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This work investigates the three-dimensional, spatio-temporal flow development
in the aft portion of a laminar separation bubble. The bubble is forming on a
flat plate geometry, subjected to an adverse pressure gradient, featuring maximum
reverse flow of approximately 2 % of the local free-stream velocity. Time-resolved
velocity measurements are performed by means of planar and tomographic particle
image velocimetry, in the vicinity of the reattachment region. The measurements
are complemented with a numerical solution of the boundary layer equations in the
upstream field. The combined numerical and measured boundary layer is used as
a baseline flow for linear stability theory analysis. The results provide insight into
the dynamics of dominant coherent structures that form in the separated shear layer
and deform along the span. Stability analysis shows that the flow becomes unstable
upstream of separation, where both normal and oblique modes undergo amplification.
While the shear layer roll up is linked to the amplification of the fundamental
normal mode, the oblique modes at angles lower than approximately 30◦ are also
amplified substantially at the fundamental frequency. A model based on the stability
analysis and experimental measurements is employed to demonstrate that the spanwise
deformations of rollers are produced due to a superposition of normal and oblique
instability modes initiating upstream of separation. The degree of the initial spanwise
deformations is shown to depend on the relative amplitude of the dominant normal
and oblique waves. This is confirmed by forcing the normal mode through a controlled
impulsive perturbation introduced by a spanwise invariant dielectric-barrier-discharge
plasma actuator, resulting in the formation of spanwise coherent vortices. The findings
elucidate the link between important features in the bubble shedding dynamics and
stability characteristics and provide further clarification on the differences in the
development of coherent structures seen in recent experiments. Moreover, the results
present a handle on the development of effective control strategies that can be used
to either promote or suppress shedding in separation bubbles, which is of interest for
system performance improvement and control of aeroacoustic emissions in relevant
applications.
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1. Introduction

Given the relevance of laminar separation bubbles to applications such as unmanned
aerial vehicles and turbomachine blades, a considerable number of studies have
focused on the underlying stability and transition mechanisms. Marxen, Lang & Rist
(2012) note that amplification of disturbances is initiated in the laminar boundary
layer, significantly upstream of the separation point. Prior to separation as well
as in the laminar part of the laminar separation bubble (LSB), the mean flow is
considered two-dimensional (Diwan & Ramesh 2012). Therefore, by assuming a
low amplitude disturbance environment, linear stability theory (LST) may be applied
successfully for determining unstable modes (Häggmark, Hildings & Henningson
2001; Rist & Maucher 2002). The general consensus regarding the initial growth of
these modes is that disturbances are convectively amplified via a Kelvin–Helmholtz
instability mechanism (Ho & Huerre 1984; Watmuff 1999; Diwan & Ramesh 2009).
Amplification of disturbances through this mechanism leads to shear layer roll up
and the formation of vortical structures in the aft portion of the LSB, manifesting as
vortex shedding (Jones, Sandbergh & Sandham 2008; Hain, Kähler & Radespiel 2009).
It has been shown that, at a relatively low level of free-stream disturbances, although
the initial shear layer roll up is strongly two-dimensional, spanwise deformation of
the rollers quickly ensues in the vicinity of the reattachment region (Jones, Sandberg
& Sandham 2010; Nati et al. 2015; Kurelek, Lambert & Yarusevych 2016; Kirk &
Yarusevych 2017).

Throughout the topical literature, several types of instabilities leading to three-
dimensionality and spanwise roller deformations in laminar separation bubbles can
be identified. Evidence of a Göertler type instability has been provided by Marxen
et al. (2009), coupling streamline curvature at the beginning of the adverse pressure
gradient with the formation of longitudinal vortices. Along these lines, highly localised
instabilities of very small scale occur in cases of strong shear and have been related to
the formation of hairpin vortices in transitional boundary layers (Bake, Meyer & Rist
2002). On the other hand, the spanwise deformation of rollers has been associated
with a secondary absolute instability mechanism by several studies (e.g. Gaster
1992; Alam & Sandham 2000; Rist & Maucher 2002; Postl, Balzer & Fasel 2011;
Embacher & Fasel 2014). The aforementioned studies propose that the interaction
between the primary convective and the secondary absolute instabilities may create
a global mechanism resulting in instantaneous spanwise deformations within the
separated shear layer. Alam & Sandham (2000) report that absolute instabilities may
be prevalent when the reverse flow velocity magnitude in the LSB is between 15 and
20 % of the local free-stream velocity. In turn, Marxen, Lang & Rist (2013) note that
secondary instabilities can be either elliptic, causing spanwise deformation of vortex
cores; or hyperbolic, active in the braid region between consecutive spanwise rollers.
Although it is still debated whether the braid instability is of hyperbolic nature,
evidence exists that multiple types of instabilities, either elliptic or hyperbolic, are
simultaneously in action (Maucher, Rist & Wagner 2000; Jones et al. 2008; Marxen
et al. 2013).

In addition, spanwise deformations have been related by several studies to a
stationary global mode caused by a centrifugal instability (e.g. Theofilis, Hein &
Dallmann 2000; Theofilis, Barkley & Sherwin 2002; Rodríguez & Theofilis 2010).
This mode is self-excited and has been shown to develop without the presence
of external excitation in several cases where two-dimensional recirculation regions
are encountered (e.g. Barkley, Gomes & Henderson 2002; Gallaire, Marquille &
Ehrenstein 2007; Marquet et al. 2008; Passaggia, Leweke & Ehrenstein 2012).
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Rodríguez, Gennaro & Juniper (2013) demonstrate that the occurrence of such a
global mode requires a minimum reverse flow magnitude within the separation bubble
between 7 % and 8 % of the local free-stream velocity. Notwithstanding the role of
global and/or absolute instabilities in the spanwise deformation of shedding structures,
the common factor in the aforementioned studies is the relatively strong reverse
flow, typically higher than 7 %. Nonetheless, LSBs featuring much milder reverse
flows are common, such as the cases investigated by Rist & Maucher (1994) (3 %),
Spalart & Strelets (2000) (3 %), Alam & Sandham (2000) (4 %), Rist & Augustin
(2006) (<5 %), Marxen et al. (2012) (<3 %), Yarusevych & Kotsonis (2017a) (<3 %)
and Yarusevych & Kotsonis (2017b) (<3 %). In these cases, the origin of spanwise
deformations is currently unclear.

Regardless of the instability mechanism responsible for the deformation and
breakdown of dominant shear layer vortices in separation bubbles, disturbances
in the laminar boundary layer upstream of the bubble must be considered, as
these serve as an initial condition for the instabilities within an LSB (Diwan &
Ramesh 2009). Linear stability analysis carried out by Mack (1984) on a flat plate
boundary layer at Reynolds numbers based on streamwise distance from the leading
edge below 1800, indicates that oblique disturbances may be more unstable than
normal Tollmien–Schlichting (TS) waves for certain wavenumber vector angles.
Indeed, the interaction between normal and oblique modes is responsible for the
three-dimensional flow evolutions in K-type (Klebanoff, Tidstrom & Sargent 1962),
H-type (Herbert 1988) and oblique (King & Breuer 2002) transition. A model of such
an interaction scenario has been proposed by Craik (1971) and extended by Zelman
& Maslennikova (1993). It considers the formation of a symmetric resonant triad
between a two-dimensional TS wave and two oblique TS waves propagating at equal
but opposite angles with respect to the flow. Notably, the streamwise wavenumber of
the oblique pair is half of the TS streamwise wavenumber, thus, the interaction is
often referred to as subharmonic. A resonance condition occurs when phase velocities
of the aforementioned waves match. The emergence of subharmonic resonant waves
has been demonstrated by several experimental studies (e.g. Kachanov & Levchenko
1984; Corke & Mangano 1989). Although the aforementioned studies consider only
attached flows, they provide valuable insight for the present investigation, as the
state of the boundary layer upstream of separation directly affects the dynamics of a
laminar separation bubble.

Rist & Augustin (2006) and Marxen et al. (2013) have demonstrated through direct
numerical simulations of a flat plate laminar separation bubble that introducing oblique
disturbances at moderate angles in the boundary layer upstream of separation causes
spanwise staggering of the roll-up process. In the time-averaged sense, this results in
a peak–valley distribution of the LSB dividing streamline. In addition, measurements
performed by Burgmann, Brücker & Schröder (2006), Burgmann, Dannemann &
Schröder (2008), Burgmann & Schröder (2008) and Wolf et al. (2011) on a laminar
separation bubble developing on an aerofoil at higher free-stream turbulence levels,
demonstrate the occurrence of a group of C-shaped vortices in the vicinity of the
reattachment region. These vortices are found to have a staggered arrangement that
persists in the wake of the aerofoil; however, the mechanism responsible for the
formation of these patterns remains unexplained.

In order to determine the active instabilities in the LSB, the incoming boundary
layer is often forced with periodic perturbations. These are introduced in a two-
dimensional fashion through wall oscillators (Alam & Sandham 2000; Marxen et al.

2009), acoustic excitation (Yarusevych, Sullivan & Kawall 2007; Jones et al. 2010)
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and plasma actuators (Yarusevych & Kotsonis 2017a). The aforementioned periodic
type of forcing is continuous at a frequency equal to the fundamental frequency of
the unstable boundary layer or LSB shedding. An alternative forcing scheme, first
suggested by Gaster & Grant (1975), employs an impulsive disturbance that excites
all instability modes, thus, generating a wave packet through selective amplification.
However, when introduced as a point source, e.g. through a pressure tap, strong
nonlinear effects can be observed in the wave packet (Cohen, Breuer & Haritonidis
1991; Medeiros & Gaster 1999).

The present study is an investigation of the three-dimensional deformations of
coherent structures in a laminar separation bubble of low reverse flow magnitude
(≈2 %) and assessment of a possible link of the observed phenomena with the
stability characteristics of the incoming boundary layer. An LSB is formed on a
flat plate subjected to an adverse pressure gradient, that captures the fundamental
characteristics of LSBs observed on aerofoil sections (Gaster 1967; Gaster & Grant
1975). To excite the primary instability mode, the flow is impulsively forced. In line
with Michelis, Kotsonis & Yarusevych (2017), forcing is applied in a two-dimensional
fashion by means of a spanwise-uniform dielectric-barrier-discharge (DBD) plasma
actuator (Corke, Enloe & Wilkinson 2010; Kotsonis 2015), located upstream of the
separation point, thus circumventing the shortcomings of localised point forcing
discussed earlier. In addition, an essential feature of impulsive forcing is that, for
fixed free-stream velocity and turbulent intensity, the bubble experiences elevated
disturbance levels only during the forcing impulse, otherwise being subjected to
natural level of disturbances. Consequently, in contrast to continuous forcing, the flow
evolution following the wave packet convection occurs without further conditioning
the incoming disturbances.

The spatio-temporal flow development is characterised via time-resolved particle
image velocimetry (PIV). Two-component planar PIV is used to capture the
streamwise characteristics of the LSB, while tomographic PIV is employed for
investigating the full three-dimensional velocity field in the roll-up region of the
LSB. Upstream of the PIV field of view, the flow is assessed by means of numerical
solution of the boundary layer equations, based on the measured pressure distribution.
The combined numerical solution and experimentally measured mean flow forms the
base for linear stability theory (LST) analysis. The performed analysis explores the
link between the boundary layer stability characteristics and the ensuing development
of coherent structures in the separated shear layer, and provides a handle for future
control strategies.

2. Experimental apparatus and techniques

2.1. Notation

The following notation conventions are applied. Dimensional quantities are noted by
a tilde and, where appropriate, accompanied by their respective unit (e.g. x̃ (mm)).
Scaling is performed using quantities of the baseline unforced laminar separation
bubble. In particular, lengths are scaled with the displacement thickness at separation,
δ̃∗

s0
= 2.39 mm, while velocities with the respective local free-stream velocity at

separation, Ũ∞s
= 8.6 m s−1. Non-dimensional quantities are noted by their respective

symbol (e.g. x = x̃/δ̃∗
s0

, u= ũ/Ũ∞s
). The aforementioned scaling factors are also used to

determine the Reynolds number pertinent to this experiment, Reδ∗
s
= Ũ∞s

δ̃∗
s0
/ν̃ = 1305.

Moreover, they are combined for obtaining non-dimensional frequencies through
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FIGURE 1. (Colour online) Overview of the experimental set-up. The four camera
arrangement shown corresponds to the tomographic configuration.

the definition of the Strouhal number, St = f̃ δ̃∗
s0
/Ũ∞s

. Quantities derived from time
averaging are identified with an overline (e.g. ū) while their fluctuating component by
a dash (e.g. u′). The notation (h, k) is used to denote instability modes, where h and
k are integer multiples of the fundamental frequency ( f̃0) and spanwise wavenumber
(βr0), respectively (see § 3.2). Finally, time is normalised by the fundamental shedding
frequency, yielding τ = t̃f̃0.

2.2. Set-up overview

The experimental set-up used for this study (figure 1) is identical to the one described
in Michelis et al. (2017). The flat plate is 1000 mm long, 500 mm wide and 20 mm
thick, while its leading edge is a modified super ellipse (Lin, Reed & Saric 1992).
The pressure gradient on the flat plate is conditioned by a flexible polycarbonate
body. Zig-zag turbulators are employed to trip the lower side of the flat plate and
the incoming boundary layer of the flexible wall in order to mitigate unsteady
boundary layer fluctuations and separation, respectively. Tuft flow visualisation and
PIV measurements were used to confirm suppression of the aforementioned effects. A
Cartesian coordinate system is defined such that x̃ = 0 lies 420 mm from the flat plate
leading edge, ỹ = 0 at its top surface and z̃ = 0 at its midspan. The free-stream velocity
(Ũ0) is set at 6.4 m s−1, for which the turbulence intensity (TI = Ũ′

rms/Ũ0, where
Ũ′

rms is the root mean square of the velocity fluctuations) is below 0.2 % between 0.1
and 1 kHz. The imposed pressure gradient is expressed in terms of surface pressure
coefficient, Cp (figure 2). It can be seen from the distinct topology of surface pressure
distribution in figure 2 that a laminar separation bubble develops with separation and
reattachment locations at x̃s ≈ 30 mm and x̃r ≈ 180 mm, respectively.

2.3. Impulsive forcing

An alternating current, dielectric-barrier-discharge (AC-DBD) plasma actuator (Corke
et al. 2010; Benard & Moreau 2014; Kotsonis 2015; Michelis & Kotsonis 2015)
is employed for introducing a two-dimensional controlled disturbance upstream of
the LSB mean separation point. The complete actuator thickness (electrodes and
dielectric) is less than 70 µm; significantly thinner than the local boundary layer
thickness (≈5.5 mm). The discharge gap, located at a distance of 420 mm from
the leading edge in the streamwise direction, serves as the origin of the reference
system (figure 1). The forcing signal is constructed by modulating a sinusoidal
signal ( f̃c = 5 kHz) with a square signal and the duty cycle is selected such that
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FIGURE 2. (Colour online) Cp distribution in (a) streamwise and (b) spanwise directions.
S and R mark the time-averaged separation and reattachment points, respectively, estimated
from planar PIV.

a 1 ms pulse is produced. Under the experimental conditions described here, the
frequencies associated with the LSB vortex shedding and flapping are of the order
of 130 and 10 Hz respectively (Michelis et al. 2017). Since the carrier frequency
( f̃c = 5 kHz) exceeds the relevant hydrodynamic frequencies by approximately two
orders of magnitude, a pulse is equivalent to a single impulsive perturbation. The
moment of actuation is selected as reference time t̃0 = 0 s.

In quiescent conditions, continuous operation of the actuator at voltage amplitude
of 5 kV and carrier frequency of 5 kHz results in a downstream jet velocity of the
order of 1 m s−1. The force exerted on the fluid is expressed in terms of momentum
coefficient, Cµ (Amitay et al. 2001), and is estimated through application of the
momentum balance equation on PIV-measured velocity fields within the appropriate
control volume (Kotsonis et al. 2011). The majority of the momentum exchange
occurs along the streamwise direction, for which Cµ is calculated to be 1.6 × 10−4.
Due to the imposed free-stream velocity being relatively weak, the jet topology and
the value of Cµ are not significantly affected with respect to the quiescent conditions
(Pereira, Ragni & Kotsonis 2014).

2.4. Particle image velocimetry

The flow field is investigated with two different time-resolved PIV configurations,
planar and tomographic (Elsinga et al. 2006). Planar PIV is used for determining
the overall bubble features and dynamics on the x–y plane. In contrast, tomographic
PIV focuses on the reattachment region of the bubble, where three-dimensional flow
characteristics are examined.

In the planar configuration, in order to obtain statistical information as well
as for resolving the relevant phenomena, image pairs (1t̃ = 60 µs) are recorded
at acquisition frequencies ( f̃a) of 250, 500 and 2000 Hz. For each acquisition
frequency, 10 914 cropped image pairs are recorded, thus, the acquisition times are
43.7, 21.8 and 5.5 s respectively. Particle displacements are calculated by applying
the multi-step interrogation window algorithm (Scarano & Riethmuller 2000) from
an initial window of 48 × 48 pixels to a final window of 12 × 12 pixels, with
75 % overlap between windows. This results in a vector spacing of 0.19 mm in
both streamwise and wall-normal directions. The vector fields from the two cameras
overlap by approximately 10 % and are stitched to obtain a combined field of 131 by
14 mm.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2018.91


Spanwise deformations in laminar separation bubble shedding 87

S R
0

–0.1 0.2 0.5 0.8 –0.9 –0.6 –0.3 0

10 20 30

x

y

x

40 50 10 20 30 40 50

2

4

(a) (b)

FIGURE 3. (Colour online) Planar PIV time-averaged (a) streamwise velocity and (b)
spanwise vorticity. Solid line: dividing streamline. Dashed line: displacement thickness.
Dash-dotted line: region where the reverse flow magnitude is 1 %–2 % of the local
free-stream velocity (ū∞), the contour line itself indicating 1 %. ◦: maximum height. S and
R mark separation and reattachment, respectively.

For the tomographic configuration, four cameras are used, placed in a rectangular
arrangement above the flat plate, at an inclination of approximately 20◦ with respect
to the wall-normal axis. In order to adjust the focal plane alignment on the camera
sensor, objectives are mounted on the cameras via Scheimpflug adapters. The volume
of interest is illuminated using the multi-pass light amplification technique (Ghaemi
& Scarano 2010). Volume calibration is performed with the self-calibration technique
(Wieneke 2008), for which residual disparity of less than 0.1 pixels is achieved. Image
pairs (1t̃ = 140 µs) are recorded at acquisition frequencies of f̃a = 125 and 2000 Hz.
The acquisition time over 6236 cropped image pairs is, therefore, 49.9 and 3.1 s for
each acquisition frequency respectively. The volume reconstruction from the acquired
images is obtained by executing the simultaneous implementation of multiplicative
algebraic reconstruction techniques (SMART) operation (Atkinson & Soria 2009),
yielding a total interrogation volume of 448 × 827 × 66 voxels. Particle displacement
calculation in the interrogation volume is performed in multiple window steps, from
an initial of 72 × 72 × 20 voxels to a final of 48 × 48 × 11 voxels, with 75 % overlap.
This results in a vector volume of 36 × 68 × 31 vectors (49.9 × 95.6 × 7.1 mm3)

along the x, z and y directions, respectively. The corresponding vector pitch in the
three directions is 1.42, 1.42 and 0.24 mm.

For both configurations, estimation of the instantaneous uncertainty is determined
through the linear error propagation technique (Sciacchitano & Wieneke 2016). The
maximum uncertainty on the planar configuration average field is εu ≈ 0.2 % and εv ≈
0.7 %. Uncertainty for the tomographic configuration is higher, with values of εu ≈1 %,
εv ≈ 5 % and εw ≈ 5 %.

3. Baseline LSB

3.1. Steady state features

Time-averaged velocity fields from planar and tomographic PIV configurations are
shown in figures 3 and 4. A closed recirculation region forms in the time-averaged
sense as the boundary layer separates and reattaches. The mean dividing streamline is
estimated on the planar data and outlines the separation bubble (figure 3). Based on
this streamline, the mean separation and reattachment points are estimated at x̄s = 6.3
and x̄r = 47.5 respectively, therefore, the length of the LSB is l̄b = 41.2. The bubble
height is defined by the maximum wall-normal distance of the dividing streamline
from the wall. This is evaluated to be h̄ = 0.73, occurring at x̄h = 41.7. The maximum
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FIGURE 4. (Colour online) (a) Planar PIV time-averaged streamwise velocity profiles.
Solid line: dividing streamline. Dashed line: displacement thickness. △: separation point,
▽: reattachment point, ◦: maximum height. The box indicates the tomographic PIV
measurement volume projection. (b) Tomographic PIV time-averaged velocity field. The
iso-surface marks the bubble outline. Slices depict wall-normal velocity. (c) Fluctuation
of spanwise velocity component, σw, at x = 50.

amplitude of the reverse flow encountered within the LSB is of the order of 2 % of
the local free-stream velocity, comparable to Rist & Maucher (1994) (3 %), Spalart &
Strelets (2000) (3 %) as well as Marxen et al. (2012) (<3 %). In addition, the pressure
gradient parameter formulated by Gaster (1967) is P ≃ −0.11 for a corresponding
Reynolds number based on momentum thickness at separation of Reθs

= 345. The
above classify the current separation bubble as short, hence, as suggested by previous
studies (Gaster 1992; Alam & Sandham 2000; Rist & Maucher 2002), convective
instabilities are expected to dominate in the separated shear layer.

The volume captured by the tomographic configuration with respect to the
separation bubble is indicated by a grey rectangle in figure 4(a). Due to experimental
limitations, no tomographic data have been acquired below y = 0.39. Figure 4(b)
depicts a three-dimensional outline of the separation bubble as well as several slices
of wall-normal velocity. The results show minimal spanwise variation in the dividing
streamline within the fore portion of the bubble, confirming the two-dimensional
nature of the time-averaged incoming flow. In contrast, the time-averaged topology
in the reattachment region shows distinct spanwise non-uniformities manifested by
spatially periodic peaks and valleys, with a similar trend persisting in the fluctuation of
the spanwise velocity component (figure 4c). This topology has been observed in some
of the previous numerical and experimental studies. For example, Rist & Augustin
(2006) induced such a peak–valley distribution in their direct numerical simulation
(DNS) by imposing oblique disturbances in the boundary layer upstream of a flat
plate separation bubble. In their experiments, Kurelek et al. (2016) note significant
spanwise variations in coherent structures within a separation bubble developing on
a symmetric aerofoil. For the current experiment, the characteristic wavelength of
the spanwise variations seen in the time-averaged results in figure 4 is approximately
λr = 18.6. Given that no explicit oblique disturbances or distributed roughness
are introduced, the observed stationary deformation may be attributed to spatially
fixed disturbance sources in the experimental set-up, such as minute incoming flow
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FIGURE 5. (Colour online) Time-averaged planar and tomographic PIV streamwise
velocity measurements at several x-stations. Note that the tomographic data have been
averaged along the spanwise direction. Dashed line: displacement thickness calculated on
the planar data.

25

10

–5

–20

–35
0 0.05 0.10

St St St

0.15 0 0.05 0.10 0.15 0 0.05 0.10 0.15

(a) (c)(b)

FIGURE 6. (Colour online) Power spectral density of the unforced LSB from both
configurations estimated at x = x̄h, y = δ∗(x̄h) and z = 0. (a) Streamwise component
fluctuation, u′, (b) wall-normal component fluctuation, v and (c) spanwise component
fluctuation, w′.

non-uniformities and model imperfections, which condition the receptivity mechanism
upstream the separation bubble.

Figure 5 compares the results obtained from planar and tomographic PIV by
presenting mean streamwise velocity profiles at several streamwise locations. Here,
the tomographic profiles shown are averaged along the spanwise direction. Profiles
from the two measurements are in excellent agreement, with slight discrepancies
becoming noticeable downstream of the mean reattachment region due to high
velocity fluctuations.

3.2. Spatio-temporal characteristics

The steady state features described earlier are directly related to the dynamic
behaviour of the laminar separation bubble. First, the spectral content of velocity
fluctuations is examined in figure 6. The spectra of the fluctuating velocity components
u′, v′ and w′ are computed with the Welch method (Welch 1967) with a frequency
resolution of St = 2.7 × 10−4 (0.98 Hz). The corresponding temporal signal extracted
at the mean maximum height streamwise location and the displacement thickness
wall-normal distance. A dominant broadband peak is observed in the spectra of all
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FIGURE 7. (Colour online) Unforced bubble instantaneous Q-criterion series, separated
by 1τ = 0.14. Grey, blue and red iso-surfaces correspond to Q = 0, 0.002 and 0.006,
respectively. Arrows mark the same vortex convecting through the snapshots.

the velocity components, located between St = 0.022 (80 Hz) and St = 0.047 (170 Hz).
The most prominent frequency corresponds to St0 = 0.038 ( f̃0 = 136 Hz) which is
later confirmed to correspond to the frequency of the most unstable mode (§ 4.2).
Hence, it is referred to as the fundamental frequency (St0). Several other peaks are
identified in the vicinity of the fundamental frequency, albeit one order of magnitude
weaker, and are commonly observed in natural transition studies due to spectral
content of background disturbances in a given experimental facility. When expressed
in terms of dimensionless frequency, ω∗ = 0.25δw(2πf̃ )/Ū (Ho & Huerre 1984),
based on vorticity thickness (δw) and the average velocity of the shear bounding
limits (Ū), the fundamental frequency is ω∗

0 = 0.21. This value is within the expected
range for Kelvin–Helmholtz instability in free shear layers (Ho & Huerre 1984)
(0.21 < ω∗ < 0.222) and agrees well with relevant studies on LSBs (Pauley, Moin &
Reynolds 1990; Watmuff 1999; Simoni et al. 2012).

The tomographic configuration and vortex identification criteria allow exploration
of the three-dimensional coherent structures in the LSB. Instantaneous snapshots of
the unforced LSB are shown in figure 7, where the structures are identified using iso-
surfaces of Q-criterion (Hunt, Wray & Moin 1988). An animated sequence is provided
as supplementary material (movie 1) available at https://doi.org/10.1017/jfm.2018.91.
The results show that in the aft portion of the bubble (figure 4a), vortical structures
exhibit strong spanwise deformations, with notable staggering in the x–z plane. Similar
vortex distribution is observed in the DNS results of Marxen & Henningson (2011)
where the separation bubble is asymmetrically forced with oblique waves, and in the
experiments of Burgmann & Schröder (2008) and Nati et al. (2015).

An additional feature of the flow field is the presence of vortex filaments
which connect the staggered vortex cores, indicated by arrows in figure 8(a).
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FIGURE 8. (Colour online) Unforced bubble instantaneous Q-criterion snapshot. (a) Grey,
blue and red iso-surfaces correspond to Q = 0, 0.002 and 0.006 respectively. (b) x–y plane
at z = 4.5, (c) x–z plane at x = 48.5. Dashed lines: monitor lines at the measurement
volume centre, x = 48.5, y = 1.8 and z = 4.5, solid lines: Q > 0, dash-dotted lines: Q < 0.

Similar topological features persist through the shedding cycles, as illustrated by
the snapshots shown in figure 7. The results suggest that the locations of dominant
deformations do not shift significantly in the spanwise direction from cycle to cycle,
resulting in distinct peaks and valleys in the time-averaged outline of the aft part of
the LSB (figure 4b).

Given the limited spanwise extent of the field of view relative to the wavelength
of the spanwise deformations, determination of the streamwise (λx) and spanwise
(λz) wavelengths is performed through spatial wavelet analysis (Daubechies 1992;
Michelis et al. 2017). At each recorded time instant, the total Q-criterion value
is computed along the dashed streamwise and spanwise monitor lines indicated in
figure 8. The two lines intersect at the centre of the measurement volume (x = 48.5,
y = 1.8, z = 4.5). Exemplary instantaneous spatial distributions of Q in streamwise
and spanwise directions are shown in figure 9(a,b), along with their respective
wavelet coefficients (figure 9c,d). The dominant wavelength is estimated based on the
maximum wavelet coefficient at each time instant. This procedure is repeated for all
instantaneous snapshots, and the results are presented in figure 9(e, f ) as probability
distributions. It can be seen that both λx and λz are distributed about central values
corresponding to λ̄x = 9.4 and λ̄z = 18.2, with standard deviations of σλx

= 1.1 and
σλz

= 6.7, respectively. The average spanwise wavelength is in excellent agreement
with the wavelength of spanwise deformations seen in the time-averaged outline of
the aft portion of the LSB (λr = 18.6, figure 4). Hence, λx0 = 9.4 and λz0 = 18.2 are
used as the fundamental streamwise and spanwise wavelengths, respectively, for the
rest of the analysis. The ratio of characteristic spanwise to streamwise wavelengths,
λz0/λx0 , is equal to 1.94, yielding an obliqueness angle of 27◦. This is comparable
to the results of Rist & Augustin (2006), Marxen & Henningson (2011) and Kurelek
et al. (2016) who report wavelength ratios of 1.92, 2.4 and 2.5, respectively.

To assess the existence of various spanwise modes within the imaged tomographic
PIV domain in the unforced bubble, a double Fourier analysis in space and time is
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FIGURE 9. (Colour online) Columns represent streamwise and spanwise quantities
respectively. (a,b) Q-criterion along the spanwise monitor line (figure 8). (c,d)
Corresponding wavelet coefficients. (e, f ) Wavelength probability distributions. The
vertical dashed lines indicate the standard deviation with respect to the mean value.

performed on the wall-normal velocity component, extracted along the spanwise
monitor line at the centre of the measurement volume (x = 48.5, y = 1.8, see
figure 8). The power spectral density estimate is shown in figure 10, where h
and k are frequencies and wavelengths scaled with the fundamental ones, St0 and
λz0 , respectively. Two prominent peaks are observed in figure 10(a,c), located at
exactly (h, k) = (1, ±1), confirming the observations of the spectral and wavelet
analyses. In addition, there is elevated spectral density at (1, 0), identified as a
valley between the two peaks (figure 10c). As discussed in the following sections,
the band encompassing the peaks and the valley is attributed to a pair of oblique
modes and a normal mode, respectively. In addition, a band of modes with a peak
centred at (0, 0) is observed in the frequency–wavelength spectrum (figure 10a,b),
suggesting that the interaction between the oblique pair and the normal mode is largely
linear, without exhibiting sub-harmonic resonance. The wide range of k at which the
frequency–wavelength spectrum band extends at h = 1 (figure 10a,b) indicates the
non-deterministic development of oblique modes, explaining the histogram distribution
of both streamwise and spanwise wavelengths shown on figure 9.

4. Origin of spanwise vortex deformations

4.1. Boundary layer calculations upstream the LSB

In order to shed light on the mechanism responsible for the observed spanwise
topology of vortical structures (figure 8), it is instructive to examine the stability
characteristics of the incoming boundary layer and the fore portion of the separation
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FIGURE 10. (Colour online) (a) Frequency–wavelength (h, k) power spectral density
estimate, normalised with its maximum value. (b) Slices of the spectrum along k = −1, 0,
and 1. (c) Slices of the spectrum along h = 0, and 1.

bubble. Given the experimental field of view and resolution limitations, the laminar
boundary layer equations (Schlichting & Gersten 2000) are solved numerically using
an implicit solver to characterise the velocity in the boundary layer upstream of
separation. The imposed streamwise pressure gradient is estimated based on the
measured pressure distribution (figure 2a). The solution is marched from the location
of the most upstream pressure tap, at which the inflow boundary layer profile is
approximated with a Falkner Skan analytical solution. The subsequent marching
is carried out until the expected failure of the numerical solution is observed just
upstream of separation. The predicted separation point appears at x = 1.6, which is
approximately 1 % of the plate length upstream of the experimentally determined
separation location (xs = 6.3). The results of the computations are validated through a
direct comparison with measured data at x = 1.6 (figure 11). The agreement between
the results is remarkable, with the only noteworthy deviation observed in the second
wall-normal derivative in the proximity of the wall (y < 0.5, figure 11c). In addition,
the corresponding integral boundary layer parameters for BLS and PIV compare as
δ∗ = 0.88 and 0.87, and H = 3.54 and 3.41, respectively.

4.2. Linear stability analysis on the composite flow field

Linear stability theory calculations are performed on the composite flow field
consisting of the numerically calculated boundary layer in the region −140.46 x6 1.6
and the PIV measured flow field in the region 1.66 x6 56.9. This analysis is in line
with the one performed by Dovgal, Kozlov & Michalke (1994) on boundary layers
with adverse pressure gradients. The primary goal is to investigate the existence and
growth of oblique modes upstream of separation that may give rise to spanwise
deformations of vortex filaments in the LSB (figure 8). More specifically, the focus
is on the relative amplification of oblique modes with respect to normal modes. The
typical assumptions of locally parallel, spanwise-uniform flow and small amplitude
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FIGURE 11. (Colour online) Comparison between the numerical boundary layer solution
and PIV measurements, at x = 1.6. (a) Streamwise velocity profile, (b) first derivative and
(c) second derivative of streamwise velocity along the wall-normal direction.
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FIGURE 12. (Colour online) Comparison between LST and PIV of (a) N factor and
normalised (b) streamwise and (c) wall-normal disturbance profiles. The results are
presented at x = 40 for mode (1, 0). The experimental data have been filtered with a
narrow bandpass filter about the fundamental frequency St0 = 0.038. The black circle
indicates the location where εσu

= 0.01 %, at which the N factors from LST and PIV are
matched.

perturbations are invoked (Mack 1984; van Ingen 2008). Consequently, the spanwise
growth rate, βi, and the spanwise velocity component, w̄, are set to zero in the
Orr–Sommerfeld equation,

(D2
y − α2 − β2)2 ϕ(y) = iRe[(αū + βw̄ − ω)(Dy

2 − α2 − β2) − αDy
2ū − βDy

2w̄]ϕ(y).

(4.1)

Further assessment of nonlinearity in the separated shear layer is performed by
comparing N factors for mode (1, 0) between the LST analysis and the planar
PIV measurements (figure 12a). For the required computations, the experimentally
measured velocity fields are filtered with a sixth-order zero phase-lag digital bandpass
filter, centred at the fundamental frequency St0 = 0.038 and limited within ±0.02St0.
The amplification factor is subsequently determined by considering the maximum
standard deviation of the filtered streamwise velocity component at each streamwise
location, formulated as N = ln(σu) + C. Here, C corresponds to an offset, selected
at the streamwise location where the estimated σu becomes higher than the PIV
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FIGURE 13. (Colour online) Iso-contours of streamwise growth rates (αi) for βr =
0 as estimated through the boundary layer solver (left) and through the planar PIV
measurements (right), in steps of 0.05. Solid lines: αi 6 0, dotted lines: αi > 0, dashed line:
minimum αi. xc marks the critical streamwise position where disturbances first become
unstable. S and R mark separation and reattachment, respectively.

measurement error (εσu
= 0.01 %). This location is marked by a circle in figure 12(a),

upstream which the N factor curve flattens, indicating the noise limit of PIV
measurements. Nonetheless, the agreement between the LST and PIV N factor is
remarkable up to approximately the maximum bubble height, suggesting that the
pertinent fluctuations can be approximated by a linear growth model, similar to the
results of Yarusevych & Kotsonis (2017a). In turn, figure 12(b,c) depicts typical
streamwise and wall-normal disturbance profiles, normalised with the maximum value.
Once again, the comparison is done for mode (1, 0) between LST and the bandpass
filtered experimental data. Evidently, the results show a very good agreement with
the same range as the amplification factor predictions considered earlier. Due to
the observed agreement of both the N factor and the disturbance profiles, it can be
concluded that LST is suitable for determining stability characteristics in the current
investigation.

The stability diagram for βr = 0, calculated on the combination of numerical
and experimental results, is shown in figure 13. The results show a continuous
stability spectrum between the attached and separated flow regions, confirming the
earlier conjectures of inherent interrelation between the stability characteristics of the
boundary layer and the LSB (Dovgal et al. 1994; Diwan & Ramesh 2009; Michelis
et al. 2017), with similar features also observed in recent results of Marxen et al.
(2015) and Yarusevych & Kotsonis (2017b). The critical point is located in the adverse
pressure gradient region (figure 2a) at xc = −47, approximately one bubble length
upstream of xs. The frequency corresponding to the most unstable growth rate, marked
by the dashed line, decreases towards the separation location. Past the separation point,
the maximum growth rate increases significantly, and the associated frequency begins
to increase. The maximum amplification factor is achieved in the vicinity of the mean
maximum height and is N = 7.2. The corresponding frequency effectively matches
the fundamental frequency St0 = 0.038 (136 Hz) estimated from the velocity spectra
(figure 6). Diwan & Ramesh (2012) propose that the reason behind the remarkable
agreement of linear stability analysis with experimental observations is due to the
baseline (time-averaged) flow field being nearly parallel. It must be noted, however,
that the presence of a single primary mode would lead to the same observation.

The streamwise growth rate, αi, with respect to the spanwise wavenumber and
wavelength at the mean maximum height, is shown in figure 14(a). It is noted that
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FIGURE 14. (Colour online) (a) Streamwise growth rate, αi with respect to spanwise
wavenumber and wavelength at x̄h, in steps of 0.1. Solid lines: αi 6 0, dotted lines: αi > 0,
dashed line: minimum αi, dash-dotted line: λz0 = 18.2 (βr0 = 0.68). (b) Streamwise growth
rate and (c) amplification factor with respect to wave angle at several streamwise stations
and St0. The arrows indicate the wave angle estimated from the experimentally observed
wavelengths, ϑ = 27◦.

an increase in βr (or a decrease in λz) results in the reduction of the most unstable
wave frequency. The critical spanwise wavenumber at which disturbances become
unstable is βrc

= 2.2 (λzc
= 5.7). In addition, for spanwise wavenumbers lower than

approximately βr < 0.8 (λz > 15), the frequency of the predicted unstable waves
remains largely invariant up to βr = 0. The maximum growth rate also increases
as βr decreases to zero, suggesting that, at this stage, the most unstable modes are
normal TS waves that undergo convective amplification. The same conclusion can be
drawn by tracing the streamwise growth rate and amplification factor with respect to
the wave angle, ϑ = tan−1(βr/αr), shown in figures 14(b) and 14(c), respectively, for
St0 at several streamwise stations within the bubble. Once again, the most unstable
conditions correspond to ϑ = 0◦, i.e. to mode (1, 0).

The stability of oblique disturbances in the boundary layer upstream of separation
is assessed by examining the behaviour of the streamwise growth rate with respect
to the wave angle, ϑ . The growth rates corresponding to the most unstable frequency
are shown in figure 15(a) at several streamwise locations upstream of the critical point.
As expected, all of the disturbances are damped upstream of the critical location. The
same observations were made by Mack (1984) for a Blasius boundary layer (refer
to their figure 6.6), albeit in that case oblique waves are unstable. Also agreeing
with the findings in Mack (1984), is the variation of the growth rate of the oblique
waves with frequency, shown in figure 15(b), at the critical streamwise location, xc.
Figure 15(b) demonstrates that when two-dimensional disturbances begin to amplify,
i.e. at xc, oblique disturbances can be present, having growth rates comparable to or
higher than those of the normal perturbations of the same frequency.

It is instructive to compare the stability characteristics of the most amplified normal
mode (1, 0) and that of the oblique mode (1, 1) associated with the same frequency
and the spanwise wavenumber corresponding to the dominant spanwise wavelength
observed in the experimental data (figure 9). Figures 16(a) and 16(b) compare the
streamwise variation of the growth rates and amplification factors, respectively, for
these two modes. As expected, both modes are amplified downstream of xc and
experience comparable amplification rates up to the location of separation. The
same observation has been made by Rist (1999) and Rist & Augustin (2006) for
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FIGURE 15. (Colour online) Streamwise growth rates with respect to wave angle,
ϑ = tan−1(βr/αr). (a) Selected streamwise positions at St0 = 0.038 (136 Hz) and (b)
selected frequencies at xc = −47. The arrows indicate the wave angle estimated from the
experimentally observed wavelengths, ϑ = 27◦.
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FIGURE 16. (Colour online) (a) Streamwise amplification rate and (b) amplification factor
for the fundamental modes (1, 0) and (1, 1), calculated on the composite flow field.

oblique angles lower than 30◦. Once the separation point is approached, growth
of disturbances is enhanced. While the normal mode (1, 0) experiences stronger
growth than the oblique mode, the latter demonstrates growth rates of the same
order. In conjunction with the foregoing discussion, the implication here is that
the oblique mode (1, 1) can attain comparable magnitudes in the vicinity of the
separation location, and its superposition with the more amplified normal mode can
lead to vortex deformations observed in the present study (figure 7) and previous
investigations (e.g. Nati et al. 2015; Kurelek et al. 2016).

4.3. Two-dimensional impulsive forcing

In view of the uncertainty regarding the formation of oblique modes, the boundary
layer is impulsively forced in a two-dimensional manner by means of the plasma
actuator described in § 2.3. The goal is to promote the normal mode (1, 0) via a
controlled two-dimensional impulse. As a consequence, the normal mode is expected
to reach much higher amplitudes in the LSB relative to unforced oblique modes,
thereby diminishing the significance of the latter.

Figure 17 depicts Q-criterion values at several instants, for forcing amplitude
of Cµ = 1.6 × 10−4. An animated sequence of the flow development is provided
as supplementary material (movie 2). At τ = 0, flow in the measurement volume
is unperturbed, hence, strong spanwise deformation of the roll-up vortices is
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FIGURE 17. (Colour online) Instantaneous Q-criterion at several phases within a forcing
cycle at an amplitude of Cµ = 1.6 × 10−4. Grey, blue and red iso-surfaces correspond to
Q = 0, 0.002 and 0.006 respectively. Arrows mark the main wave packet vortex associated
with the forcing.

observed similar to the results shown in figure 7. The impulsively excited wave
packet reaches the measurement volume in figure 17(b), and the evolution of the
associated vortical structures is captured in figure 17(b–f ). The vortex evolving
directly from the impulse is marked by arrows in the images, and is followed by
another strong induced structure, similar to the results of impulsive forcing reported
by Michelis et al. (2017). The streamwise wavelength of these vortices is consistent
with that of the natural shedding and the linear stability predictions, which were
confirmed by wavelet analysis at the centre of the volume. In contrast to the natural
shedding, the rollers evolving from the impulse are strongly coherent along the
span and experience minimal spanwise deformation within the measurement volume.
Evidently, two-dimensional impulsive forcing is successful in suppressing spanwise
deformations through the promotion of the normal instability mode (1, 0), similar to
the observations of Postl et al. (2011).

Following the passage of the wave packet excited by the impulse over the
reattachment region, the bubble undergoes a rapid contraction followed by bursting, as
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FIGURE 18. (Colour online) Temporal variation of spanwise correlation coefficient based
on autocorrelation of the wall-normal velocity component along the spanwise direction.
The coefficients are normalised with the maximum value. Dashed line: lag matching the
spanwise wavelength determined with wavelet analysis.

discussed in detail by Michelis et al. (2017). Consequently, no clear evidence of shear
layer roll up is seen in figure 17(g). As the bubble contracts back to its unperturbed
state, weak spanwise structures re-emerge in figure 17(h), and quasi-steady natural
shedding with pronounced spanwise deformations resumes (figure 17i).

To determine the relative influence between normal and oblique modes under
forcing, autocorrelation analysis is performed on the wall-normal velocity component
extracted along the spanwise monitor line at the centre of the measurement volume
(x = 48.5, y = 1.8, see figure 8). The resulting temporal variation of the normalised
spanwise correlation coefficient prior to and after the introduction of the impulse
(τ = 0) is shown in figure 18. Evidently, for all time instants before the forced
wave packet reaches the monitor line, the spanwise correlation coefficient exhibits
negative peaks at 1z ≈ 18 (i.e. structures of opposite shape), corresponding to the
fundamental spanwise wavelength determined in the earlier analysis of the unforced
bubble (figure 9). This is a direct outcome of the staggered spatial arrangement of
the deformed rollers, which in turn is a result of linear interaction between normal
and oblique modes in the boundary layer upstream of separation (see §§ 3.2 and 4.2).
Similarly, weaker but positive correlation peaks at 1z ≈ 36 indicate the existence
of equal phase structures, forming the next group of rollers. When the wave packet
generated by the impulse reaches the monitor line (τ ≈ 3.5), correlation coefficients
reach uniform magnitudes across the span, approximately four times higher relatively
to the unforced conditions. In line with the visualisation in figure 17, these outcomes
point to a marked increase in the spanwise coherence of the shear layer vortices
and diminishing of staggering, induced by the forcing of the normal mode (1, 0).
It follows that once the bubble recedes, spanwise coherence diminishes until the
bubble recovers, hence, the spanwise correlation coefficient is approximately zero
between 5 < τ < 13. Note that due to the staggered topology of the rollers, spanwise
correlation coefficient peaks appear at twice the frequency of the shedding cycle.

4.4. Mechanism of initial spanwise vortex deformations

The identified differences in the development of shear layer vortices in the aft portion
of the bubble between natural and impulsively forced cases, combined with the
results of the linear stability analysis, point to the following mechanism responsible
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FIGURE 19. (Colour online) Waveforms of (a) mode (1, 0), (b) mode (1, 1), (c) mode
(1, −1) and their superposition in (d) natural and (e) forced conditions.

for spanwise vortex deformations in LSBs. Linear stability theory analysis shows that
normal and oblique modes of comparable growth rates can be present in the flow
upstream of separation (figure 15), undergoing convective amplification downstream
of the critical point (figure 16). The normal modes are the most amplified, their
amplification at the fundamental frequency leading to the shear layer roll up and
shedding seen in the aft portion of the bubble. However, a superposition of oblique
and normal modes upstream of separation, would lead to spanwise undulations of
the resulting perturbations that manifest in the observed spanwise deformations of
vortices (figure 8). Note that such undulations in the boundary layer can also occur
due to the interaction of two oblique modes alone (e.g. Berlin, Wiegel & Henningson
1999; King & Breuer 2002), however, this is not deemed to be the case for the
current study due to the presence of the normal mode (figure 12).

A simplified model of superposition of the fundamental normal mode (1, 0) with
the oblique mode (1, 1) and its mirrored counterpart (1,−1) is considered in figure 19.
These modes are labelled as n, b1 and b2 in figure 19(a–c), respectively. It should
be noted that the occurrence of the oblique mode (1, 1) will be accompanied by
its mirrored counterpart in a two-dimensional flow (Mack 1984). For simplicity, the
modes are modelled as sinusoidal waves whose salient characteristics are determined
based on the analysis of experimental data and stability calculations. First, the
superposition of these waves is considered for the unforced flow, namely, in the
naturally developing LSB. For a given mode, the amplitude at a given streamwise
location is given by A = A0eN , where A0 is the initial amplitude, A0 = A(xc), and N

is the amplification factor. Assuming that the initial amplitudes of the normal and
oblique waves are comparable, the ratio of their amplitudes at a given streamwise
location is given by

An

Ab

= eNn−Nb, (4.2)
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where the subscripts n and b identify the normal and oblique modes, respectively.
For the oblique angle that matches the average ratio of streamwise and spanwise
wavelengths determined experimentally (ϑ = 27◦, figure 9), the corresponding N

factors can be obtained from figure 16. At x = 40, located within the tomographic
field of view, figure 16 gives Nn = 8.3 and Nb = 7.1, leading to an amplitude ratio
between normal and oblique waves of Cnat = An/Ab = 3.3. The superposition of the
normal and oblique modes with this amplitude ratio is depicted in figure 19(d). The
results show distinct spanwise deformations similar to those observed in the vortex
filaments developing in the natural bubble (figure 7). It should be emphasised that
similar results can be obtained using oblique modes associated with other obliqueness
angles, with the most amplified modes corresponding to oblique angles below 30◦

(figure 14a), and that variations in the relative phase between the modes can change
the position of the spanwise crests and valleys.

A similar superposition can be carried out for the case of an impulsively forced
wave packet since flow stability characteristics do not change appreciably until the
induced perturbations reach the mean reattachment location (Michelis et al. 2017).
Here, the impulse effectively changes the initial amplitude of the normal mode,
significantly increasing its amplitude within the LSB relative to that of the oblique
modes. The amplitude of perturbations in the forced and unforced cases can be
represented by (4.3) and (4.4), respectively,

Af = Anf
+ Ab (4.3)

Anat = An + Ab, (4.4)

where the forced and natural conditions are defined by the subscripts f and nat,
respectively. Equation (4.3) assumes that the development of oblique waves is not
affected substantially by the actuator due to its two-dimensional geometry. The
amplitude ratio for the forced normal and oblique waves, Cf = Anf

/Ab, can be
obtained by taking the ratio of (4.3) and (4.4), and then utilising (4.2), leading to

Anf

Ab

=
Af

Anat

[e(Nn−Nb) + 1] − 1. (4.5)

The ratio Af /Anat can be estimated from measured velocity fluctuations, which
gives Af /Anat ≈ 10 at x = 40. Substituting this value and the amplification factors
corresponding to the same streamwise location, gives Cf = Anf

/Ab ≈ 40. The
superposition of the normal and oblique modes with this amplitude ratio is illustrated
in figure 19(e). The results demonstrate minimal spanwise deformations similar to
what is observed in the forced vortical structures (figure 17).

The presented model agrees with the experimental observations and serves to
confirm the proposed relation between vortex deformations and the amplification
of oblique perturbations in the fore portion of the separation bubble. Evidently,
in naturally developing LSBs, multiple oblique modes will be present, and their
superposition with the fundamental normal mode will produce more complex
deformations of the vortex filaments within a range of spanwise wavenumbers.
Indeed, the statistical analysis of the experimental data (figures 4 and 9) shows
that spanwise deformations are associated with a range of wavenumbers for a given
vortex filament and also vary from cycle to cycle. While a range of unstable modes
can be predicted by linear stability theory, the selection of the appearing structures
is governed by a complex receptivity process. As such, the characteristics of the
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dominant oblique waves will vary for different experimental facilities due to the
inevitable minor imperfections in model geometry and the content of the free-stream
perturbations. Nonetheless, the results of the present study show that oblique modes
are unstable upstream of the shear layer roll-up location and a presence of one or
multiple oblique modes will result in spanwise undulations in the dominant shear
layer rollers, which has been shown to be a precursor to vortex breakdown in the
aft portion of the bubble (Marxen et al. 2013; Kurelek et al. 2016). Along these
lines, the direct numerical simulations of Rist & Maucher (1994) in a similar bubble
(Reδ∗

s
= 1265, urev < 0.03U∞), indicate that transition is primarily influenced by oblique

modes rather than secondary instabilities. It should be emphasised that a superposition
of normal and oblique modes occurs upstream of separation and possibly in the fore
part of the LSB and serves as an initial spanwise perturbation of the vortices at
roll up, with the subsequent development of spanwise vortex deformations governed
by complex vortex dynamics, falling well beyond the purview of linear stability
theory. Furthermore, the development of vortices in the aft portion of the bubble
involves other, more complex instabilities responsible for vortex splitting and merging
(figure 7) and the eventual vortex breakdown (Marxen et al. 2013).

The current findings shed light on the underlying physics responsible for the
differences in the development of roll-up vortices seen in different previous studies.
For example, for an LSB on a NACA 0018 aerofoil, progressive development of
spanwise deformations within a range of spanwise wavenumbers was recently reported
by Kurelek et al. (2016) (see their figures 14 and 15), who propose a model linking
local vortex breakdown to the development of crests in vortex filaments. Similar
progressive spanwise vortex deformations have been observed by Nati et al. (2015)
on an SD 7003 aerofoil. The results of Burgmann & Schröder (2008) and Hain
et al. (2009) show a more pronounced onset of vortex deformations on an SD 7003
profile at comparable Reynolds numbers (see their figures 16 and 25, respectively).
The observed differences are attributed to the different relative magnitudes of the
dominant normal and oblique modes in the respective studies, which, as discussed
earlier, are dependent on both the stability characteristics and specific experimental
environment. This is further substantiated by the direct numerical simulations of
Jones et al. (2008). They observe strongly deformed roll up in the LSB subjected to
three-dimensional forcing (see their figure 11a), i.e. when both normal and oblique
modes are promoted, while spanwise coherent vortices form when such forcing is
removed (see their figure 11b). Thus, similar to the results of the proposed model
(figure 19), the degree of the spanwise deformation of the rollers is related to the
relative strength of the fundamental normal and oblique instability modes in a given
flow scenario. Furthermore, this provides an explanation for the observed delay in
vortex breakdown in recent studies where the development of the normal mode
was promoted via two-dimensional forcing (e.g. Michelis et al. 2017; Yarusevych &
Kotsonis 2017a).

Finally, it has to be emphasised that the discussed model is applicable in flow
scenarios with relatively low levels of free-stream turbulence and surface roughness.
At higher levels of free-stream or localised perturbations, pronounced streamwise
structures can develop in the attached boundary layer (Brinkerhoff & Yaras 2011;
Rao et al. 2014; Brinkerhoff & Yaras 2015) and, in the extreme cases, bypass
transition can be triggered (Jacobs & Durbin 2001). In addition, the investigated
bubble is characterised by mild reverse flow velocities, so that the transition process
is dominated by the interaction of convective disturbances. For stronger reverse flow
conditions ('7 %), absolute/global instability considerations are warranted.
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5. Summary and concluding remarks

An experimental investigation is carried out in order to investigate three-dimensional,
spatio-temporal flow development in a laminar separation bubble and to elucidate its
relation to flow stability. A separation bubble is formed on the flat plate subjected
to an adverse pressure gradient. The LSB features reverse flow of approximately
2 % of the local free-stream velocity, where the bubble dynamics is driven primarily
by convective instabilities. Time-resolved velocity measurements are performed by
means of planar and tomographic particle image velocimetry. The measurements are
complemented with a numerical solution of the boundary layer equations, which
allows for a joint analysis of the flow in the attached and separated flow regions.
The stability characteristics of the combined flow field are assessed by means of
linear stability theory. In addition to the natural evolution of the flow within a
laminar separation bubble, deterministic, two-dimensional, impulsive forcing via
a DBD plasma actuator is employed to assess the effect of forcing the normal
instability mode on the bubble dynamics. The results show that a strong amplification
of disturbances in the LSB leads to shear layer roll up and shedding of spanwise
oriented vortices in the aft portion of the bubble. However, these structures are shown
to develop distinct spanwise deformations followed by complex vortex interactions,
involving vortex splitting, merging and the development of weaker streamwise vortex
connections. Wavelet analysis in spatial formulation demonstrates that the spanwise
deformations for a given vortex involve a range of wavelengths, with a statistical
mean streamwise to spanwise wavelength ratio of approximately 1 : 2.

In order to elucidate the mechanism pertinent to the incipient spanwise deformations
of the vortices in the LSB, linear stability theory analysis is performed. The results
demonstrate that the flow becomes unstable in the adverse pressure region upstream of
separation. Upstream of the critical point, oblique modes are less damped compared
to the normal modes. However, downstream of the critical point, the normal mode is
the most amplified, while the predicted frequency of the most amplified disturbances
matches that of the vortex shedding frequency, linking the shear layer roll up to the
amplification of the normal fundamental mode. At the same time, oblique instabilities
are also shown to amplify substantially downstream of the critical point, with the
highest amplification rates associated with oblique angles below approximately 30◦.
Moreover, within this range of oblique angles, the growth rate of oblique modes
remains virtually invariant to frequency, with the largest growth associated with
the fundamental frequency of the most amplified normal mode. Thus, both normal
and oblique waves are amplified in the fore portion of the separation bubble, and
their superposition would produce spanwise undulation in the shed vortices, with the
degree of such initial undulation being dependent on the relative amplitude of the
dominant normal and oblique modes. This is further reaffirmed by the outcomes of
frequency–wavelength spectra within the tomographic PIV domain, elucidating the
existence of both oblique and normal modes.

Impulsive, two-dimensional forcing results in the emergence of a convectively
unstable wave packet whose frequency is determined through selective amplification
and matches the fundamental frequency of the unforced case. The results demonstrate
that the vortical structures produced by the impulsive perturbation feature strong
spanwise coherence, significantly differing from the vortices produced in the naturally
developing flow. This is attributed to the promotion of the normal mode through
two-dimensional forcing. A simplified linear superposition model is presented
to illustrate that the observed differences in vortex topology are attributed to
the superposition of normal and oblique instability modes of different amplitude.
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Utilising the linear stability calculations and measurements, it is shown that a
superposition of the fundamental normal and oblique waves of comparable magnitudes
leads to substantial spanwise deformations of the most amplified perturbations in the
natural separation bubble. In contrast, when two-dimensional forcing is engaged, the
relative amplitude of the normal mode is increased by an order of magnitude, leading
to a significant increase in the spanwise uniformity of the vortices at formation.

The present study demonstrates that, for an LSB with mild reverse flow magnitude
(≈2 % of the local free-stream velocity) the initial spanwise perturbations of the
dominant vortical structures at formation is driven by the superposition of the normal
and oblique modes amplified well upstream of separation, and the initial amplitude
of such a deformation is dictated by the relative amplitude of the modes. Similar
‘oblique breakdown’ of primary shear layer vortices has been recently observed in
numerical simulations where oblique modes were forced artificially (Marxen 2017).
While deviations are expected based on specific flow conditions, it appears that such
a scenario for the late stages of transition is favoured in the case of mild reverse flow
magnitudes (up to 2 % for this study) and a relatively shallow angle of the oblique
mode pair.

Further development of the perturbed vortex filaments is governed by the attendant
vortex dynamics, leading to complex vortex interactions and the eventual breakdown
of the structures. In practice, the initial amplitude of spanwise perturbations will
vary based on the receptivity and stability conditions for a given flow, as well
as the nature of the experimental conditions such as free-stream environment and
geometric imperfections. This explains the differences in vortex dynamics observed in
relevant studies (Burgmann et al. 2008; Nati et al. 2015). In particular, while distinct
deformations of vortex filaments were observed, their severity varied significantly
between the studies due to the aforementioned considerations, thereby affecting
substantially the flow dynamics in the aft part of the bubble and, hence, the overall
flow topology. The current results also show that the promotion of the fundamental
normal mode can serve to reduce significantly the spanwise deformation of the shear
layer vortices, thereby delaying vortex breakdown, as seen in Postl et al. (2011)
and Michelis et al. (2017). Alternatively, oblique forcing can be used to reduce the
spanwise coherence of vortices at roll-up and accelerate their decay, which is of
interest, for example, for the control of trailing edge tonal noise produced by these
structures (e.g. Pröbsting & Yarusevych 2015).
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