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Abstract. Differential forms on an odd symplectic manifold form a bicomplex: one differ-

ential is the wedge product with the symplectic form and the other is de Rham differential.

In the corresponding spectral sequence the next differential turns out to be the Batalin–

Vilkoviski operator.
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1. Introduction

The Batalin–Vilkovisky (BV) operator [1] plays an important role in quantization

of gauge theories. Its invariant meaning was discovered by Khudaverdian [2,3]. He

noticed that if x i , pi are local Darboux coordinates on a supermanifold M with

an odd symplectic structure, the operator

�=
∂

2

∂x i∂pi

,

acting on semidensities on M , is independent of the choice of coorditates. He also

noticed that semidensities on the symplectic supermanifold restrict to densities on

Lagrangian submanifolds, which then can be integrated (this explained invariantly

the gauge fixing in the BV formalism).

The aim of this note is to find a natural interpretation of this somewhat miracu-

lous operator. The basic problem is to find an intrinsic (i.e. coordinate-free) inter-

pretation of (semi)densities, which are on supermanifolds usually defined using

coordinate transformations. Fortunately, there is a (little known) intrinsic interpre-

tation of Berezinian due tu Manin [4], which gives rise to a simple intrinsic inter-

pretation of semidensities on M , makes the fact that they restrict to densities on

Lagrangian submanifolds to a tautology, and leads to a natural construction of

the BV operator, which is the subject of this note.
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2. Two Differentials on Odd Symplectic Supermanifolds

In what follows, let M be a supermanifold with an odd symplectic form ω. On

�(M) we have two anticommuting differentials: one is de Rham’s d and the other

is the wedge product with ω. We shall find that the Khudaverdian BV operator is

(rougly speaking) the third differential of the spectral sequence of this bicomplex.

THEOREM. Let (M,ω) be an odd symplectic supermanifold. In the spectral

sequence of the bicomplex (�(M), ω∧, d) we have:

(1) the cohomology of the complex (�(M), ω∧) is naturally isomorphic to the semi-

densities on M

(2) the next differential in the spectral sequence, de Rham’s d, vanishes on the coho-

mology of (�(M), ω∧)

(3) the next differential (d◦ (ω∧)−1 ◦d) coincides with the BV operator

(4) all higher differentials are zero.

The proof of this theorem is completely straightforward; we shall do it leisurely

in the rest of this note. Let us remark that the theorem remains true when one

replaces �(M) (differential forms on M) with pseudodifferential forms on M ; our

choice is basically a matter of taste.

3. Cohomology of ω∧

It is fairly simple to describe the cohomology of the complex (�(M), ω∧) in local

Darboux coordinates x i , pi (i = 1, . . . ,n, ω = dpi ∧ dx i ), where x i are the even

coordinates and pi the odd coordinates. Let U ⊂ M be the open subset covered

by the coordinates. Then any cohomology class of (�(U ), ω∧) has unique repre-

sentative of the form

f (x, p)dx1 ∧dx2 ∧· · ·∧dxn . (1)

In other words, using the coordinates, we can locally identify H (�(M), ω∧) with

functions on M (this identification does depend on the choice of coordinates; the

cohomology classes are rather sections of a line bundle over M).

To prove this claim we split (�(U ), ω∧) into subcomplexes: we assign an aux-

iliary degree 1 to each dx and −1 to each dp, and denote this degree auxdeg (x ’s

and p’s will have auxdeg=0); since auxdegω=0, the subspaces of �(U ) of fixed

auxdeg are subcomplexes. We shall see that each of them has zero cohomology,

except for the one with auxdeg=n, where the differential vanishes. We shall prove

it using an explicit homotopy. Let us consider the operator L:�(U )→�(U ) given

by

L:α �→∂x i �∂pi
�α.
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A direct computation shows that

L ◦ (ω∧)+ (ω∧)◦ L :α �→ (n −auxdegα)α.

This concludes the proof.

Now we also see that d is 0 on H (�(M), ω∧), since

d( f (x, p)dx1 ∧dx2 ∧· · ·∧dxn)=
∂ f

∂pk

dpk ∧dx1 ∧dx2 ∧· · ·∧dxn,

which is ω∧-exact (having auxdeg=n −1).

4. The Third Differential

Let us now compute the third differential d◦ (ω∧)−1 ◦d in local Darboux coordi-

nates. We have

d( f (x, p)dx1 ∧dx2 ∧· · ·∧dxn)=ω∧α,

where

α = L(d( f (x, p)dx1 ∧dx2 ∧· · ·∧dxn))=
∂ f

∂pk

∂xk �dx1 ∧dx2 ∧· · ·∧dxn

and dα is (up to a ω∧-exact term)

∂
2 f

∂xk∂pk

dx1 ∧dx2 ∧· · ·∧dxn .

The third differential in the spectral sequence is thus equal to the BV operator

�=
∂

2

∂xk∂pk

.

Now if M is contractible and admits global Darboux coordinates, the cohomol-

ogy of � is isomorphic to R (since � can be identified with de Rham’s d on a con-

tractible subset of R
n), and any �-cohomology class has a representative in �(M)

which is a constant multiple of dx1 ∧dx2 ∧· · ·∧dxn . This representative is d-closed

and thus is annuled by all higher differentials in the spectral sequence. Since any

M can be covered by such patches, these higher differentials vanish for any M .

This concludes the proof of the theorem, except for the part (1).

5. Semidensities

Now we’ll prove the part (1) of the theorem. We locally identified the cohomology

of H (�(M), ω∧) with functions on M by choosing the representant (1); it is fairly

easy to see that when we pass to another system of local Darboux coordinates,

the function f gets multiplied by the square root of the corresponding Berezinian.
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We shall however give a different proof, using Manin’s cohomological interpreta-

tion of Berezinian [4]. The claim we are proving here, together with the proof, is

taken from [5].

Let us recall Manin’s idea. Let V be a vector supespace. Let us choose a vector

superspace W with an odd symplectic form ω∈
∧2

W ∗, such that V is its Lagrang-

ian subspace (for example W =V ⊕�V ∗). Then Ber(V ∗) (the one dimensional vec-

tor space of constant densities on V ) is defined as the cohomology H
(
∧

W ∗, ω∧
)

(this definition is easily seen to be independent of the choice of W ).

If now V ′ is a Lagrangian complement of V in W , then again Ber(V ′∗) =

H
(
∧

W ∗, ω∧
)

; on the other hand,

Ber(W ∗)=Ber(V ∗)⊗Ber(V ′∗)= H
(
∧

W ∗, ω∧
)⊗2

,

and thus H
(
∧

W ∗, ω∧
)

=Ber(W ∗)1/2 (we should write everywhere “naturally iso-

morphic” instead of “equal”, but hopefully it’s not a big crime). This identity is

valid for any vector superspace with an odd symplectic form. We apply it to the

bundle of symplectic vector spaces T M , which concludes the proof.

6. Final Remarks

1. We should say a few remarks about the spectral sequence of the bicomplex

(�(M), ω∧, d), since �(M) is not bigraded. The spectral sequence is con-

structed in this way: we take �(M)[�] (differential forms on M depending poly-

nomially on an indeterminate �; we could just as well take �(M)[[�]]), with the

differential �d+ω∧. Then multiplication by � is an endomorphism of the com-

plex (�(M)[�],�d + ω∧), and our spectral sequence is the Bochstein spectral

sequence of this endomorphism. That is, we start with the short exact sequence

of complexes

0→ (�(M)[�],�d+ω∧)
�·
→ (�(M)[�],�d+ω∧)→ (�(M),ω∧)→0,

out of which we get the exact couple

H(�(M)[�],�d+ω∧)
(�·)∗
−→ H(�(M)[�],�d+ω∧)

տ ւ

H(�(M),ω∧)

which generates the spectral sequence. If we denote E∞ its ultimate term, we

have

H
(

�(M)[�,�
−1],�d+ω∧

)

∼= E∞[�,�
−1]

(and also H
(

�(M)[[�]][�−1],�d+ω∧
)

∼= E∞[[�]][�−1]).

2. The odd symplectic form ω on M gives us an isomorphism between �(M) and

Ŵ(ST M), i.e. the space of polynomial functions on T ∗M . This isomorphism



ON THE ORIGIN OF THE BV OPERATOR 59

transfers ω∧ to multiplication by the odd Poisson structure π corresponding to

ω (recall that since π is an odd Poisson structure, it is a function on T ∗M), and

d to {π, ·} (where {, } is the Poisson bracket on T ∗M); the differential �d +ω∧

becomes π +�{π, ·}. This suggests some generalizations, e.g. we can take an odd

Poisson structure which is not symplectic, or more generally, instead of T ∗M

we can take an aritrary supermanifold with an even symplectic form, and con-

sider on it an odd function π such that {π,π}=0. The spectral sequences would

still be defined, but it is not clear to me if they are good for anything.

3. The result in this note is extremely simple; it is written with the hope that it

might be helpfull in situations where BV-like operators are much less trivial.
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