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ABSTRACT

We propose a new theory for the formation of rR1 ring structures, i.e. for ring structures with both an inner and an outer ring, the
latter having the form of “8”. We propose that these rings are formed by material from the stable and unstable invariant manifolds
associated with the Lyapunov orbits around the equilibrium points of a barred galaxy. We discuss the shape and velocity structure of
the rings thus formed and argue that they agree with the observed properties of rR1 structures.
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1. Introduction

Barred galaxies often show spectacular rings whose different
types have been classified by Buta (1986a) as nuclear rings (not
discussed here) that surround the nucleus and that are much
smaller in size than the bar. At larger radii there are inner rings,
denoted in Buta’s (1986a) classification by an “r”, that surround
the bar and that have the same size and orientation as the bar.
And there are outer rings, denoted by R, that are bigger than
the bar. These “pure” rings are defined to be distinct and closed,
but one can often find unclosed or partial ring patterns of a spi-
ral character, and these are referred to as “pseudorings” and
denoted R′. A particular class of outer rings called R1 or R1

′,
for pseudorings, has two main arms forming an eight-shaped
ring or pseudoring, with its major axis perpendicular to the bar.
NGC 1326 is a well-studied example of an (R1)S B(r)0/a galaxy
(Buta 1995). Its bar is surrounded by an inner ring that is almost
exactly aligned with the bar and has roughly the same diameter.
Its outer ring is clearly R1 and is elongated perpendicular to the
bar (Buta et al. 1998, see Fig. 1).

Schwarz (1981, 1984, 1985) showed that ring-like structures
can arise around the Lindblad resonances due to a bar-like per-
turbation of the galaxy potential. The gas will be forced to re-
arrange its distribution and generate a spiral. Near the outer
Lindblad resonances, the crossing of perturbed trajectories will
develop a ring-like pattern. In these regions, gas clouds will col-
lide and will form spiral shock fronts that will slowly change
as a result of torques exerted by the bar and evolve into a ring
structure that, after star formation, will be populated by stars in
near-resonant periodic orbits.

Danby (1965) argued that orbits in the gravitational potential
of a bar play an important role in the formation of arms. He noted
that orbits departing from the vicinity of the equilibrium points
located at the ends of the bar describe loci with the shape of spi-
ral arms and can be responsible for the transport of stars from
within to outside corotation, and vice versa. Unfortunately, he
did not set his work in a rigorous theoretical context, so that it re-
mained purely phenomenological. He also investigated whether

Fig. 1. Image of the rR1 galaxy
NGC 1326 showing a well-
developed (R1)S B(r)0/a struc-
ture. (Digital Sky Survey c©Anglo
Australian Observatory Board.)

orbits can be responsible for ring-like structures, but in this case,
he did not consider orbits departing from the ends of the bar as
he previously did when accounting for the spiral arms. He con-
cluded that rings would require high-energy orbits, while we will
see in this paper that mainly low-energy orbits can constitute the
rings.

Here we propose a new dynamical model, applicable to the
particular case of the rR1 class of ringed galaxies. We expect that
more detailed modelling will extend this new model to the rest
of the ringed galaxy classes. The model is based on the orbital
motion of stars in the vicinity of equilibrium points in the rotat-
ing bar potential and does not rely on additional star formation.
The tools we use in our model are well known in celestial me-
chanics but have not been used much so far in galactic dynam-
ics. We therefore start, in Sect. 2, by introducing the equations
of motion and the equilibrium points. In Sect. 3 we describe the
dynamics around the Lagrangian point L1 and introduce the in-
variant manifolds. We discuss the linear case in Sect. 3.1 and the
general case in Sect. 3.2. In Sect. 4 we describe the role of the in-
variant manifolds in the transport of stars and their properties in
the framework of ringed barred galaxies. In Sect. 5 we describe
briefly how invariant manifolds are computed numerically and
then apply them to a specific model. Finally, Sect. 6 discusses
the properties of the spiral arms thus produced and summarises
our results.
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Fig. 2. a) Outline of the bar and the position of
the five equilibrium points (marked with a star).
b) The two Lyapunov orbits (thin solid lines)
and the zero velocity curves (dot-dashed lines)
delimiting the forbidden, the interior, and exte-
rior regions. Both are given for the same energy
value.

2. Equations of motion and equilibrium points

Here we model the potential of the galaxy as the superposition
of two components, one axisymmetric and the other barlike. The
latter rotates clockwise at angular velocity Ωp = Ωpez, where

Ωp > 0 is the pattern speed considered here to be constant1. The
equations of motion in the frame rotating with Ωp are

r̈ = −∇Φ − 2(Ωp × ṙ) −Ωp × (Ωp × r), (1)

where the terms −2Ωp × ṙ and −Ωp × (Ωp × r) represent the
Coriolis and the centrifugal forces, respectively, and r is the po-
sition vector.

Following Binney & Tremaine (1987), we take the dot prod-
uct of Eq. (1) with ṙ, and by rearranging the resulting equation,
we obtain

dEJ

dt
= 0,

where

EJ ≡
1

2
| ṙ |2 +Φ − 1

2
| Ωp × r |2 .

Here, EJ is known as the Jacobi integral or Jacobi constant.
Notice that this is the sum of 1

2
ṙ2 + Φ, which is the energy in

a nonrotating frame, and of the quantity

−1

2
| Ωp × r |2= −1

2
Ω2

p (x2 + y2),

which can be thought of as the “potential energy” to which the
centrifugal “force” gives rise. Thus if we define an effective po-
tential

Φeff = Φ −
1

2
Ω2

p (x2 + y2),

Eq. (1) becomes

r̈ = −∇Φeff − 2(Ωp × ṙ), (2)

and the Jacobi constant is

EJ =
1

2
| ṙ |2 + Φeff,

so that it can be considered as the “energy” in the rotating frame.
The surface Φeff = EJ is called the zero velocity surface, and

its cut with the z = 0 plane is the zero velocity curve. All regions

1 Bold letters denote vector notation.

in whichΦeff > EJ are forbidden to a star, so we call them forbid-
den regions. Figure 2b shows an example of zero velocity curves
and the regions delimited by them, namely the exterior, interior,
and forbidden regions, for the potential introduced in Sect. 5.

The effective potential Φeff has five equilibrium points,

named L1 to L5, located in the xy plane, at which
∂Φeff
∂x
=

∂Φeff
∂y
=
∂Φeff
∂z
= 0. Due to their similarity to the correspond-

ing points in the restricted three body problem, they are often
called Lagrangian points. L1 and L2 lie on the x-axis and are
symmetric with respect to the origin, and L3 lies on the origin
of coordinates. Finally, L4 and L5 lie on the y-axis and are also
symmetric with respect to the origin (see Fig. 2a, again for the
potential introduced in Sect. 5).

We can check the stability of the Lagrangian points by con-
sidering the motion in their immediate neighbourhood2. If we
expandΦeff around one of these points and retain only first order
terms, the equations of motion (2) become

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẍ = 2Ωpẏ −Φxxx

ÿ = −2Ωp ẋ −Φyyy
z̈ = −Φzzz

(3)

where we have defined

x ≡ x − xL; y ≡ y − yL; z ≡ z − zL,

Φxx ≡
(

∂2Φeff

∂x2

)

Li

; Φyy ≡
(

∂2Φeff

∂y2

)

Li

; Φzz ≡
(

∂2Φeff

∂z2

)

Li

and xL, yL, and zL are the coordinates of the Lagrangian point Li.
Note that, for any barlike potential whose principal axes lie along

the coordinate axes,
(

∂2Φeff
∂x∂y

)

Li

= 0 by symmetry. Setting x1 = x,

x2 = y, x3 = z, x4 = ẋ, x5 = ẏ, and x6 = ż, Eq. (3) are written as
a system of first-order differential equations,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ1 = f1(x1, . . . , x6) = x4

ẋ2 = f2(x1, . . . , x6) = x5

ẋ3 = f3(x1, . . . , x6) = x6

ẋ4 = f4(x1, . . . , x6) = 2Ωp x5 −Φxxx1

ẋ5 = f5(x1, . . . , x6) = −2Ωp x4 −Φyyx2

ẋ6 = f6(x1, . . . , x6) = −Φzzx3.

(4)

2 We can refer to Pfenniger (1990), where he studied the stability
character of the Lagrangian points in different stellar bars.
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3. Dynamics around L1 and the corresponding

invariant manifolds

In this section, we describe the dynamics around the unstable
equilibrium point L1 (for L2 it is symmetric) and define the
Lyapunov periodic orbits and the invariant manifolds associated
with them. We first discuss the linear case and then the general
non-linear case.

3.1. Linear case

Let us now focus on the dynamics around L1 (L2 is completely
symmetrical). The differential matrix associated to system (4)
around L1 is

D fx(L1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−Φxx 0 0 0 2Ωp 0

0 −Φyy 0 −2Ωp 0 0

0 0 −Φzz 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We obtain the stability character of L1 by studying the eigen-
values of this matrix. It has six eigenvalues: λ, −λ, ωi, −ωi, νi,
and −νi, where λ, ω, and ν are positive real numbers, i.e. L1

is a linearly unstable point. The corresponding eigenvectors (ei-
ther real or complex) have zero x3 and x6 components in the
case of ±λ and ±ωi, and zero x1, x2, x4, and x5 components in
the case of ±νi. Since the purely imaginary eigenvalues denote
oscillation and the real eigenvalues are associated to a saddle be-
haviour, i.e. exponential behaviour with opposite exponents, the
linearised flow around L1 in the rotating frame of coordinates is
characterised by a superposition of an harmonic motion in the
xy plane (equatorial plane), a saddle behaviour in this plane, and
an oscillation in the z-direction.

Because of this unstable character, the equilibrium points L1

and L2 set the limits of the stability region around the stable
point L3, and thus, set an upper limit to the extension of the bar.
This, however, is only an upper limit, and in most cases the bar
is much shorter than that limit (Athanassoula 1992; Patsis et al.
2003).

The central stable point, L3, is surrounded by the classic
x1 family of periodic orbits that is responsible for maintaining
the bar structure, while the stable points L4 and L5 are sur-
rounded by families of periodic banana orbits (Contopoulos &
Papayannopoulos 1980; Athanassoula et al. 1983; Contopoulos
1981; Skokos et al. 2002). All these orbits have been studied well
for many models (Contopoulos 2002, and references therein), so
we will not discuss them any further here.

As already mentioned, the general linear motion around L1

is obtained by the addition of an hyperbolic exponential part to
the in-plane and out-of-plane oscillations mentioned. We note
that this exponential part has both stable and unstable compo-
nents with exponents of opposite sign. Following again Binney
& Tremaine (1987) we write

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x(t) = X1eλt + X2e−λt + X3 cos (ωt + φ),

y(t) = X4eλt + X5e−λt + X6 sin (ωt + φ),

z(t) = X7 cos (νt + ψ).

(5)

Here Xi, i = 1, . . . , 7 and φ, ψ are values representing ampli-
tudes and phases. Substituting these equations into the differen-
tial Eqs. (3), we find that Xi are related by

X4 =
Φxx+λ

2

2Ωpλ
X1 = −

2Ωpλ

Φyy+λ2 X1

X5 = −Φxx+λ
2

2Ωpλ
X2 =

2Ωpλ

Φyy+λ2 X2

X6 =
Φxx−ω2

2Ωpω
X3 =

2Ωpω

Φyy−ω2 X3.

(6)

We define A1 =
Φxx+λ

2

2Ωpλ
and A2 =

Φxx−ω2

2Ωpω
. Note that A1 depends

only on λ, and A2 depends only on ω. Moreover X4 = A1X1,
X5 = −A1X2, and X6 = A2X3, so that Eq. (5) becomes

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x(t) = X1eλt + X2e−λt + X3 cos (ωt + φ),

y(t) = A1X1eλt − A1X2e−λt + A2X3 sin (ωt + φ),
z(t) = X7 cos (νt + ψ).

(7)

In the sequel we will restrict ourselves to the motion in the equa-
torial plane (i.e. z = 0, or X7 = 0). This restriction is not critical
in the dynamics we want to study, since the z component essen-
tially only adds a vertical oscillation to the planar motion. For
a study of the vertical orbital structure around the Lagrangian
points in barred galaxies, see Ollé & Pfenniger (1998).

Using (7), a given state (x, y, ẋ, ẏ) at t = 0 is characterised
by a choice of (X1, X2, X3, φ1), modulus 2π in the phase φ. When
X1 = X2 = 0, the initial condition has the form

(x(0), y(0), ẋ(0), ẏ(0)) =

(X3 cos φ, A2X3 sin φ,−X3ω sin φ, A2X3ω cos φ)

for selected values of X3 and φ. When time evolves, we obtain
from this initial condition the periodic motion,

x0(t) = (x, y, ẋ, ẏ)

= (X3 cos (ωt + φ), A2X3 sin (ωt + φ),

−X3ω sin (ωt + φ), A2X3ω cos (ωt + φ)),

of period τwhich we refer to as a linear Lyapunov periodic orbit.
Consider now any small deviation δ from the periodic orbit

x0(t), x(t) = x0(t) + δ. Inserting this into the equations of mo-
tion (4), and linearising them with respect to δ, we obtain the
variational equations

δ̇ =
∂ f

∂x
δ =

6
∑

i=1

(

∂ fk

∂xi

)

x0

δi (8)

as defined in Contopoulos (2002), where

A(t) = (δik) =

(

∂ fk

∂xi

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂ f1
∂x1
. . .

∂ f1
∂x6

...
. . .

...
∂ f6
∂x1
. . .

∂ f6
∂x6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

is the variational matrix. The variational equations are linear
equations in δi (i = 1, . . . , 6) with periodic coefficients of pe-
riod τ. These equations are used to study the stability character
of a periodic orbit. If we integrate the variational Eq. (8) un-
til time τ with initial conditions δ1k = (1, 0, . . . , 0), . . . , δ6k =

(0, . . . , 0, 1), we obtain the monodromy matrix. The eigenvalues
and eigenvectors of the monodromy matrix give us information
on the stability character of a periodic orbit.
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Returning to Eqs. (7), let us consider a similar initial con-
dition but with X1 = 0 and X2 � 0. According to (7) the ex-
ponential term proportional to X2 vanishes when time tends to
infinity and the trajectory tends to the linear Lyapunov. All these
types of orbits form what is called the stable manifold of the
linear Lyapunov. In the same way, if the initial condition is cho-
sen with X1 � 0, X2 = 0, the exponential term proportional to
X1 tends to zero when time tends to minus infinity, and all such
orbits form what is called the unstable manifold of the linear
Lyapunov. Roughly speaking, orbits in the stable/unstable man-
ifold are asymptotic orbits, which either tend toward the linear
Lyapunov orbit or, alternatively, depart from it.

3.2. General case

All the definitions given in Sect. 3.1 for the linear case are easy
to extend to the general case when the full equations of motion
are considered. From L1 emanates a family of planar periodic
orbits known as Lyapunov orbits (Lyapunov 1949) that can be
parametrised locally by the energy. The full set of Lyapunov or-
bits form a family of periodic orbits, which we denote by Γ.

Let us use Ψ(t, X) to denote the orbit that has the state X =
(x, y, ẋ, ẏ) at t = 0. For a given γ ∈ Γ, i.e. for a given Lyapunov
orbit, we define the stable manifold of γ as

Ws
γ =

{

X ∈ R4/ lim
t→∞
||Ψ(t, X) − γ|| = 0

}

,

where the double bars denote Euclidean distance. Thus, simply
speaking, the stable manifold is the set of orbits that tend to the
Lyapunov orbit as time tends to infinity. In the same way, the
unstable manifold of γ is defined as

Wu
γ =

{

X ∈ R4/ lim
t→−∞

||Ψ(t, X) − γ|| = 0

}

.

Simply speaking again, the unstable manifold is the set of orbits
that tend to the Lyapunov orbit as time tends to minus infinity,
or, equivalently, the set of orbits departing from the Lyapunov.
The orbits of Ws

γ and Wu
γ have the same energy as the Lyapunov

orbit γ, so they belong to the same energetic three-dimensional
manifold where γ is contained. Moreover, Ws

γ and Wu
γ are two-

dimensional tubes that, similar to the former linear example, can
be parametrised by the angle φ and the time t (see Fig. 3 and
Masdemont 2005). We also note that both Ws

γ and Wu
γ have two

branches meeting at the Lyapunov orbit in a way similar to a
saddle point (see Fig. 4).

4. The role of invariant manifolds

Invariant manifolds of Lyapunov orbits play a crucial role in the
transport of material between different parts of the configuration
space. Lyapunov orbits are located near the ends of the bar of the
galaxy, between the two banana-like zero velocity curves that
surround the forbidden regions of motion for the considered en-
ergy and, loosely speaking, can be considered as gates between
the interior and exterior regions they delimit (see Fig. 2b).

Let us consider for instance the stable manifold, Ws
γ, inside

the interior region and integrated backwards in time till it crosses
the plane, S , defined by x = 0. The plot of this intersection in
the yẏ plane is a closed curve Ws

γ,1
(Fig. 5). Each point in the

plane yẏ of S corresponds to a given trajectory, since x = 0
by the definition of S and ẋ can be obtained from the condition
that the energy of the state (x, y, ẋ, ẏ) be the selected one (the
sign of ẋ is determined by the sense of crossing). Here, Ws

γ,1
is a

Fig. 3. Schematic view of an unstable invariant manifold.

Fig. 4. Invariant manifolds. In the centre of the plot, a white solid line
shows the Lyapunov orbit around L1. The two branches of the unstable
invariant manifold are indicated by red or dotted lines, the two branches
of the stable invariant manifold by green or dotted lines, and grey by the
forbidden region surrounded by the zero velocity curves.

closed curve that splits the yẏ plane in S into three different re-
gions: the curve itself, the points outside the curve and the points
inside the curve. By definition, the points on the curve Ws

γ,1
be-

long to Ws
γ and are therefore orbits that tend asymptotically to

the Lyapunov orbit. The points outside Ws
γ,1

are states whose

trajectories remain inside the interior region of the galaxy de-
limited by the zero velocity curves, while the points inside Ws

γ,1

correspond to orbits that transit from the inner region to the outer
one. These last orbits, the transit orbits, are confined inside the
tube Wu

γ ; and, as we argue in the following sections, they are the
orbits that form part of the rings of the galaxy for the considered
energy value. In this way, the manifolds of the Lyapunov orbits
drive the motion of the stars from the inner to the outer regions.
For more details of this mechanism, although in another context,
see Gómez et al. (2004) and references therein. Since these in-
variant manifolds are not limited to the vicinity of the unstable
points, but extend well beyond it, they can be responsible for
global structures, so we argue in this paper that they, together
with the orbits driven by them, could be responsible for the ring
structures in barred galaxies.
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Fig. 5. Transport of material. Top panel: the curve Ws
γ,1

in the yẏ plane.

Bottom panel: schematic view of the dynamics in the region around
the L1 Lagrangian point. Grey shows the region delimited by the zero
velocity curves. The dotted line gives a non-transit orbit, that is confined
to the inner region and whose intersection with the yẏ plane is located
outside the Ws

γ,1
curve; the solid line represents a transit orbit, that in

the yẏ plane is located inside the Ws
γ,1

curve; and the dot-dot-dash line,

represents an asymptotic orbit of the stable invariant manifold. In the
inlay, we show a schematic view of the curve Ws

γ,1
in the yẏ plane with

the location of the three orbits.

5. Application to a ringed barred galaxy model

In this section we explicitly calculate the invariant manifolds in a
barred galaxy model. The reader who has only skimmed the pre-
vious sections should keep in mind that the invariant manifolds
are just ensembles of orbits linked to the L1 and L2 Lyapunov
orbits.

Since invariant manifolds can only be calculated numer-
ically, we first adopt a simple, yet realistic, barred galaxy
model (Pfenniger 1984). Our model bar consists of an axisym-
metric component, modelled by a Miyamoto-Nagai potential
(Miyamoto & Nagai 1975)

Φd = −
GMd

√

x2 + y2 + (A +
√

B2 + z2)2

,

and a Ferrers bar (Ferrers 1877)

ρ =

{

ρc(1 − m2)n m ≤ 1
0 m ≥ 1,

where m2 = x2/a2+ y2/b2+ z2/c2 and ρc =
105
32π

GMb

abc
is the central

density. We take A = 3, B = 1, n = 2, a = 6, b = 1.5, c = 0.6,
GMd = 0.9, and GMb = 0.1. The pattern speed is taken so as
to place corotation at the end of the bar. The length unit is the
kpc, the total mass G(Md + Mb) is set to be equal to 1, and the
time unit is 2 × 106 yr. With these units, the value of the poten-
tial energy at L3, L1(L2), and L4(L5) is −0.31503, −0.19789, and
−0.19456, respectively. As in the previous sections, we limit our-
selves to the z = 0 plane, since the instability we are interested in
is contained in this plane and the z component only adds vertical
oscillations, which are unimportant in this context.

Fig. 6. Unstable invariant manifolds for four different times given in the
lower right corner of each panel. T is the period of the bar rotation.

In this model, we compute the invariant manifolds numeri-
cally using an approach similar to the one of Gómez et al. (1993),
i.e. we use a linear approach to obtain the initial conditions of
the orbits that constitute the invariant manifolds3. As previously
mentioned, the linear motion around L1 and L2 consists of an
hyperbolic exponential part in the in-plane and of an out-of-
plane oscillation. The exponential part has both stable and un-
stable components, which correspond to the stable and unstable
eigenvectors of the monodromy matrix of the Lyapunov orbits
around L1 and L2. Therefore, we obtain the initial conditions for
the stable and unstable invariant manifolds by shifting positions
and velocities of the Lyapunov orbit by a small amount (10−5)
in the direction given by the stable and unstable eigenvectors,
respectively. The global extension of the manifold is then ob-
tained by integrating numerically with a Runge-Kutta-Felhberg
of orders 7−8.

Figure 6 shows the evolution of the length of the unstable
invariant manifolds with time. Here, T is the rotation period of
the bar. Since the invariant manifolds consist of a set of orbits,
their time evolution is that of an orbit, so Fig. 6 shows the or-
bits composing the invariant manifolds integrated up to 3, 4, 5,
and 6 bar rotations, respectively, in order to check their evolu-
tion with time. Note that they leave the vicinity of the Lyapunov
orbits and stay close to the zero velocity curves. When they get
to the x = 0 axis, they bend and head towards the opposite side
of the bar, completing the ring structure. Thus our calculations
show that the apocentre of the orbits is near the x = 0 axis. This
is indeed where we would intuitively place them since the peri-
odic orbits outside corotation are elongated perpendicular to the
bar and since the zero velocity curves also reach their maximum
distance from the centre at x = 0. Also note that, although the
Lyapunov orbit is unstable, the orbits in the manifold stay in its
close vicinity for at least three bar rotations. By four bar rota-
tion periods, arm stubs are formed, while at five the arms have
a winding of about 3π/4. By six bar rotation periods, the mani-
fold has reached the opposite end of the bar. In other words, the
growth is by no means linear, since growth is slow in the begin-
ning and faster as time advances. Indeed, it takes more than three
orbital periods to leave the vicinity of the Lyapunov orbit, while

3 Higher order approximations could be obtained using similar tech-
niques to Masdemont (2005), but with much more difficulty and regu-
larity problems.
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Fig. 7. Invariant manifolds and perturbations in the plane barred po-
tential described in Sect. 5 and for EJ = −0.1977. In all four panels,
the bar is outlined by a black dot-dashed line, while the positions of
the five Lagrangian points are marked with a star, the black solid lines
are the two planar unstable Lyapunov orbits, and the dark grey lines
correspond to the zero velocity curves of this particular value of EJ .
a) Invariant unstable manifolds coming from Lyapunov orbits around
the Lagrangian points L1 and L2. b) Invariant stable manifolds coming
from the same Lyapunov orbits. c) Orbits starting from initial conditions
near the Lyapunov orbit. d) Orbits starting from initial conditions inside
the Ws

γ,1
curve of the interior branch of the stable invariant manifold.

the first half of the winding is developed in about 4.5T and the
full winding in barely at 6T . After 6T , the orbits on the mani-
fold are in the vicinity of the Lyapunov orbit. These orbits do not
leave this region in a new direction, but they follow the direction
given by the invariant manifolds already formed.

Relevant information for a value of the Jacobi constant (EJ =

−0.1977) close to the one of the L1(L2) equilibrium point is
given in Fig. 7. In all four panels, we plot the outline of the bar,
the position of the five Lagrangian points, and the zero velocity
curves of this particular value of EJ. This means that any orbit
with this energy starting outside these curves cannot enter within
them. We have also plotted the two plane unstable Lyapunov pe-
riodic orbits around the unstable Lagrangian points L1 and L2. In
Fig. 7a we show the unstable invariant manifolds for this value
of EJ. Each of these manifolds is composed of two branches,
an inner branch, lying in the interior, and an outer branch, ly-
ing in the exterior. Each of these branches can be thought of as
an ensemble of orbits moving away from the Lyapunov orbit.
Both branches lie near the zero velocity curves and, as shown
in Fig. 6, their length increases with time until they reach the
opposite side of the bar from which they emanated. The inner
branch, when complete, outlines the loci of the inner rings in
barred galaxies well. The outer branch, when complete, has a
shape similar to that of the R1 outer rings. From a dynamical
point of view, these branches are seen in the phase space like
tubes that drive the dynamics. In Fig. 7b we plot the stable in-
variant manifolds for the same value of EJ. Again, there are two
branches, an inner and an outer one. Note also that the space loci
of the stable and unstable manifolds are almost identical. There
is, however, an important difference in that, for the stable mani-
fold, the orbits filling these tubes will go towards the Lyapunov
orbits, while they will go away from it for the unstable manifold.

In Fig. 7c we show four sets of orbits starting from the vicinity
of the Lyapunov orbits and following the four tubes that con-
stitute the two branches of the unstable manifolds. This figure
illustrates how the invariant manifolds drive the dynamics, since
we can see that initial conditions in the vicinity of the Lyapunov
orbit will follow a trajectory close to the unstable invariant man-
ifolds, due to its unstable character. In Fig. 7d, we represent the
trajectories with initial conditions inside the Ws

γ,1
curve of the

interior branch of the stable invariant manifold, as explained in
the previous section. This set of orbits follows the stable branch
they emanate from, then it approaches the Lyapunov orbit and,
finally, it leaves the bar region following the exterior branch of
the unstable invariant manifold.

6. Discussion

The time during which the orbit stays around the Lyapunov or-
bit before outlining the outer or the inner ring depends on the
Lyapunov exponent (Lyapunov 1949) of the Lyapunov orbit,
and is found to be an increasing function of EJ. Thus, those or-
bits initially near the Lyapunov orbit with lower values of EJ

stay around the unstable point less. This time increases gradu-
ally with the value of EJ, until reaching the value at which the
Lyapunov orbit becomes stable, after which all orbits starting in
the vicinity of the Lyapunov orbit stay around it. Thus the orbits
outlining the rings are mainly low energy.

Repeating the computations in Sect. 5 for different values
of the Jacobi constant, EJ = −0.1973 and EJ = −0.1960, we
find that the locus of the invariant manifolds (and therefore of
the orbits associated to it) is roughly independent of the value
of EJ. This is illustrated in Fig. 8b for these two different val-
ues of EJ. As the energy increases, the size of the Lyapunov
orbit also increases, so that the outline of the invariant mani-
fold becomes thicker. However, as we consider more orbits and
more energy levels, we find that the density of the central part
of the outlined area increases considerably, so that in practice
the thickness of the ring will be considerably smaller than that
of the higher energy manifolds. This is illustrated in Fig. 8a,
where we plot the density profile on a cut across the ring. To
obtain this figure we calculated the unstable invariant manifolds
and the trajectories inside them for all energy levels at which
the Lyapunov orbit is unstable, i.e. all energies for which the
mechanism we propose can be applied. This covers the range of
values from EJ = −0.19789, corresponding to the energy of the
unstable equilibrium point, to the value EJ = −0.1674, where
the Lyapunov family becomes stable. The contribution of each
energy is weighted by a distribution function that is simply as-
sumed here to be an exponentially decreasing function of the

energy, i.e. with the form exp
(

− |EJ |
2σ2

)

, with σ = 30 km s−1 as a

velocity dispersion characteristic of disc stars in the solar neigh-
bourhood (Binney & Merryfield 1998). The exact shape of the
distribution function is of little importance, but it has to be a de-
creasing function of the energies in the rotating frame of refer-
ence. The profile shown in Fig. 8a is very similar to those found
for the old and intermediate age stellar population in rings and
spirals (Schweizer 1976).

These ring structures will corotate with the bar. During bar
evolution, however, the bar pattern speed will decrease with time
due to an angular momentum exchange (Tremaine & Weinberg
1984; Weinberg 1985; Little & Carlberg 1991a,b; Hernquist &
Weinberg 1992; Athanassoula 1996; Debattista & Sellwod 2000;
Athanassoula 2003; O’Neill & Dubinsky 2003; Valenzuela &
Klypin 2003). This means that L1, L2, L4, and L5 will move
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Fig. 8. a) Density profile on a cut across the
ring. b) Two unstable invariant manifolds for
different values of EJ . Note how similar the re-
gions they delineate are.

Fig. 9. Velocity field along the invariant manifolds. a) In the rotating
frame. b) In the nonrotating frame.

outwards and thus the reservoir of fresh material for the rings
would be continuously replenished. This may also be linked to
the plumes that surround the ring structures of these galaxies
(Buta 1984).

The model we propose here forms ring structures that are not
necessarily associated with the outer Lindblad resonance. In fact,
in the model shown in Fig. 7, the maximum radius of the inner
branches of the invariants reaches values of about 4.25 radial
units, while corotation radius is placed at the end of the bar at
6 radial units. The outer branches extend up to 7.5 radial units,
while the Outer Lindblad Resonance of this model is placed at
about 8.7 radial units. Note that the ratio of the maximum radius
of the outer and inner branches gives a value of 1.76, which is
in agreement with the values of this ratio measured for ringed
galaxies (Athanassoula et al. 1982; Buta 1995).

In the rotating frame, the velocities along the invariants reach
a maximum at the point of maximum radius and then decrease
toward the region of the Lyapunov orbits (see Fig. 9a). In the
non-rotating frame the velocities along the invariants are an or-
der of magnitude higher in the outer branches than in the inner
ones (see Fig. 9b). A clear prediction from our model is that the
perturbations in the velocity fields produced by the rings should
be higher around the outer ring than around the inner ring. Not
much data is available on the velocity fields along the rings of
R1 galaxies. The best data correspond to the galaxy NGC 1433
(Buta 1986b), which is of type R′

1
. For this case, we can tenta-

tively say that there is general agreement with the oscillations in
the velocities measured in the rotating frame for the inner ring.

Although these rings are not density waves, they do not have
the shortcoming of material arms, since they do not wind up with
time. A more appropriate name would be flux rings, since they
are outlined by the trajectories of particles. The material of such
rings would create a potential well. Other stars and gas in the
galaxy would feel this potential and, while traversing the ring,
they would stay longer at the potential minima, thus adding a
density wave component to the ring. Thus, although we have

not done any self-consistent simulations, we can speculate that
the flux rings and the density wave rings would coincide in the
galaxy.

In this paper we have presented a new theory of the origin of
rR1 ring structures based on orbital dynamics. We introduced the
invariant manifolds of a periodic orbit, which have so far been
used in celestial mechanics. We explained their role in the trans-
port of particles from the interior region to the exterior, and vice
versa, and applied it to a realistic barred galaxy model. Finally,
we compared and discussed our results and the characteristics of
the rings obtained with observational data. We can conclude that
the rR1 ring structure can be interpreted as a bundle composed
of all the invariant manifolds for all the possible energies, as
well as the orbits driven by them.
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