝜂U̇(t) + R(t)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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the instantaneous velocity. The Langevin equation is suc-

cessful in describing a wide variety of phenomena in which 

damping plays a role, such as atomic-scale friction [16, 

17], surface chemical reactions [30] and surface diffusion 

[31], provided that the damping rate is made sufficiently 

high. In fact, the damping rate has to be in the same order 

of magnitude as the relevant vibrational frequencies in the 

system, which makes the system close to critically damped 

[16, 17]. This rapid damping is consistent with the crude 

assumption of instantaneous dissipation in the Tomlinson-

Prandtl model, which should be read as ‘fast enough to look 

like instantaneous’. Various attempts have been made to 

provide a thermodynamic and atomistic foundation of the 

semi-phenomenological Langevin equation, leading to a 

Generalized Langevin equation with memory [32–35]. To 

our knowledge, this first-principle-based approach has not 

reached applications yet.

We have indicated that critical/nearly critical damping is 

needed in the interpretation of FFM experiments, but remark 

that this seems to also set the stage for friction on other 

length scales. On each length scale, the dissipation exhibits 

a rate that is consistent with the dephasing rate of the vibra-

tional modes that are relevant for that length scale.

Appendix 3

Methods

General Configuration and Setup

We have performed the calculations in this article for super-

cells of a body-centered-cubic (bcc) crystal of a hypothetical 

material, ‘harmonium (Hr)’, that we constructed from periodi-

cally repeated copies of a simple cubic unit cell with a two-

atom basis. The results shown here were for supercells with 

dimensions of 20 × 20 simple cubic unit cells along the x- and 

y-directions, i.e., the [100] and [010]-directions, parallel to the 

(001) surface, and a thickness of 15 of these unit cells along 

the z-direction ([001] direction), corresponding to a total of 

N = 12.000 Hr atoms. We have conducted our calculations 

also for other sizes, in order to verify that the reported results 

were not affected by the finite size of the 20 × 20 × 15 unit 

cell system. In order to give the supercell the character of an 

infinite slab, we applied periodic boundary conditions along 

the two surface directions x and y, while no periodicity was 

imposed along the z-direction; the top and bottom were free 

surfaces. The dimensionless lattice constant was set to a = 1.0. 

The dimensionless mass of the Hr atom was chosen to be 

m = 1.0 . The atomic interactions were modeled as harmonic 

bonds between nearest neighbor and next-nearest neighbor 

pairs of Hr atoms. As dimensionless spring coefficients for 

these bonds, we chose C1 = 2.0 and C2 = 1.0, respectively; this 

combination ensured the stability of the bcc structure under 

externally applied, linear and shear forces.

Identical initial configurations were chosen for two types of 

calculation of the dynamics (see below). We have used a variety 

of initial conditions. Those that were illustrated by Figs. 1 and 

2 were obtained for a situation in which an initial (dimension-

less) force of 0.1 parallel to the [100] surface axis was applied 

to a single surface atom. Below, we also present results for 

calculations in which the same force was equally distributed 

over a group of 3 × 3 atoms at the surface. In both cases, an 

equally large but oppositely oriented force was distributed over 

all atoms of the bottom surface, to keep the total external force 

zero and thus avoid acceleration of the supercell as a whole. We 

started by computing the distorted equilibrium configuration 

under the influence of these forces, which we obtained by mini-

mizing the potential energy stored in all bonds in the system. 

This was achieved by numerically integrating Newton’s equa-

tions of motion for all N Hr atoms in the harmonic system and 

applying an appropriate (high) damping force on each atom, 

proportional and opposed to the atom’s velocity:

In this equation, we define Uj(t) as the displacement vec-

tor of atom j with respect to the atom’s equilibrium posi-

tion at time t. The atom’s mass m carries no subscript, as all 

masses are chosen equal in our calculation. Fj is the initial, 

external force on atom j , which is zero for most atoms and 

0.1 along [100] for the central surface atom (or distributed 

over the central group of 3 × 3 atoms, depending on the spe-

cific starting conditions) and − 0.1 along [100] distributed 

over all atoms in the bottom surface. Cjj′ is the force constant 

of the interaction between atoms j and j′ , which is either C
1
 

or C
2
 , depending on whether the atoms are nearest or next-

nearest neighbors (see above) and ΔRjj� is the change in dis-

tance between atoms j and j′ from the equilibrium distance, 

due to their displacements Uj and Uj′ . The sum runs over all 

nearest and next-nearest neighbors j′ of atom j . The elastic 

forces are all oriented along the bonds, hence the bond unit 

vectors r̂jj′ in Eq. 2. The last term in Eq. 2 is the damp-

ing term, characterized by the damping constant �′, which 

we chose equal to 0.1 in order to obtain rapid convergence. 

The numerical integration was performed using the Verlet 

algorithm [36] with discrete time interval dt
1
= 0.002 , and 

the calculation was continued until the total (dimensionless) 

kinetic energy of the entire supercell was less than  10−12. 

The resulting, distorted configuration was regarded as suffi-

ciently converged to serve as the static starting configuration 

for the two subsequent dynamic calculations.

(2)
mÜj(t) = Fj −

∑

j�

(

Cjj�ΔRjj� r̂jj�

)

− 𝜂�U̇j(t).
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Slip Event

We used the distorted configurations, obtained by the pro-

cedure described above, as the starting configuration for the 

slip event. The slip event was introduced by the sudden 

removal of the external forces, both on the atom (or atoms) 

in the top surface and on the entire bottom layer of the super-

cell. We define the time of this sudden removal of the forces 

as t = 0 and the initial, distorted configuration, discussed in 

the previous section, is then given by the set of Uj(t)
|
|
|t=0

 . The 

dynamics evolving as a consequence of the removal of the 

forces were followed by computing Uj(t) for times t > 0 in 

two types of calculations in the complete absence of any 

damping. The first type is a direct numerical integration, 

while the second is completely analytical.

Calculation 1: Numerical Integration of Equations of Motion

The first type of calculation consisted of the integration of 

Newton’s equations of motion for all atoms in the supercell, 

starting with the distorted, initial configuration at t = 0. To 

this end, we numerically integrated the set of equations

Note that this set of equations is identical to that of Eq. 2, 

but without the damping terms and without the external 

force(s).

Using the Verlet algorithm, the accelerations, veloci-

ties and coordinates were updated with a time interval 

dt
2
= 2 × 10

−4 . Snapshots were generated every 100 time 

steps.

Calculation 2: Analytical Solution Via Lattice Dynamics

The coupled set of Eq. 3 can also be solved analytically. 

Due to the harmonic nature of the interactions and the 

periodicity of the lattice along the x- and y-directions, the 

free motion of the Hr lattice is composed of plane waves, 

with wave vectors in the xy-plane. They are the phonons 

of the Hr system and, here, we have ignored their quan-

tum–mechanical nature. Together, these 3N − 6 ≈ 3N  (in 

this case 36.000) so-called normal modes form a complete 

set, which means that linear combinations of these modes 

can be used to describe the complete vibrational response 

of the N-atom Hr supercell to any combination of initial 

positions and velocities of the atoms in the cell. Here, the 

initial conditions were taken according to the distorted con-

figuration described earlier, characteristic for the situation 

at the start of the slip event, and with all initial velocities 

equal to zero. The time-dependent displacement of atom j 

then takes the following form.

(3)
mÜj(t) = −

∑

j�

(

Cjj�ΔRjj� r̂jj�

)

.

where we loosely follow the notation of Allen et al. [37–39]. 

Here, the label k runs over all 3N normal modes and each 

mode is characterized by a combination of a two-dimen-

sional wave vector q
k
 and an angular frequency �

k
 . The 

polarization vector �kj has the x-, y- and z-components of the 

(complex) amplitude, i.e., the amplitude and phase, with 

which atom j participates in mode k when the mode has a 

normalized amplitude of unity, while A
k
 denotes the com-

plex amplitude with which mode k is excited by the initial 

conditions (see below). The equilibrium position of atom j 

is denoted by r0

j
 . The normalization factor N′ is the number 

of wavevectors that enter the calculation as a result of the 

discrete Fourier transform over the supercell. In our calcula-

tion, a three-dimensional periodic supercell with N atoms, 

would result in N� = N∕2 , due to the two-atom basis of the 

cubic unit cell. For two-dimensional periodic boundary con-

ditions, along the x- and y-axes, the wavevectors are 

restricted to two dimensions, q =

(

q
x
, q

y

)

, and N�
= NqxNqy , 

where Nqx and Nqy are the numbers of allowed wavevectors 

along the x- and y-directions of the reciprocal supercell, cor-

responding to the numbers of cubic unit cells along these 

directions of a large, real-space supercell.

We started by finding the 3N normal modes, for which 

we used the traditional slab method [37–39] for surface 

phonons. Due to the geometry of our supercell, there were 

20 × 20 different choices for the wave vector q
k
 and for each 

of them 3 × 2 × 15 solutions, i.e., combinations of �
k
 and 

combined polarization vectors �
k
=

{

�
k1, �

k2,… , �
kN

}

, the 

3 deriving from the dimensionality, the 2 from the two-atom 

basis of the bcc unit cell of the Hr lattice and the 15 from the 

thickness of our slab. All �
k
 and �

k
 were obtained as solu-

tions of the well-known eigenvalue equation

In this equation, D
(

q
k

)

 is the dynamical matrix for wave 

vector q
k
 [37, 38], defined as the (N × N) combination of 

(3 × 3) submatrices of the type1

Here, j and j′ denote two of the N atoms in the supercell. Cjj′ 

is the (3 × 3) matrix of force constants between the x-, y-, 

and z- displacements of these atoms, which is obtained read-

ily from the (scalar) force constant Cjj′ , introduced above, 

and the x-, y- and z-components of the vector 
(

r
0

j
− r

0

j�

)

 , con-

(4)Uj(t) =
(

mN�
)−1∕2 ∑

k

Ak�kjexp
[

i
(

qk ⋅ r0
j
− �kt

)]

,

(5)D
(

q
k

)

�
k
= �

2

k
�

k
.

(6)Djj�

(

qk

)

= m−1Cjj�exp
[

−iqk ⋅

(

r0
j
− r0

j�

)]

.

1 For simplicity, Eq. 6 is displayed here in a form that ignores inter-

action between atoms in neighboring supercells. In our calculations, 

such interactions were properly accounted for.
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necting the equilibrium positions of atoms j and j′. For each 

of the 20 × 20 wave vectors q
k
, Eq. 5 is solved by finding the 

eigenvalues �2

k
 of the matrix D

(

q
k

)

 and, for each eigenvalue, 

the corresponding eigenvector �
k
 . The result of this calcula-

tion is shown as the phonon dispersion relations �2

k

(

q
k

)

 in 

Fig. 3.

Once the 3N normal modes were known, we calculated 

the complex amplitude Ak with which each of them was 

excited/populated by the initial conditions of the static, dis-

torted starting configuration. To this end, we projected the 

set of initial displacements Uj(t)
|
|
|t=0

 on the displacement pat-

terns associated with each of the modes, according to

where �∗
kj

 is the complex conjugate of �kj . The total energy 

contributed by mode k is thus given by

Note that the specific choice of initial conditions, dis-

cussed so far, made the system start exclusively with poten-

tial energy,

(7)Ak =
∑

j

(
m∕N�

)1∕2
exp

[
−i
(

qk ⋅ r0
j

)]
�∗

kj
⋅ Uj(t)

|
|
|t=0

.

(8)E
k
=

1

2
�

2

k
A

k
A
∗

k
.

(9)V
k(t)

|
|t=0

= E
k

Fig. 3  Phonon dispersion relations. Relations between the vibrational 

(angular) frequency and the inverse wavelength—along three high-

symmetry directions parallel to the surface of a harmonium slab. The 

slab consists of 30 layers of 20 by 20 Hr atoms. A top view of the first 

Brillouin zone is indicated, together with the Γ-point in the center 

and the M- and X-points on the zone boundary

Fig. 4  Completely analogous to 

Fig. 1, but this time for the case 

where an initial lateral displace-

ment along [100] was imposed 

on the central 3 × 3 atoms in the 

top surface
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As all initial velocities were zero (to within  10−12), so was 

the initial kinetic energy in each of the modes:

Finally, we have used Eq. 4 with the set of complex ampli-

tudes Ak to compute the displacements of all N atoms in the 

supercell at each point in time, t > 0, after the slip event. 

The result was compared in Fig. 1 and in Fig. 4 with the 

direct numerical integration of the equations of motion. As 

explained in Sect. 3.1, the modest differences between the 

calculation results derive from the small degree of anharmo-

nicity inherent in the integration results. The phonon-based 

analytical calculation should be considered as truly harmonic.

In cases where the initial conditions were not static, i.e., 

for which the initial velocities were non-zero (second case 

in next section), the projection operation of Eq. 7 was com-

plemented with an equivalent velocity-based contribution. 

Of course, in such cases, the kinetic energies of the modes 

(Eq. 10) were non-zero.

(10)K
k(t)

|
|t=0

= 0.

Appendix 4

Dependence on Initial Conditions

As explained before, the examples shown in Figs. 1 and 2 

were computed for two specific sets of starting conditions. In 

the first, an external, lateral force was exerted on the central 

atom in the top free surface. In the second case, an external, 

lateral force was shared by a group of 3 × 3 atoms in the 

top surface. In both cases, an equally large, but oppositely 

oriented force was evenly distributed over the entire bot-

tom surface of the supercell. In both cases the system was 

allowed to relax completely under the influence of these 

forces, which resulted in static starting configurations, char-

acteristic of the situation just prior to or at the very begin-

ning of a single slip event in a stick–slip sliding sequence. 

The results for the 3 × 3 atom case are shown in Figs. 4 and 

5. Even though the damping that emerged for the single-

atom and 3 × 3 atom cases was qualitatively the same, one 

might wonder to what extent these results depend critically 

on the initial conditions. This is why we explored two alter-

native sets of starting conditions.

Fig. 5  Completely analogous 

to Fig. 2, for a kinetic energy 

threshold of  10−10, but this time 

for the case where an initial 

lateral displacement along [100] 

was imposed on the central 3 × 3 

atoms in the top surface
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In the first alternative configuration, we simply displaced 

the central atom in the top surface laterally, along the [100] 

azimuth by 4% of a lattice spacing with respect to its equi-

librium position. None of the other atoms were given the 

freedom (or time) to relax their positions in response to this 

local distortion.

In the second alternative situation, we kept all atoms pre-

cisely in their equilibrium positions, but provided the central 

atom in the top surface with an initial velocity.

While the original starting configurations can be viewed 

as characteristic for the start of a slip event in case the slid-

ing velocity is so low that the system can relax completely 

between subsequent slip events, the first alternative configu-

ration captures some of the non-equilibrium character that 

should be expected at higher sliding velocities. The second 

alternative configuration can be viewed as more appropri-

ate for situations in which a sudden transfer of momentum 

occurs, as could be the case when an atom, molecule or ion 

hits a surface or when kinetic energy is released in a chemi-

cal reaction at a surface.

Figure 6 compares the time dependence of the displace-

ment along the [100] direction of the central atom in the top 

surface for the two alternative starting configurations with 

the original one (the one with the initial force exerted only 

on a single surface atom). These results were obtained with 

the numerical integration method. What is evident from the 

comparison is that the damping behavior exhibited in these 

three strongly different cases is very similar. Even though 

the difference in the degree of localization of the initial 

distortion seems very large between the relaxed (original) 

and non-relaxed (first alternative) starting configurations, 

significant amplitudes are already required for the normal 

modes with the shortest wavelengths (at the X- and M-points 

in Fig. 1) to properly describe the relaxed case. As a result, 

the variation in the contributing normal mode frequencies 

is very similar for the relaxed and non-relaxed cases. This 

makes the average frequency of the excited modes, which 

dictates the effective frequency with which the central atom 

moves, and the dephasing rate, which determines the damp-

ing rate of the central atom’s motion, for the two cases also 

very similar. The qualitative difference between these two 

results and the second alternative, with an initial velocity for 

the central atom in the top surface, is a time shift by a quar-

ter of the period of the central atom’s damped oscillation. 

The frequency and damping rate are very similar to those 

for the first two cases.

This comparison between three extreme cases for the ini-

tial conditions, (i) locally distorted, fully relaxed and static, 

(ii) locally distorted, completely un-relaxed and static, and 

(iii) completely undistorted and locally dynamic, demon-

strates that the emerging oscillation frequency and damping 

rate are rather robust with respect to these characteristics. 

Fig. 6  Time  dependence of the displacement along the [100] direc-

tion of the central atom in the top surface for three different sets of 

initial conditions. (Red) Relaxed starting configuration with forced 

initial displacement of the central atom along [100] and with zero 

initial velocities. (Black) Un-relaxed starting configuration, with a 

forced initial displacement along [100] of the central atom only and 

with zero initial velocities. (Blue) Undistorted initial configuration 

with initial velocity of the central atom along [100]

Fig. 7  (Left) Phonon dis-

persion curves for the har-

monic, 30-layer Hr slab 

(20 × 20 × 15 unit cells) along 

the Γ–X symmetry axis of 

the surface Brillouin zone. 

(Right) Time dependence of the 

displacement along the [100] 

direction of the central atom in 

the top surface when only a sin-

gle vibrational mode, indicated 

by the blue dot in the left panel, 

is excited. The result is trivial, 

a simple, completely undamped 

oscillation in time
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The only feature of the starting conditions that has a direct 

influence is the shortest length scale of the initial excita-

tion pattern, irrespective of whether this pattern is defined 

by displacements or velocities. For the three cases that we 

compared in Fig. 6, this length scale is equal to that of a 

single atomic spacing. After all, we dictated either the dis-

placement or the velocity of a single atom. It is only when 

we change this, as we illustrate in Fig. 4, that we change the 

emerging oscillation period and damping rate. By increas-

ing the region of influence from a single surface atom to a 

3 × 3—atom area, we increased the minimum length scale 

in the excitation pattern by a factor 3, as is illustrated con-

vincingly by panel (c) of Fig. 4, which shows significant 

amplitudes only for normal modes with wavelengths of 3 

unit cell sizes and longer (wave numbers of 1/3 and less of 

the Brillouin zone size). When we compare panels (b) of 

Figs. 1 and 4, we recognize that this large change in excita-

tion pattern has reduced the emerging oscillation and damp-

ing rates by approximately a factor 2, while Fig. 5 shows 

that the ‘wave front’ moves out at the same speed as in the 

single-atom case (cf. Fig. 2).

Finally, we illustrate that the damping that we report in 

Fig. 1 and in Figs. 4 and 5 is not a hidden artifact of our 

calculations. We use our analytical phonon-based calcula-

tion for this purpose. The left panel of Fig. 7 repeats the 

Γ–X part of the phonon dispersion curves that were shown 

already in Fig. 3. As before, we use Eq. 4 to compute the 

time-dependent displacement along the [100] direction of 

the central atom in the top surface. In this case, we restrict 

the amplitudes of the excited normal modes to just a single 

one. In other words, only for a single mode k, the Ak-value 

is made non-zero. In the phonon dispersion plot of Fig. 7 

(left panel), we picked a ‘random’ mode, which is indicated 

by the blue dot. As Eq. 4 prescribes, the resulting motion is 

a single standing wave for the entire lattice, in which each 

atom performs a straightforward sinusoidal oscillation in 

time without any damping. The right panel of Fig. 7 shows 

that this is indeed the case. It is the destructive interference 

between simultaneously active modes with different frequen-

cies that is responsible for the emergent damping, reported 

in this article and illustrated in Figs. 1, 4 and 5.

Appendix 5

Description of the Supplementary Movie

The movie of the damped motion, obtained as described 

in Sects. 2 and 3, by the numerical integration of the equa-

tions of motion of the bcc slab of harmonically interacting 

atoms. The periodically repeated 20 × 20 × 30-atom supercell 

is viewed along one of the <110>-directions into the (001) 

surface, with the central surface atom colored in red.

The red atom has been displaced over a fixed distance 

along the x-direction and all atoms in the system have 

relaxed their positions in response, in order to minimize the 

total energy. The relaxed configuration serves as the starting 

point of the movie.

After the central atom is released from its displaced 

starting position, the movie demonstrates that the red atom 

effectively comes to rest within a small number of vibra-

tional periods, even though absolutely no explicit damping 

is present in the calculation. For the sake of better visibility, 

all displacements in this movie have been exaggerated by a 

factor 20 with respect to their actual values.
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