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The likelihood that an undercooled liquid vitrifies or crystallizes depends on the cooling rate R.

The critical cooling rate Rc, below which the liquid crystallizes upon cooling, characterizes the

glass-forming ability (GFA) of the system. While pure metals are typically poor glass formers with

Rc > 1012 K/s, specific multi-component alloys can form bulk metallic glasses (BMGs) even at

cooling rates below R ∼ 1 K/s. Conventional wisdom asserts that metal alloys with three or more

components are better glass formers (with smaller Rc) than binary alloys. However, there is currently

no theoretical framework that provides quantitative predictions for Rc for multi-component alloys.

In this manuscript, we perform simulations of ternary hard-sphere systems, which have been shown

to be accurate models for the glass-forming ability of BMGs, to understand the roles of geometric

frustration and demixing in determining Rc. Specifically, we compress ternary hard sphere mixtures

into jammed packings and measure the critical compression rate, below which the system crystallizes,

as a function of the diameter ratios σB/σA and σC/σA and number fractions xA, xB, and xC. We find

two distinct regimes for the GFA in parameter space for ternary hard spheres. When the diameter

ratios are close to 1, such that the largest (A) and smallest (C) species are well-mixed, the GFA of

ternary systems is no better than that of the optimal binary glass former. However, when σC/σA . 0.8

is below the demixing threshold for binary systems, adding a third component B with σC < σB < σA

increases the GFA of the system by preventing demixing of A and C. Analysis of the available data

from experimental studies indicates that most ternary BMGs are below the binary demixing threshold

with σC/σA < 0.8. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927560]

I. INTRODUCTION

When atomic and molecular liquids are cooled suffi-

ciently rapidly (i.e., above the critical cooling rate Rc), they

bypass crystallization and become trapped in disordered glassy

configurations.1 Avoiding crystallization in pure metals is

very challenging and has only been achieved in experiments

recently.2 On the other hand, multi-component liquid alloys

can form bulk metallic glasses (BMGs) that possess centi-

meter or greater casting thicknesses and critical cooling rates

Rc < 1 K/s.3–5 BMGs have shown great promise as structural

materials because they are amorphous with few defects and

possess higher processability than crystalline metals.6,7

The conventional wisdom in the BMG research commu-

nity is that BMGs should contain three or more atomic species8

with atomic size differences above 12% (i.e., the ratio of the

diameters of the smallest to the largest species should be

.0.89).9 Intuitively, more atomic components with different

sizes introduce geometric frustration or “confusion,” which

delays crystallization.4,10,11 Also, it has been suggested that

a mixture of multiple atomic species leads to dense packing

in the liquid state and thus enhanced stability of the glass.11

The minimum critical cooling rate observed for binary BMGs

is Rc ∼ 102 K/s, while it decreases to 10−1 and 10−2 K/s

for ternary and quaternary systems, respectively. Alloys with

similarly sized atomic constituents can only be casted into

glassy thin films (see Table I in Appendix A). Even with

these empirical rules, there is an enormous parameter space of

potential BMGs and we lack a complete theoretical framework

that would enable the prediction of Rc for each alloy in the

design space.

A number of recent studies of hard-sphere mixtures have

emphasized that dense atomic packing plays an important role

in determining the structural properties and glassy dynamics of

metallic alloys.12–17 For example, the efficient cluster packing

model has been successful at predicting spatial correlations in

bulk metallic glasses.13,14,17 In our prior work,18 we directly

measured the glass-forming ability (GFA) of binary hard-

sphere systems to understand the competition between crystal-

lization and glass formation. We found that binary metal-metal
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FIG. 1. (top) Comparison of the volumes of tetrahedral

cells formed by the centers of face-centered cubic packed

atoms with (left) two versus (right) three different sizes

(i.e., either σC/σA= 0.8 with xB = 0 or σB/σA= 0.9,

σC/σA= 0.8, and xB > 0). The tetrahedral volume for

four same-sized atoms is 0.118 σ3
A

(thin black line),

while it is 0.084 σ3
A

for two large and two small atoms

(thick blue solid line) and 0.092 σ3
A

for one small, one

intermediate, and two large sized atoms (red dashed line).

Thus, the distortion of the tetrahedral cell is smaller for

the ternary system. (bottom) When atoms of an interme-

diate size (σB/σA= 0.75) are added to a binary system

(with diameter ratio σC/σA= 0.5), it becomes more

uniformly mixed and less ordered, i.e., with global bond

orientational order parameter Q6= 0.02 (right) com-

pared to 0.15 (left).

(i.e., transition metal-transition metal) BMGs, such as Cu–Zr,

Cu–Hf, and Ca–Al, possess atomic size ratios α = σB/σA

and small particle compositions xB that occur in the region of

parameter space with the smallestRc for binary hard spheres.18

Can hard sphere models accurately capture the depen-

dence of the GFA on the atomic size ratios and compositions

for multi-component alloys? In this manuscript, we directly

measure the glass-forming ability of ternary hard-sphere mix-

tures. We find two key results: (1) when the sizes of the three

components are comparable, ternary systems behave similar

to binary systems, and the GFA cannot be larger than that of

a binary system consisting of the largest and smallest compo-

nents. In this case, the packing efficiency of the ternary system

is close to that of the binary systems (see Fig. 1 (top)). (2)

When the diameter ratio of the smallest to the largest compo-

nent is beyond the demixing limit (α . 0.818), adding a third

component with an intermediate size can increase the GFA

by preventing demixing. In this scenario, the packing fraction

of the ternary system is significantly higher than the demixed

binary system (see Fig. 1 (bottom)). This demixing mechanism

has also been found in studies of segregation of granular media

and other particulate solids.19

II. METHODS

We performed event-driven molecular dynamics simu-

lations of N = 500 ternary hard spheres with diameters σA

≥ σB ≥ σC, number fractions xA = NA/N , xB = NB/N , and

xC = NC/N , and the same mass m. We compressed systems

initially prepared in liquid states at packing fraction φ = 0.25

so that they exponentially approach static jammed packings

at φ = φJ as a function of time. In particular, we first run

the simulations at constant volume for a time interval τ and

then compress the system instantaneously until the closest pair

of spheres comes into contact.15,18 This compression proto-

col is repeated until the reduced pressure (or compressibility

factor) increases to 103, which corresponds to (φJ − φ)/φJ

< 10−3. We vary the compression rate R ≡ 1/τ over 5 orders

of magnitude.18 Note that R is given in units of



kBT/mσ2
A

and R = 1 corresponds to a cooling rate R ≈ 1012 K/s for

metal alloys.20 The crystal structures that compete with glass

formation possess face-centered cubic (FCC)-like order, and

thus, we characterize the positional order of the packings using

the global bond orientational order parameter Q6
21 averaged

over 96 independent compression runs. The critical compres-

sion rate Rc is determined by the intersection of the mean and

median Q6 as a function of R (see Appendix B). To explore

the glass-forming ability diagram for ternary systems, we stud-

ied more than 20 compositions and 10 pairs of atomic size

ratios σB/σA and σC/σA. Additional details of the simulation

methods can be found in Ref. 18.

III. RESULTS

In our previous studies of binary hard-sphere mixtures

with diameter ratio α = σB/σA and small particle number

fraction xB, we found that the critical compression rate Rc

decreases exponentially, Rc ∼ exp[C(xB)(1 − α)3], where C

is a composition-dependent constant, for α & 0.8 above the

demixing limit (see Fig. 2). In contrast, for α . 0.8, the large

and small particles in binary systems can demix, which then

induces crystallization. Thus, the glass-forming ability for bi-

nary hard-sphere systems first increases with decreasing α, but

then begins to decrease for α . 0.8.18

We first focus on ternary hard-sphere systems with weak

size disparities. In Fig. 3 (top), we plot the critical compres-

sion rate Rc as a function of the number fractions of the

three components xA, xB, and xC at fixed diameter ratios

σB/σA = 0.95 and σC/σA = 0.9. We find that the best glass-

forming regime (i.e., the region with the smallest Rc) occurs on

the binary composition line AC near xC = 1 − xA ≈ 0.6 and

xB = 0. Adding the third component B with an intermediate

size σC < σB < σA causes a decrease in the glass-forming

ability (or increase in Rc).

Recent studies have shown that phase-separated Barlow

packings are the densest structures for binary hard spheres

with diameter ratio α & 0.66.22,23 However, we find that these

packings are not kinetically accessible during compression

for α & 0.8.18 Instead, we find that the competing crystal for

bidisperse hard-sphere systems in this diameter ratio regime is
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FIG. 2. In binary hard-sphere mixtures with diameter ratio α > αc(xB) and

fixed number fraction xB of small particles, log10Rc drops linearly with

(1−α)3 (dotted line). For α < αc, the large and small particles demix and Rc

begins to increase with decreasing α. The composition-dependent threshold is

αc ≈ 0.8 for xB = 0.2. The inset shows snapshots of configurations at R ∼ Rc

for xB = 0.2 and α = 0.9, 0.7, and 0.5 from left to right, which illustrates

increasing demixing as α decreases.

a deformed FCC crystal.18 As shown in Fig. 1 (top), adding a

third component with an intermediate size to a binary system

in this diameter ratio regime reduces the FCC lattice distor-

tion as well as the glass-forming ability. These results are

consistent with experimental observations for bulk metallic

glasses, which are summarized in Table I in Appendix A. There

are no observed ternary bulk metallic glasses with weak size

polydispersity, i.e., the diameter ratio of the smallest to the

largest component satisfies α & 0.8.

We now consider ternary hard-sphere systems with a diam-

eter ratio disparity that is beyond the demixing threshold, i.e.,

σC/σA . 0.8. In Fig. 3 (middle), we plot the critical compres-

sion rate Rc as a function of the compositions xA, xB, and xC
for ternary systems with diameter ratios σB/σA = 0.95 and

σC/σA = 0.5. For this system, the smallest value of Rc does

not occur at xB = 0. Instead, for this ternary system, Rc(xB)

possesses a minimum near xB ≈ 0.4 (see Fig. 3 (bottom)).

We can also measure the glass-forming ability at fixed

composition and vary the diameters of one of the particles. In

Fig. 4, we fix the compositions xA = xB = xC = 1/3 and diam-

eters σA and σC of two components and measure Rc as a func-

tion of the diameter ratio σB/σA. Note that, when σB = σA

(σC), the ternary systems reduce to binary systems with xC
= 1/3 (2/3). In experimentally observed ternary BMGs, when

the diameters of two of the three components are similar,

for instance, CuNi and AlTi, the ternary glass-forming ability

diagram is symmetric and equivalent to that of the corre-

sponding binary system.24 We first focus on ternary systems

with σC/σA = 0.9, which does not lead to demixing. When

σC/σA < σB/σA < 1, Rc has a maximum at σB/σA < 1 and

the ternary systems are worse glass formers than binary sys-

tems with σB = σC. These ternary systems show enhanced

glass-forming ability above that for binary systems only when

σB/σA . 0.9 (see Fig. 4).

In Fig. 4, we also consider fixed diameter ratio σC/σA

= 0.5 for which the two components tend to demix. In this

case, Rc does not possess a maximum at σB/σA < 1, and thus,

these ternary systems can possess enhanced glass-forming

ability compared to corresponding binary systems. The intro-

c

FIG. 3. (top) Critical compression rate Rc as a function of the composi-

tions xA, xB, and xC in ternary hard-sphere systems with diameter ratios

σB/σA= 0.95 and σC/σA= 0.9. The minimum Rc occurs on the edge

AC , i.e., binary systems with xB = 0. Moving perpendicular to AC on the

diagram causes increases in Rc. (middle) Same as the top plot, but with

diameter ratios σB/σA= 0.95 and σC/σA= 0.5. The minimum Rc no

longer occurs for binary systems on the edge AC . Note that the contour plots

of log10Rc are interpolated from ∼20 simulation runs (triangles) and given on

a color scale that decreases from dark to light. (bottom) Rc as a function of

xB at fixed xC = 0.4 (dashed line in top and middle panels) for the diameter

ratios studied in the top (squares) and middle (circles) panels.
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FIG. 4. The critical compression rate Rc as a function of the diameter

ratio σB/σA at fixed composition xA= xB = xC = 1/3 and σC/σA= 0.9

(squares) or σC/σA= 0.5 (circles). The solid line gives a polynomial fit

to the data for σC/σA= 0.9 to show the qualitative trend. Ternary systems

reduce to binary systems when σB =σA or σC (solid symbols). In the inset,

we show configurations obtained at a slow compression rate R = 10−3 for

σB/σA= 0.5 (left) and 0.75 (right). Large, intermediate, and small particles

are shaded from dark to light.

duction of the third component with an intermediate size σB

prevents demixing. As shown in the insets of Fig. 4, binary

systems with σB/σA = 0.5 demix and crystallize (left), while

ternary systems with σB/σA = 0.75 remain well-mixed and

amorphous (right). Although the large particles A exclude the

small ones C, A particles mix with B particles and B particles

mix with C particles, which leads to effective mixing of A and

C particles.

Because packing efficiency and vibrational entropy deter-

mine the stability of crystals in hard-sphere systems,25,26 one

can correlate the packing fraction at jamming φJ with the crit-

ical compression rate Rc as demonstrated in binary systems.18

We study three relevant packing fractions: φRCP
J

obtained in

the limit R→ ∞,27–29 φa
J

for amorphous packings obtained at

R ∼ Rc, and φx
J

for partially crystalline packings obtained at

R ∼ Rc.

We do not correlate the critical cooling rate with the

packing fraction of the densest crystalline packing for a given

set of particle number fractions and diameter ratios.22,23,30,31

We have shown in previous work18 and confirmed here that

the crystalline configurations that compete with glass forma-

tion for compression rates R ∼ Rc are not the densest ones.

For α & 0.8, the crystalline configurations that compete with

glass formation are polycrystalline FCC solid solutions, not

the denser phase-separated Barlow-packed crystals of small

and large particles. For all α . 0.8, the crystalline configu-

rations that compete with glass formation are partially de-

mixed Barlow-packed crystals, not compound crystal struc-

tures. We find little correlation between the packing fraction of

the densest crystalline structures and the critical compression

rate of the system.

As shown in Fig. 5 for ternary systems with diameter ratio

pairs σB/σA = 0.95 and σC/σA = 0.9 and σB/σA = 0.9 and

σC/σA = 0.88 that do not demix, the relations between Rc and

packing fraction φJ at jamming follow the trends for binary

systems, i.e., as φa
J

and φx
J

approach each other, Rc → 0. In

addition, the packing fraction in these ternary systems is not

larger than in binary systems, contrary to the intuition that

FIG. 5. (a) For each binary and ternary system, we plot the corresponding

critical compression rate Rc and three definitions of the packing fraction at

jamming: φRCP
J

obtained in the R→∞ limit, φa

J
for amorphous packings

obtained at R ∼ Rc, and φx

J
for partially crystalline packings obtained at

R ∼ Rc with φRCP
J

< φa

J
< φx

J
. The solid lines give polynomial fits to the data

for the packing fraction at jamming for α ≥ 0.8. (b) Rc plotted versus the

normalized difference ∆φJ/⟨φ
a

J
⟩, where ∆φJ =φ

x

J
−φa

J
. The master curve

(solid line) obeys log10Rc ∼ (∆φJ/⟨φ
a

J
⟩)−2.18 In (a) and (b), we considered

binary systems with diameter ratios α ≥ 0.8 (crosses) and ternary systems

with diameter ratio pairs σB/σA= 0.95 and σC/σA= 0.9, σB/σA= 0.9

and σC/σA= 0.88, and σB/σA= 0.95 and σC/σA= 0.5 (squares, cir-

cles, and triangles, respectively). In the absence of demixing, Rc versus the

jammed packing fraction for ternary systems is quantitatively similar to that

for binary systems. However, ternary systems that demix deviate from the

master curve.

ternary systems are always denser than binary systems and thus

possess higher glass-forming abilities.11 These results show

that ternary systems with weak diameter ratio disparities can

be described effectively as binary systems since the additional

intermediate-sized particles only decrease the particle size

gradient in the original binary system without changing the

mechanism that drives crystallization.18,32 The deviations from

the master curve (solid lines) in Fig. 5 indicate demixing in

the ternary system with diameter ratio pairs σB/σA = 0.95

and σC/σA = 0.5. However, compared with the binary system

with diameter ratio α = 0.5,18 the deviation of the ternary sys-

tem from the master curve is smaller, which indicates weaker

demixing than the binary system. The packing fractions for

all of the systems in Fig. 5 were also studied as a function of

system size. The packing fractions φRCP
J

, φa
J
, and φx

J
obtained

in the large-system limit differ from those presented in Fig. 5

by less than 1%, which is consistent with our prior results.33

In Fig. 6, we illustrate the diameter ratio variation for

15 180 combinations of three elements from a set of 46 poten-

tial BMG-forming elements. The atomic sizes of the elements

are given by their metallic radii,12,13 which are shown in the

inset of Fig. 6. We define the component types so that they

satisfy σC ≤ σB ≤ σA, and thus, the data occur in left corner

of the plot.

In previous studies, we predicted that the optimal bi-

nary hard-sphere glass formers occur in the diameter ratio

range 0.73 < α < 0.82, where α is sufficiently small to prevent

ordering, but not too small to cause demixing. We can estimate

the optimal glass-forming regime in the σB/σA and σC/σA

plane for ternary systems using the following arguments. First,
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two of the boundaries (ab and cd) can be obtained directly

from the results for binary systems. Because adding a third

intermediate-sized component can prevent demixing of the

original two components, we expect that the lower bound for

the diameter ratio in ternary BMG-forming systems to be much

smaller than 0.73. We propose that 0.732 is the lower bound

for the diameter ratio for ternary systems. In this case, σC/σA

= 0.732, σB/σA = 0.73, and σC/σB = 0.73 (point e in Fig. 6),

and thus, all binary combinations are above the lower bound

of the good GFA regime.

We predict that good BMG-forming alloys will occur

within the polygon defined by lines connecting the points (a)-

(e) in the σB/σA and σC/σA parameter space. 33 ternary alloy

systems have been observed experimentally in amorphous

states (filled circles),5,13,34 all of which fall in the good glass-

forming regime predicted by hard-sphere systems. For the

experimentally observed ternary BMGs, the diameter ratio

for the smallest versus the largest particle σC/σA satisfies

α < 0.8, which is below the demixing limit for binary systems.

Therefore, the experimentally observed ternary BMGs have

better GFA than the best binary glass-forming alloys. In addi-

tion, the experimentally observed BMGs tend to be positioned

away from the boundaries ab and cd. As ternary systems

approach ab (cd), σB/σA→ 1 (σC/σA→ 1), which causes

them to behave as binary systems and reduces their glass-

forming ability. The experimentally observed ternary BMGs

cluster roughly into three groups: (i) (Zr,Hf,Sn,Mg)–(Al,Ti,Nb)

–(Cu,Ni,Co), (ii) (Y,Ln)–Al–(Cu,Ni,Co), and (iii) (Au,Pd,Pt)–

(Cu,Ni)–(Si,P) (see Table I in Appendix A).

IV. CONCLUSION

We performed event-driven molecular dynamics simula-

tions of ternary hard-sphere systems over a wide range of

FIG. 6. Scatter plot of the diameter ratios σB/σA versus σC/σA with

σC ≤σB ≤σA for all 15 180 combinations of three elements chosen from

46 possible BMG-forming elements (dots). 33 of the combinations (filled

circles) have been shown experimentally to form BMGs and occur in

roughly three main clusters: (i) (Zr,Hf,Sn,Mg)–(Al,Ti,Nb)–(Cu,Ni,Co), (ii)

(Y,Ln)–Al–(Cu,Ni,Co), and (iii) (Au,Pd,Pt)–(Cu,Ni)–(Si,P). The predicted

BMG-forming alloys are located within the polygon bounded by the solid

lines. The inset gives the atomic radii in pm of the 46 potential BMG-forming

elements ordered from smallest to largest.5,12,13 The symbols of the elements

alternate from top to bottom on the horizontal axis and the lanthanide ele-

ments are shown as filled circles.

compositions and diameter ratios to identify the optimal glass-

forming parameter regime. We identify two mechanisms for

optimizing the glass-forming ability in ternary systems. First,

if the sizes of the three components are similar, i.e., less than

10% deviation in the diameters, the ternary system behaves

effectively as a binary system containing only the largest and

smallest particles. Second, if the diameter ratio of the small-

est to the largest particle is below the demixing threshold

σC/σA . 0.8, adding the third component B with σC/σA

< σB/σA < 1 will dramatically enhance the glass-forming

ability above that for binary systems. We show that all exper-

imentally observed ternary BMGs to date possess atomic spe-

cies for which the diameter ratio of the smallest to the largest

satisfies σC/σA < 0.8. Thus, an efficient strategy to design

BMGs with good GFA is to maintain large atomic size differ-

ences and prevent demixing by introducing three or more

atomic components.

We recognize that the inter-atomic potentials describing

BMGs are far more complicated than the pairwise additive

hard-sphere potential that we employed. For example, the

apparent distance between the repulsive cores of two elements

can be shorter than the mean core size of the two elements.35

Also, in a more exact treatment, Friedel oscillations origi-

nating from perturbations to the electron density should be

included since they are known to change the stability of various

crystalline lattices.36 Despite these caveats and others, we

show that the hard-sphere model is able to semi-quantitatively

predict the regime of optimal glass-forming ability in experi-

mentally observed ternary BMGs. In the near future, we will

consider how non-additivity of the particle diameters, attrac-

tive interactions, and barriers in the pairwise potential and

multi-body interactions affects crystal and glass formation and

modifies the hard-sphere predictions.37

ACKNOWLEDGMENTS

The authors acknowledge primary financial support from

the NSF MRSEC No. DMR-1119826 (K.Z. and B.D.) and

partial support from NSF Grant Nos. DMR-1006537 (C.O.)

and CBET-0968013 (M.S.). We also acknowledge support

from the Kavli Institute for Theoretical Physics (through NSF

Grant No. PHY-1125915), where some of this work was per-

formed. This work also benefited from the facilities and staff

of the Yale University Faculty of Arts and Sciences High

Performance Computing Center and the NSF (Grant No. CNS-

0821132) that in part funded acquisition of the computational

facilities.

APPENDIX A: GLASS-FORMING ABILITY
OF EXPERIMENTALLY OBSERVED BMGs

In this appendix, we provide a table of the critical cooling

ratesRc in units of K/s for experimentally observed binary and

ternary BMGs; see Table I. In the first column, we list each

class of binary and ternary BMGs according to the atom types

that are present. Atom types with similar sizes and properties

are grouped together in parentheses. In the second column, we

provide examples of specific alloys within each BMG class.

The third column gives diameter ratios: σB/σA with σB ≤ σA
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for binary systems and σB/σA and σC/σA with σC ≤ σB

≤ σA for ternary systems.5,12,13,34

APPENDIX B: MEASUREMENT OF CRITICAL
COMPRESSION RATE Rc IN SIMULATIONS

In this appendix, we describe the measurement of the

critical compression rate Rc in the molecular dynamics simu-

lations of hard-spheres. We performed 96 independent runs to

generate jammed configurations at each compression rate R.

We find that the distribution P(Q6) of the global bond orien-

tational order parameter becomes bimodal as R→ Rc with

peaks that correspond to amorphous and partially crystalline

configurations. In Fig. 7, we show that both the mean and

median Q6 possess a sigmoidal shape on a logarithmic scale in

R. We define Rc as the critical compression rate at which the

mean and median Q6 intersect. A configuration is determined

to be crystalline (amorphous) if Q6 > Qc (Q6 < Qc), where Qc

is the value of Q6 at which the mean and median Q6 intersect.

Since the distribution P(Q6) is bimodal at R ≈ Rc, one can also

fit P(Q6) by the sum of two Gaussian distributions and identify

Rc as the rate at which the two Gaussian contributions have

equal area. This method can be more time efficient since it

avoids measurements at R ≪ Rc.

TABLE I. Glass-forming ability (characterized by the critical cooling rate Rc in units of K/s) and atomic diameter

ratioa for experimentally observed binary and ternary BMGs.5,13,34 Elements with similar sizes and properties are

grouped together using parentheses (see also Fig. 6). The lanthanide elementsb are indicated by Ln.

Binary system Alloy Rc (K/s) Diameter ratio σB/σA

Fe–B Fe91B9 2.6×107 0.62

(Au,Pd)–Si

Au80Si20 1.0×106 0.71

Pd95Si5 5.0×107 0.74

Pd82Si18 1.8×103

Pd75Si25 1.0×106

Ti–Be Ti63Be37 6.3×106 0.76

Zr–Be Zr65Be35 1.0×107 0.7

Zr–Cu Zr50Cu50 250 0.8

Nb–Ni Nb40Ni60 1400 0.85

Ternary system Alloyc Rc (K/s) Diameter ratios

σC/σA, σB/σA

Au–Si–Ge Au77.8Si8.4Ge13.8 3.0×106 0.71, 0.79

(Au,Pd,Pt)–(Cu,Ni)–(Si,P)

Pd40Ni40P20 0.167 0.73, 0.91

Pd77Cu6Si17 125 0.74, 0.93

Pd79.5Cu4Si16.5 500

Pd77.5Cu6Si16.5 100

(Y,Ca,Ln)–Mg–(Cu,Ni)

Nd15Mg70Ni15 178.2 0.69, 0.88

Nd15Mg65Ni20 30

Nd10Mg75Ni15 46.1

Nd5Mg77Ni18 49 000

Nd5Mg90Ni5 53 000

Nd10Mg80Ni10 1 251.4

Y10Mg65Cu25 50 0.71, 0.89

Gd10Mg65Cu25 1 0.71, 0.89

(Y,Ln)–Al–(Cu,Ni,Co)

La55Al25Ni20 67.5 0.66, 0.76

La55Al25Cu20 72.3 0.68, 0.76

La66Al14Cu20 37.5

(Zr,Hf,Sn,Mg)–(Al,Ti,Nb)–(Cu,Ni,Co)

Zr66Al8Ni26 66.6 0.78, 0.89

(Zn,Al,Ag)–Mg–Ca

Zn20Mg15Ca65 20 0.69, 0.81

aAtomic radii are obtained from Refs. 12 and 13, which determine the atomic sizes using the first peak of the radial distribution

function of amorphous liquid alloys or half of the spacing between atoms in metallic solids.
bLn refers to the series of fifteen metallic elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) with atomic

numbers 57-71. Together with two more chemically similar elements Sc and Y, these seventeen elements are collectively known

as the rare earth elements and are typically the largest sized component in BMGs.
cFor each system, we only list alloys for which the critical cooling rate Rc has been reported. Other alloys such as Ca–Mg–Cu,

Hf–Al–Cu, and Y–Al–Co are also BMG formers, but with unreported values of Rc.
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FIG. 7. The mean and median Q6 as a function of compression rate R for

ternary hard spheres with diameter ratios σC/σA= 0.88 and σB/σA= 0.9

and compositions xA= xB = xC = 1/3. The critical compression rate Rc and

bond orientational order parameter Qc are defined by the intersection of the

mean and median Q6. The solid lines are fits to a logistic function.
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