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Abstract
Background: Histones organize the genomic DNA of eukaryotes into chromatin. The four core

histone subunits consist of two consecutive helix-strand-helix motifs and are interleaved into

heterodimers with a unique fold. We have searched for the evolutionary origin of this fold using

sequence and structure comparisons, based on the hypothesis that folded proteins evolved by

combination of an ancestral set of peptides, the antecedent domain segments.

Results: Our results suggest that an antecedent domain segment, corresponding to one helix-

strand-helix motif, gave rise divergently to the N-terminal substrate recognition domain of Clp/

Hsp100 proteins and to the helical part of the extended ATPase domain found in AAA+ proteins.

The histone fold arose subsequently from the latter through a 3D domain-swapping event. To our

knowledge, this is the first example of a genetically fixed 3D domain swap that led to the emergence

of a protein family with novel properties, establishing domain swapping as a mechanism for protein

evolution.

Conclusion: The helix-strand-helix motif common to these three folds provides support for our

theory of an 'ancient peptide world' by demonstrating how an ancestral fragment can give rise to

3 different folds.

Background
The organization of DNA into chromatin allows its com-
pact and reversible packaging into the nucleus of a eukary-
otic cell. The basic structural unit of chromatin is the
nucleosome [1], which consists of 146 base pairs of dou-
ble-stranded DNA wrapped around an octameric histone
core complex [2]. The core complex is composed of two
copies of each of the histone proteins H2A, H2B, H3, and
H4, organized as a central (H3-H4)2 tetramer flanked by
two H2A-H2B dimers [3]. Despite low sequence similar-
ity, all core histone subunits share a common fold; they
are composed of three helices separated by two short strap
loops and assemble into heterodimers by interleaving the

helices into the 'handshake motif' and juxtaposing the
strap loops into short parallel β-bridges [3]. This fold may
have arisen through the duplication of a primordial helix-
strand-helix motif [4,5], consistent with the hypothesis
that folded proteins arose by the combination of sub-
domain-sized peptides, the so-called antecedent domain
segments [6-8].

Archaea also wrap their DNA into nucleosome-like struc-
tures [9]; their constituent histone subunits assemble into
tetramers, which may reflect an ancestral form of the cen-
tral part of the eukaryotic nucleosome octamer, the (H3-
H4)2 tetramer [10]. Archaeal histone subunits are occa-
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sionally duplicated on a single polypeptide chain [11], a
form observed in eukaryotes only in the histone-like
domain of the son of sevenless protein [12].

Bacteria also have nucleoid proteins with histone-like
properties [13], but these belong to a different, unrelated
fold. However, a homolog of archaeal single-chain his-
tones was recently reported from the bacterium Aquifex
aeolicus (1R4V) [14]. Further homologs appear in the
genomes of a few, phylogenetically diverse bacteria. It
thus seems likely that the histone fold originated in the
common ancestor of eukaryotes and archaea and spread
into some bacteria through lateral gene transfer.

In an all-against-all application of HHsearch [15] to the
SCOP database (JS, unpublished results) we found an
evolutionary relationship between histone proteins and
the helical part of the extended AAA+ ATPase domain, the
C-domain [16,17]. Based on this finding, we used
sequence and structure comparisons to reconstruct in
detail the evolutionary events that may have shaped the
histone fold. Our results point to a common origin not
only with the C-domain but also with the N-terminal sub-
strate recognition domain of Clp/Hsp100 proteins [18].
The conserved element is a helix-strand-helix motif,
which we propose gave rise divergently to these three dif-
ferent folds and thus represents an antecedent domain
segment.

Results
Homology between proteins is typically inferred from
similarities in sequence and structure. Sequence similarity
is the primary criterion for deducing a common origin,
but for distant evolutionary events, sequences may have
diverged beyond our ability to detect their relatedness.
Structures diverge much more slowly and their similarity
is therefore often used to identify such distant events.
However, similar structures may have arisen convergently
from different origins and their similarity thus frequently
does not provide conclusive evidence of common ances-
try. In this study we applied a new, highly sensitive
method for sequence comparison based on profile Hid-
den Markov Models (HMMs) to identify distant
homologs of histones on the basis of sequence similarity
alone. Subsequently, we validated our findings through
structure comparisons.

HMM-HMM comparisons

We used HHpred [15,19], a sensitive HMM-to-HMM
comparison method, to detect homologs of the histone
fold by searching the SCOP25 database [20] with
sequences from the three protein families with this fold:
archaeal histones, nucleosome core histones and TBP-
associated factors. As expected, these identified each other
as their best matches with high statistical significance (Fig.

1). Remarkably, their subsequent matches were consist-
ently to the helical part of the extended ATPase domains
found in AAA+ proteins (the C-domain) [16]. Good
matches to a third protein family, the N-terminal domain
of Clp/Hsp100 proteins (Clp N-domain), were frequently
obtained [18]. Reciprocal searches with a set of C-domain
sequences confirmed the similarity of these protein fami-
lies (Fig. 1).

We found two high-scoring matches with other folds.
These are an alanyl tRNA synthetase (1RIQ, a.203.1.1,
identified by the histone entry 1JFI), and the zeta subunit
of a plasmid maintenance system (1GVN, c.37.1.21, iden-
tified by two C-domains: 1LV7 and 1R7R). Subsequent
analysis could not confirm these matches as homologs.

Analysis of sequence and structure conservation

The surprising aspect of these findings is that histones, C-
domains and Clp N-domains belong to three different
folds (Fig. 2A–C). Histones are dimeric, interleaved heli-
cal bundles, as described in the Background section. C-
domains are four-helix bundles composed of two consec-
utive helix-strand-helix motifs [17]. Clp N-domains,
finally, are multihelical domains formed by the repetition
of a 4-helical motif [21]. Although these three protein
families have different topologies, they all incorporate
two copies of the helix-strand-helix motif, which engages
in the formation of a short parallel β-bridge. In the his-
tone dimer, the β-bridge is formed by the association of
one helix-strand-helix motif from each monomer, in the
C-domain by the association of the two motifs consecu-
tive in the polypeptide chain, and in the Clp N-domains
by the association of each motif with an N-terminal strand
of the symmetry-related motif.

The similarities detected by HMM-to-HMM comparison
are limited to these helix-strand-helix motifs. Histones
and C-domains both contain two consecutive copies of
the motif and can be aligned over essentially their entire
length (Fig. 3A). Clp N-domains contain two motifs dec-
orated by two helices and each motif has its best matches
to the C-terminal motif of histones and C-domains (Fig.
3A). The sequence alignment shows extensive similarity in
the hydrophobic patterns of the three folds, but no highly
conserved residues other than two Alanines in the core of
the second helix-strand-helix motif, which allow for close
packing interactions at the crossover point between the
helices.

A structural comparison of the three folds shows that C-
domains can be superimposed onto one half of the his-
tone fold with root-mean-square deviations (rmsd) of
around 1.5Å (Table I). The main difference between the
two folds lies in the fact that the two helix-strand-helix
motifs of C-domains are connected by a hinge region,
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Results of HHpred searches of the SCOP25 database with histone sequences and C-domainsFigure 1
Results of HHpred searches of the SCOP25 database with histone sequences and C-domains. The relative fre-
quencies of SCOP families encountered in the searches are plotted against the HHpred probabilities as described in the Meth-
ods (searches with histones – top panel; searches with C-domains – bottom panel). Histones (SCOP a.22) are colored in 
green, C-domains (SCOP c.37.1.20; also includes the misclassified a.49.1.1) in blue, Clp N-domains (SCOP a.174) in red and 
others in gray.
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while they are continuous in histones, requiring dimeriza-
tion to form the hydrophobic core (Fig. 3B). The similar-
ity between histones and Clp N-domains is also in the
range of 1.5Å rmsd, but extends only over the C-terminal
helix-strand-helix motif of histones.

Discussion
Domain swapping as mechanism for protein evolution

The results presented here suggest an evolutionary link
between histones and the C-domains of AAA+ proteins,
despite differences in their topology. We propose 3D
domain swapping as the mechanism that accounts for
their structural differences. 3D domain swapping is a
process by which two or more identical proteins exchange
a domain to form interlocked oligomers [22], in which all
of the packing interactions that stabilize the monomer are
present. The swapped portions can range from a single
secondary structure element to an entire domain. In the
simplest case the native fold, normally constituted by a
single 'closed' monomer, is reconstituted by two so-called
'open' monomers. This reciprocal swap leads to a
homodimer, whereas the runaway domain swap, in
which swapping propagates along an axis in an open-

ended manner, has been proposed to contribute to amy-
loid fibril formation [23-25].

Up to now, about 40 proteins have been shown to be able
to undergo 3D domain swapping [26], and several studies
indicate a physiological role of this mechanism in allos-
tery and signal transduction [27-29]. A precondition is the
presence of a flexible loop or hinge, about which the
swapped elements can rotate in order to form a pair of
'open' monomers. The primary intervention by which 3D
domain swaps have been engineered into monomeric
proteins is through the shortening of the hinge, thus pre-
venting the packing of part of the protein into its native
location and forcing a swap, such as in domain 1 of lym-
phocyte antigen CD2 [30], staphylococcal nuclease [31],
single-chain Fv fragments [32,33], in a 3-helix bundle
designed by Ogihara et al. [34].

Our results suggest that such a shortening of the hinge
region, which connects the two helix-strand-helix motifs
of the AAA+ C-domain, led to a 3D domain swap. The
event caused head-to-tail dimerization of monomers,
which thereby recovered the lost interactions between the

The structure of histones, C-domains and Clp N-domainsFigure 2
The structure of histones, C-domains and Clp N-domains. (A) The histone of Methanothermus fervidus (1B67); the N-
terminal helix-strand-helix motif in each subunit is colored yellow and the C-terminal motif green. (B) The C-domain of the 
helicase RuvB (1IN4); the motifs are colored as in the histone subunits. (C) Clp N-domain of ClpA (1K6K); the two helix-
strand-helix motifs are colored green.

A B C
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Sequence and structure comparisons of histones, C-domains and Clp N-domainsFigure 3
Sequence and structure comparisons of histones, C-domains and Clp N-domains. (A) Multiple sequence alignment 
of representative members of each fold. Residues in helices are colored yellow in histones, blue in C-domains, and green in Clp 
N-domains; residues in β-bridges are colored red. Structurally equivalent residues are shown in capital letters and residues 
forming the hydrophobic core are shown bold. The sequences are labeled by their PDB codes; the numbers in brackets refer 
to the residue number for the first residue in the alignment. (B) Global superposition of the proteins listed in panel A. The 
superposition was made using the archaeal histone HMfA (1B67) as a reference structure. Quantitative information on the 
results of the superposition is provided in Table 1. The coloring is as in panel A; in addition, the hinge region of C-domains is 
highlighted in black.

A

Histone fold                               αααα1                                   ββββ1                          αααα2-------------------αααα2                                                ββββ2                   αααα3 
1b67_A (2)   -gelpIAPIGRIIKNAGAe------RVS-DDARIALAKVL----------EEMGEEIASEAVKLAKHAGR-KTIK---AEDIELARKMf 

1taf_A (19)  --pkdAQVIMSILKELNVq------EYE-PRVVNQLLEFT----------FRYVTSILDDAKVYANHARK-KTID---LDDVRLATEVt 

1taf_B (3)   gssisAESMKVIAESIGVg------SLS-DDAAKELAEDV----------SIKLKRIVQDAAKFMNHAKR-QKLS---VRDIDMSLKV- 

1tzy_A (21)  glqfpVGRVHRLLRKGNYae-----RVG-AGAPVYLAAVL----------EYLTAEILELAGNAARDNKK-TRII---PRHLQLAIRNd 

1tzy_B (33)  rkesySIYVYKVLKQVhpdt-----GIS-SKAMGIMNSFV----------NDIFERIAGEASRLAHYNKR-STIT---SREIQTAVRLl 

1tzy_C (62)  rklpfQRLVREIAQDFKtdl-----RFQ-SSAVMALQEAS----------EAYLVGLFEDTNLCAIHAKR-VTIM---PKDIQLARRIr 

1tzy_D (27)  -qgitKPAIRRLARRGGvk------RIS-GLIYEETRGVL----------KVFLENVIRDAVTYTEHAKR-KTVT---AMDVVYALKRq 

C-domain of AAA+                   αααα1                                  ββββ1              αααα2             hinge                               αααα3                                 ββββ2                   αααα4 
1in4_A (181) tVKELKEIIKRAASLMDV-------EIE-DAAAEMIAKR-srgt------PRIAIRLTKRVRDMLTVVKA-DRIN---TDIVLKTMEVl 

1r6b_A (350) sIEETVQIINGLKPKYeahhdv---RYT-AKAVRAAVEL-avkyindrhlPDKAIDVIDEAGARARLMpvskrkktvnVADIESVVARi 

1lv7_A (326) dVRGREQILKVHM--rrv-------PLApdidAAIIARG-tpgfs-----GADLANLVNEAALFAARGNK-RVVS---MVEFEKAKDKi 

1ny5_A (314) rKEDIIPLANHFLKKFsrkyakevegFT-KSAQELLLSYpwygn------VRELKNVIERAVLFSegk----FID---RGELSCLV--- 

1g8p_A (220) dVETRVEVIRRRDTYD|V-------EAP-NTALYDCAAL-cialgs--dgLRGELTLLRSARALAALEGA-TAVG---RDHLKRVAT-- 

Clp-N motif                                                                     [ββββ2]                                                                       αααα1                                ββββ1                   αααα2 
1k6k_A (4)   ------------------------[qpt]----------------------QELELSLNMAFARAREHRH-EFMT---VEHLLLALLSn 

1k6k_A (82)  ------------------------[mln]----------------------LSFQRVLQRAVFHVQSSGR-NEVT---GANVLVAIFSe 

1khy_A (8)   ------------------------[qps]----------------------NKFQLALADAQSLALGHDN-QFIE---PLHLMSALLNq 

1khy_A (85)  ------------------------[rlt]----------------------QDLVRVLNLCDKLAQKRGD-NFIS---SELFVLAALEs 

B
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two helix-strand-helix motifs, and resulted in the emer-
gence of the histone fold (Fig. 4). Following the proposal
that domain swapping might contribute to protein evolu-
tion [22,35], we present here the first concrete example.

A primordial helix-strand-helix motif

The helix-strand-helix motif, which is at the core of the
similarity between histones and C-domains, is also found
in Clp N-domains, which assume yet a third fold. Here,
the motif is decorated with two C-terminal helices, and

two copies of this extended, 4-helical motif are fused in
antiparallel orientation. Thus, three different folds appear
to have been built from a common helix-strand-helix
motif. One theory for the origin of folded proteins pro-
poses that they arose by fusion and recombination from
an ancestral set of peptides, which emerged in the context
of RNA-dependent replication and catalysis (the 'RNA
world') [6-8]. The helix-strand-helix motif would be such
an ancestral peptide, which gave rise divergently to the
Clp N-domain and the AAA+ C-domain through two

Evolutionary scenario for the origin of three folds from an ancestral helix-strand-helix motifFigure 4
Evolutionary scenario for the origin of three folds from an ancestral helix-strand-helix motif. The coloring and 
representative proteins are as in Fig. 2. The superimposed ensemble of helix-strand-helix motifs consists of motifs from the fol-
lowing proteins: yellow (1IN4: residues 181–212; 1B67: 4–33), green (1IN4: 216–251; 1B67: 134–166; 1K6K: 82–115).
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independent events of duplication and fusion (Fig. 4).
The C-domain then evolved into the histone fold by 3D
domain swapping. This scenario extends a previous
hypothesis on the origin of eukaryotic core histones,
which proposed that they evolved from the duplication of
a single helix-strand-helix motif [4,5].

In this study we have deduced homology based on simi-
larities in sequence and structure. We are aware that
homology of proteins is an assumption inferred from
heuristics, of which sequence similarity is generally
accepted as the best indicator. Structural similarity alone,
especially of small fragments, does not necessarily imply
evolutionary divergence, since it may result from general
biophysical constraints. Indeed, we find a number of α-
helical hairpins in the PDB with a high degree of structural

similarity to the helix-strand-helix motif (rmsds of less
than 1.5Å); some examples include hairpins from fumer-
ate reductase (1QLA_A, residues 65–94) and tetracycline
repressor-like protein (1T33_A, residues 144–173). How-
ever, none of them show detectable sequence similarity to
each other or to the proteins in our study. This shows that
the constraints of structure on sequence variability are not
sufficient to explain the observed sequence similarity
between histones, C-domains, and Clp N-domains.

Functional implications

An interesting structural feature common to all three folds
is the presence of one or two short, parallel β-bridges
formed by the strands of the helix-strand-helix motifs. In
histones, these β-bridges provide the main site of interac-
tion with the phosphate backbone of DNA (Fig. 5). In Clp

Involvement of the β-bridge in macromolecular interactionsFigure 5
Involvement of the β-bridge in macromolecular interactions. The coloring of helix-strand-helix motifs is as in Fig. 2, 
except the β-bridges are colored red. (A) The histone H3-H4 complex bound to DNA (1S32); residues of the β-bridges 
engaged in interactions with the phosphate backbone are shown in stick representation. (B) ClpS in complex with ClpA 
(1LZW, 1R6B); the ATPase domain is in light blue and ClpS in cyan.

ClpS

ATPase domain
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BA
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N-domains, one of the two β-bridges binds the adaptor
molecule ClpS [18,21] (Fig. 5). Although the binding sites
of the AAA+ C-domains have not been characterized yet,
it thus seems attractive to propose that here also the single
β-bridge formed in this domain represents the main bind-
ing site. C-domains play an important role in sensing the
nucleotide bound by the AAA+ proteins [36-38] and are
located close to the substrate-binding N-domains (Fig. 5),
projecting radially at the circumference of the hexameric
ring complex. We note in this context that C-domains are
frequently rich in positively charged residues and that in
the Lon protease, the C-domain has been implicated in
interactions with DNA [39]. We propose that the helix-
strand-helix motif served as a scaffold for the formation of
parallel β-bridges. Ancestrally, these bridges bound pro-
teins, but in a few C-domains they also acquired the abil-
ity to bind DNA, eventually leading to histones as
proteins that only bind DNA at these sites.

Conclusion
We have retraced the evolutionary events which may have
shaped the histone fold and have found connections to
two other folds; the N-terminal substrate recognition
domain of Clp/Hsp100 proteins and the helical part of
the extended AAA+ ATPase domain. These 3 folds contain
a homologous helix-strand-helix motif, despite the differ-
ences in the topology, leading us to propose a scenario for
the origin of these folds from a common ancestral helix-
strand-helix motif through events of duplication, fusion
and 3D domain swapping. The short functional parallel β-
bridges formed by the strands of the helix-strand-helix
motifs seem to be the evolutionary driving force for the
conservation of this motif. Our findings provide addi-
tional support for our previously proposed hypothesis

that the diversity of today's folds might have arisen from
an ancestral set of peptides.

Methods
We obtained histone and Clp N-domain sequences from
the ASTRAL compendium [40] as defined by the SCOP
(version 1.71) [20] folds a.22 and a.174, respectively, and
reduced the set to less than 25% pairwise identity at 90%
length coverage using BLASTCLUST [41]. C-domains are
not characterized as a separate fold in SCOP; we extracted
their sequences from the 'extended AAA-ATPase' family
(c.37.1.20) of the SCOP database by a procedure
described by Ammelburg et al. [17] and also reduced this
set to less than 25% pairwise identity.

We used these sequences to search the SCOP25 database
for homologs with HHpred [15,19], at default parameters
and a probability cutoff of 10%. The SCOP25 database is
a version of SCOP filtered for a maximum of 25% pair-
wise sequence identity. For each group, we pooled all
search results and tabulated the frequencies at which var-
ious SCOP families appeared at each probability, binned
at 10% intervals.

The histone, C-domain and Clp N-domain structures were
superimposed interactively in Swiss-PDB viewer [42]. We
chose the archaeal histone HmfA (1B67) as the reference
structure, as it made the highest number of connections
both in sequence and structure searches. Quantitative
information for the superimposition is listed in Table 1.
The alignment in Fig. 3A reflects the structural superposi-
tion. The complex shown in Fig. 5B, consisting of ClpS, N-
domain and the first AAA+ domain of ClpA, was gener-
ated by superimposing the N-domains of the structures

Table 1: Data for the superposition in Fig. 3

PDB-ID Name SOURCE 
SPECIES

FOLD SUBGROUP NO. OF 
ALIGNED 
RESIDUES

RMSD TO HMFA 
[Å]

1B67 A+B HmfA Methanothermus 
fervidus

Histone Archaeal 124/124 0.00

1TAF A+B TAFII42/62 Drosophila 
melanogaster

Histone TBP-associated factors 124/132 1.19

1TZY A+B H2A/H2B Gallus gallus Histone Nucleosome core 118/129 1.33

1TZY C+D H3/H4 Gallus gallus Histone Nucleosome core 114/134 1.10

1IN4 A RuvB Thermotoga maritima C-domain AAA+: helicases 46/71 1.38

1R6B A ClpA-D1 Escherichia coli C-domain AAA+: Clp-D1 52/86 1.70

1LV7 A FtsH Escherichia coli C-domain AAA+: AAA 45/71 1.21

1NY5 A NtrC Aquifex aeolicus C-domain AAA+: σ 54 52/72 1.57

1G8P A Mg chelatase Rhodobacter 
capsulatus

C-domain AAA+ a) 12/16(α 1)
b) 47/54(α 2–4)

a) 0.59
b) 1.38

1K6K A ClpA-N (1st half) Escherichia coli Clp N-domain ClpA 33/78 1.54

1K6K A ClpA-N (2nd half) Escherichia coli Clp N-domain ClpA 33/62 1.40

1KHY A ClpB-N (1st half) Escherichia coli Clp N-domain ClpB 33/80 1.13

1KHY A ClpB-N (2nd half) Escherichia coli Clp N-domain ClpB 33/58 0.96

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1B67
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1TAF
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1TZY
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1TZY
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1IN4
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1R6B
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1LV7
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1NY5
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1G8P
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1K6K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1K6K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1KHY
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1KHY
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1R6B (N-domain and the AAA+ domains) and 1LZW (N-
domain in complex with ClpS) from E. coli.
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