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Possible sources of the anisotropy energy are investigated for ferromagnetic ferrites, i.e., Ni., Co-,
Fe- and Ma-ferrites. The cubic anisotropy energy which arises from the anisotropy of the crystalline
field acting on magnetic ions and is described by the function of the spin operator of one ion identically
vanishes for iors with spin less than 2, so that this kind of anisotropy energy vanishes for Ni2+ and
Co%* jons. The anisotropy energy arising from the magnetic dipole-dipole interaction which appears
for cubic crystals in its second order perturbation was calculated for Mn- and Niferrites and that
arising from the anisotropic exchange interaction calculated for Ni-ferrite but they were found to be
too small to account for the experimental values. Therefore, it is concluded that the major part of
the anisotropy energy for Niferrite arises from the anisotropy emergy of Fe’* ijons, for magnetite
from the anisotropy energy of Fe?t and Fe't ions, and for Mn-ferrite from the anisotropy energy of
Fe'+ and Mn?t ions. Especially it is shown that the experimental anisotropy energy of magnetite
extrapolated to the absolute zero of temperature is in good agreement with the sum of the experimental
anisotropy energy of Ni-ferrite and the calculated value of the anisotropy energy of Fe?* ions. For
Co-ferrite, its large anisotropy energy seems to come from the pseudo-quadrupole and anisotropic ex-
change interactions among Co and Fe ions, but the situation is too complex to carry out the calcula-
tion of the anisotropy energy in this case.

Finally, the temperature dependence of the cubic anisotropy energy is calculated for Mn-ferrite,
and is shown to decrease as (T,—~T)2 near the Curie temperature. Further, the sum of the
coefficient, a of the cubic anisotropy Hamiltonian for Mn2+ and Fe®+ jons of the octahedral sites and
that for Fe’* jon of the tetrahedral sites have been determined for Mn-ferrite by adjusting the
calculated anisotropy energy vs. temperature curve so as to fit the experimental one, and it is found,
neglecting the small a-value of Mn?* ions, that the g-value of Fe?+ ions on octahedral sites has five
times as large an absolute value as that of FeS* jons on tetrahedral sites and that the former has the
opposite sign to the latter.

§ 1. Iniroduction

Numerous experimental investigations have been done on the magnetic anisotroqy
energy of ferromagnetic ferrites with the static torque method, magnetization curvemethod
and microwave resonance method."”'® Experimental data are summarized in the table of
the paper by Bozorth, Tilden and Williams.”®> As seen from this table, Co-ferrite has
much larger anisotropy energy compared with other ferromagnetic ferrites, namely Ni, Fe-
and Mn-ferrites, and further the anisotropy constant K, for the latter ferrites is negative
and their easy axis of magnetization lies in [111] direction, except for magnetite at low
temperatures, whereas K; of Co-ferrite is positive and its easy axis is in the [100] direc
tion. The anisotropy energy of ferrites is quite significantly influenced by a small added
puantity of Co ions. Especially, Bickford, Pappis and Stull'® showed that a small quantity

Zz0z 1snbny Lz uo1senb Aq gze9asgL/LEE/E/. L/sIone/did/woo dno olwepeoe)/:sdny woly papeojumoq



332 K. Yosida and M. Tachiki

of cobalt ions mixed in magnetite can shift the temperature at which the easy axis of
magnetization changes from [111] to [100] to a markedly high temperature. Bozorth,
Beatrice, Cetlin, Galt, Merritt and Yager'” have reported that, for Ni-ferrite with Fe’*
ions as impurities, the microwave method and the static method of measuring anisotropy
energy give somewhat different values. Thetefore, in ordet to know the intrinsic value
of the anisotropy energy, experimental data for pure substances are needed.

The anisotropy energy of cubic crystal is in general small compared with that of
crystal with low symmetry and, at the same time, its temperature dependence is very
intense. Thus, the room temperature value can be very different from that at the absolute
zero of temperature, especially in Mn-ferrite and Mn-Zn ferrite which have a compara-
tively low Curie temperature.

The following table shows the anisotropy constant K; of ferromagnetic ferrites at
low temperature. The anisotropy constant of magnetite in this table is the value at the

Table I
Substance Ky etgfec K; cm~!/molecule. Reference
NiFe,0, —1.18X 105 —4.3%10~2 (18)
CoFe,O; 4.4~17.5X% 108 1.6~6.4 (13)
FezOy -2.0X 105 —7.4%10~2 (11)
MnFe,O, —2.2X% 108 —8.5%X10—2 )

absolute zero of temperature obtained by extrapolating the values at temperatures higher
than the temperature at which the anisotropy constant changes its sign. The purpose
of this paper is to investigate the sources of the anisotropy energy of ferrites and to
clarify its nature.

The magnetic ions in ferrites are Fe'*, Mn?*, Fe’*, Co** and Ni’**. Fe' and Mn®*
jons have no orbital moment, while Fe’*, Co®* and Ni?* have non zero orbital moment
in their free states. The latter divalent ions occupy the octahedral sites. The crystalline
field acting on the octahedral site arises from the surrounding oxygen ions and metal
ions. The part from the surrounding oxygen ions has a cubic symmetry neglecting a
slight shift of the position of the oxygen ions, wherea» the part from the metal ions
bas a ‘trigonal symmetry whose axis lies in either of the four {111} directions, so far as
we do not distinguish the difference between Fe’* and divalent ions. If we discriminate
this difference, this part has a lower symmetry and differs from ion to ion. Therefore,
we can consider that the orbital moment of these divalent ions is quenched, namely the
ground orbital state is not degenerate, so that the treatment of the anisotropy energy
becomes considerably simple though the crystals under consideration have cubic symmetry.
This fact has been proved by that g-values near 2 were found by the microwave resonance
absorption.

The sources of the anisotropy energy of ferrites are the following interactions: the
maguaetic dipole-dipole interaction, the efiective anisotropy Hamiltonian of each spin in

Zz0z 1snbny Lz uo1senb Aq gze9asgL/LEE/E/. L/sIone/did/woo dno olwepeoe)/:sdny woly papeojumoq



On the Origin of the Magnetic Anisotropy Energy of Ferrites 333

the crystalline field, and the anisotropic exchange interaction which is produced by the
combined action of the L-S§ coupling and the exchange interaction. These were pointed
out by Keffer'> and Moriya and Yosida™ in the case of antiferromagnetism. In the
case of cubic crystals like ferrites, the magnetic dipole-dipole interaction does not give any
cubic anisotropy energy in the classical treatment, but its higher order effect contributes

22)

to the cubic anisotropy as shown by Van Vleck. For the anisotropy energy arising
from the other sources, the situations are the same and higher order calculations are
needed, so that the treatment becomes somewhat troublesome compared with the case of
lower symmetry. We shall begin with the consideration of the simplest part of the
anisotropy enetgy, namely the anisotropy energy coming from the anisotropy of the

crystalline field.

§2. Anisotropy spin Hamiltonian for ions under the action
of the crystalline field

The cubic spin Hamiltonian of ions whose orbital moment is quenched by the
crystalline field is represented by

%(S:*+S;+S;*), _ (2-1)

where §,, §, and S, are the x-, y- and zcomponents of the spin angular momentum S
(x, y and z are the cubic principal axes). The constant « may be calculated by the
perturbation method starting from the states which are split by the crystalline field and
taking the spin-orbit coupling and intra spin-spin interaction as perturbations™*?. We
shall here deal with the calculation of the average value of (2-1) in the case in which
the Weiss molecular field is acting in a cettain direction, ¢, whose direction cosines referred
to the cubic axes will be denoted by (n,, n, and n,).

If we take &- and 7-axes perpendicular to the (-axis and also to each other and
denote their ditection cosines referred to the cubic axes by (I,, l,, /) and (m,, m,, m,),
respectively, 5., S, and §, can be expressed in terms of S, §, and §; by the following
relations :

8, =1, S; +m; Sy 41y Sy
8,=1,8¢ +myS, -+, (2-2)
8, =1,S, +m, Sy -+1,S.
With the use of (2:2) the average value of §,* can be expressed as
(8= (U Hm (8*y +m,°(S")
F1PmP {8 S D + ({838}
+ (2 +mP)n? {{ S S} ) +{SE 8,7 (2-3)

where {AB} is the abbreviation of AB+BA and we have taken into account that the
averages of the terms including odd powers of S; and S, vanish and that (S.') and
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(8°8%), etc., are respectively equal to (S,') and (§,8¢%), etc. Adding to (2:3) the

corresponding expressions for {(§,') and {S.'), we obtain
(8148, + 8D =(8D + {855 D +{S88:7)
+ (w10 mg +1Pm) {880+ Sy D — 2(8 D}
+ (' 0 {SHHEH (S-S5 (29
If we use the relations
(1853 =2¢ {828,3 y+5 (SE—28(S+1),
(88 =2( 182523 ) — (5/2)(S) + (1/DS(+1),
in (2-4), we obtain
S8 8D =(ED +338 )+ (1/2)S(S+1) — (5/2)45:
+ w1 m L m) (3 {88 ) —28(S+1) +5 (55 —2(&N)}
+ (' g’ +0g") {SH +(SH =3 ({87 ) — (1/2)§ (S +1) + (5/2)(SH)},
(2:5)
Here we will express ({828,7}), {({§:8¢%}) and (&) in terms of (S;") and (§%).
There are following two telations between these three quantities, namely
28D (8D +2{S28 )+ =8 (S +1)% (2:6)
208D+ S8 ) HS? S ) =8 (S +1)° =S (S+1)(S%). (2-7)

The first relation is obtained by squaring the relation §*+S;7+S8*=8(5+1) and the
second by adding two expressions which are obtained by multiplying this relation with
S¢Z from the right and from the left. {S.*) can directly be calculated as

(SH=(3/8)(S:H>— (3/4)S(S+1){(S) + (3/8)$* (S +1)*
—(1/4)$(S+1) + (5/8)¢S5:*)- (2-8)

From (2:6), (2-7) and (2-8) we see that the coefficient of (/2m?-+{ m?+12m}?)
in (2-5) vanishes and (2-5) can be expressed completely in terms of (§.*) and (§.%)
as

(848 48 =—(21/8)(§*) + (9/4)S(S+1){8)+ (3/8)§*(§+1)*
—(15/8){SH) +(1/4)S(S+1)
+ (nf 4 +0,)[(35/8) ({8 — (1/5) [P (S +1)*— (1/3)§(S+1) |}
—(15/4) {{8H— (1/3)S(S+1)} {§(S+1) —5/6}]. (2-9)

This result can also be obtained by a more elegant method, namely by adding three

Keffer’s expressions™

(gt (Siri) )y =cPy(0;) +dP,(0,;) +eP,(0,)
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with cosfl;=n,, n, and n,.

Above the Curie temperature (8.*)=(1/5) {$2(S+1)*—(1/3)8(S+1)} and (§2)
=(1/3)§(S+1) so that the part including (n,*+n,'+n,") in (2-9) vanishes. On the
other hand, at the absolute zero of temperature (S,*)=S5* and (§:2)=S5" so that the
anisotropic part becomes

$(5—3) (§—1) (§—B) (n ' +n'+n). (2-10)

This result shows that for this kind of the anisotropy enetgy the quantum effect is
significant and it makes the anisotropy energy identically vanish for § less than 2 in the
whole temperature range. This was remarked by Van Vleck™ as early as 1937. Thus,
the anisotropy energy of cubic symmetry arising from the anisotropy of the crystalline
field vanishes for Ni** and Co®* ions. For Fe’*, with §=2, the quantum effect reduces
the anisotropy constant to one tenth of the classical value.

§ 3. Anisotropy energy in Mn- and Ni-ferrites arising from
the dipole-dipole interaction

As mentioned in the preceding section, the anisotropy energy arising from the
crystalline field in ferrites remains only for Fe?*, Mn?" and Fe?* jons. Besides this
anisotropy energy we can consider those arising from the magnetic dipole-dipole interaction
and the anisotropic exchange interaction.

The cubic anisotropy energy arising from the magnetic dipole-dipole interaction at
the absolute zero of temperature can be calculated by the perturbation method, taking
the magnetic dipole-dipole interaction as the perturbing Hamiltonian. The dipole-dipole
interaction between two spins can be divided into the following four parts, as done by
Bloembergen, Purcell and Pound® :

V=g i1 (4+B+C+E), (3-1)
A=8,S;;(1—3cos?l,),

B=— (1/4) [(Sys—iS8,y) (Ses+iSyy) + (SeitiSyy) (Sey—iSp) (1 —3 cos?0yy), (3-2)
C=—(3/2) [ (Sei+iSys) Sy (Ss5+i8y;) Syi] sin by, cosb;,e =15+ conj. comp.,
E=—(3/4) (Ses+iS,) (Sey+-iS,;) sin®0;,e =24 4-conj. comp.,

where the (-axis is taken in the direction of the spontaneous magnetization. The part
A has only a diagonal element in the representation which diagonalizes the spin component
S; of each ion, and it gives rise to the ordinary classical dipole-dipole anisotropy energy,
which evidently vanishes in cubic crystals as shown by Kaplan.™® The part B has off-
diagonal elements between the ground state with absolute saturation magnetization and
those excited states in which one spin of octahedral sites and one spin of tetrahedral sites
are reversed. The matrix element between the ground state and the excited state in which
the {-component of the i-th spin of the octahedral site is S;—1 and that of the j-th
spin of the tetrahedral site is —§,+1 is given by
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—(PP15%/2) - V'S, VS 1 (1—3cos?l,), (3-3)

where S and §, are, respectively, the magnitudes of the spins of octahedral and tetrahedral

sites. Therefore, the second order perturbed energy per one octahedral ion becomes

91 SkS, > < 15— 35 >2 (3-4)
4(dEx+4dE,) B4, Ti}r)

where JE, is an increase of energy due to the change of the (-component of an

octahedral spin by one and 4E, is the corresponding quantity for a tetrahedral spin, and

2| means the summation over the tetrahedral j-sites surrounding the octahedral isite.
BA;

If we here transform the coordinate system from £,  and ¢ to x, y and z of the
cubic axes by

E=lix+ly+lz,
p=mxtmy+mz, (3-5)
{=nxtnytnz,

the summand in (3-4) becomes

( -‘j"3Cu>__ - { Zx-j tng 711_,_”2 sz 420, m, i1V
Z Ty

T T3 15 15

+2n,m, Yi;Rss +2n,n, ZigXiy }_l_g{ ij +nt 717
1) 7 T3y 1l

2,2 22 2,2
4y : 523 Z55%
+n,' 39 4 6n2n? ﬂ.f]%’id +6n.2n2 %yl W+ 6ntng? 2920
r,;j rﬁ'j 71'1 r,-j

5, XYy tj ¥i 7w 311 s Vi
+ann, I - dnnd TYIH dnln, 790 A 4ngn, L,
45 71;,1 rij '.i

3 3 2
25X, Ly X;5 Zig X,
+dntn WY - dngn 00 +12n,2n,n, 23%0% ncdai)
Tfj Tij T‘j

+12n32n1n2__._z’37‘fgy” +12n2n,n, _“y”_z“ } . (3-6)
Tij T3

We concentrate our attention to an octahedral site whose trigonal axis of symmetry
lies in the [111] direction. Then, the summation, 3%/, gy 1S, P AVLAR
S5y T 0% Y/ and xSy, z,,/1h are unchanged by cyclic changes among x, y
and z. The cotresponding expressions for the other three kinds of octzhedral :ites can
be obtained by. changing the signs of two of n,, n, and n,. Thus, apart from the parts
independent of the direction cosines, the average of the sum of (3:6) over the four

kinds of octahedral sites becomes

9 (”14 -+ "‘24 -+ ”34) BEZ-} Xij/fl-‘} +54 (”12 "22 + ”22 "32 + ”32 ”12) ;} xi?}’i?/’!:;- (3 . 7)
J )
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With the use of (3-4) and (3:7), we obtain the anisotropy constant per molecule arising
from the B interaction as

9 15" SpS.4 { "4;""37‘1?71'5 }
9 L 5 7274 LA EAT N N 3-8
(4E,+4Ey) B§j ”}(j) ( )

The patt E in (3:2) has off-diagonal elements between the ground state and those
excited states in which two octahedral spins or two tetrahedral spins are reversed. Using
similar notation to that used in the case of the B interaction, the matrix element between
the ground state and the excited state in which the {-components of the i-th and j-th
spins of the octahedral sites are equal to §y—1, is given by

—(3/2)859 pilri; sin20,,e%%us (3-9)
Therefore, the second order energy per two octahedral spins becomes

9GS 2( 54?"'775; >2 (
-2 On /AN 3.10)
4 24E, BB; %

Expressing the summand here in terms of x, y and z, taking average over four kinds
of octabedral spins, and picking out the terms including (n°n7+n2n?-4n’n?), we obtain
the anisotropy constant per molecule as

9 9SS {MA} (3-11)

4 4E, BBj; T}g

Similarly, we obtain the anisotropy constant per molecule arising from the excited
states in which two i and j spins of the tetrahedral sites have the {-components equal to
—84+1 as follows:

9 94/134SA2 { xﬁ-hﬁyﬁ } . (3-12)
8 dE,  A44; i
The C term in (3-2) has off-diagonal elements between the ground state and those
excited states in which one spin of the octahedral sites has {-component equal to §,—1
or one spin of the tetrahedral sites has {-component equal to —§,+1. The correspond-
ing matrix elements ate, respectively,

2 VIS R S S Gy (B ting) —Sa 1Py (Euting)}  (3-13a)
2 BB BA; .

j

-2 V2892 1 {— S84 3 1 CoyEoy—iny) +82 2137 Coy(Ey—ini)} . (3-13b)
2 AA; ABj

The summation in (3-13a) for an octahedral spin whose trigonal axis is in the direction
[111] can be written as

S, S M—SA D Ly (€

+in;) >
BB; L BAj "z‘?
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= (Lin,+lpny +lyny+ 1,0, +im, +lln3)<S,,, = L’gﬁ——&, » _’W#)
BB; 1y Bdj Tty

F-i(myny+men, +mon, +myng+mon, +mny) (S L’Z’;’_ -5 LZ") .
BB; Ty BA; 1y
(3-14)

Using (3-14) in the calculation of the second order energy to be obtained from (3-13a)

and averaging the obtained expression with respect to the four kinds of spins, we have

the following value of the anisotropy constant per two octahedral spins :

4 4 2
360050 {s, 53 Zdu 5, 5 Ty (3-15)
4dE, BB; 74 B4; 1y
Similatly, we get the anisotropy constant per molecule from (3-13b),
4 4 2
18 L8004 {5, 51 Tty g, 51 xugs | (3-16)
4E, ABy 1y Ad; 1

where, however, both summations are found to vanish because of the symmetry of the
crystal structure.

The values of the latter sums appearing in (3-8), (3:11), (3-12) and (3:15)
are calculated numerically by the direct sum method up to eighth neighbors. In units
of a/8, a being the lattice parameter, they are as follows :

B%} (%3—3%439:3) /113 =0.000350, B% (x3—3%5y5) /rig= —0.00104
) i

2 (xj— 3% y57) /rij= —0.000533 , > x;y,/r5=0.038,
AAJ BBj
B%} Xigysy/Tij= —0.017 . (3-17)
i

The excitation energy JE, and 4E, can be expressed, using Néel's® notatins, as
AEx=gpn Hy=gptsn (BuMy+M,), 4E =gptnHy=gpzn(alM+pMy), (3-18)

where Hp and H, are the molecular fields acting on the octahedral and tetrahedral sites
and are expressible as linear combinations of the magnetizations of the A4 and B sites,
M, and M, per N ions, N being the Avogadro number.

In the case of Mn-ferrite, the constants n, & and § in (3:-18) are estimated from
the experimental magnetization vs. temperature curve in Sec. 6. Using the values of
(6-13) and (6-14), §z=8,=5/2 and A=1/3 and pu=2/3, the excitation energies
become

4dEp=251cm™, 4E ;=471 cm™. (3-19)

Inserting (3:19) and (3-17) in (3:8), (3-11), (3-12) and (3-15), we obtain for
Mn-ferrite the following values of the anisotropy constants per molecule coming from the
B, E and C parts:
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Kz=5.48X10"°cm™,
Kpi=—1.17X10""em™*—1.60X107° em™,
Ke=1.3X10"7em™", (Mn-ferrite) (3-20)

where the value of ¢=8.55 .Zs is used. This result shows that the anisotropy constant
from the dipole-dipole intetaction has the opposite sign to that obrerved and that it
amounts to about 15 per cent of the latter.

In the case of Ni-ferrite, we use the values determined by Néel™ for n, @ and 8,

namely
n=720, a«=—0.21 and B==—0.15. (3-21)
Then, we have the following values of 4E, and 4E,:
4dE,=503 cm™, A4E,=745 cm™\, (3-22)

©
Using (3:21) and (3-17), a=8.36 A, and the mean value of 5/2 and 1 (i.e. 7/4)
for §,, we obtain the following value of the anisotropy constant for Ni-ferrite :

Kp=2.56X10"%cm™,
Kzy=—3.33X10%cm™"—1.16 X 10" ecm™,
K;=3.41X10"%ecm™., (Ni-ferrite) (3-23)

This result shows that also in Niferrite the anisotropy constant from this source is about
ten per cent of the observed value.

We would better use the spin wave theory for a more accurate calculation, as
Keffer®™ and Tessman™ did in discussing the anisotropy energy of metallic ferromagnets.
However, in order to know the order of magnitude, the present method would suffice,
though there are some ambiguities in determining the values of 4E, and 4E,, especially
for Ni-ferrite.

§4. Anisotropy energy arising from the anisotropic exchange
interaction in Ni-ferrite

Another soutce of the anisotropy energy in Ni-ferrite is the anisotropic exchange
interaction. We shall calculate this anisotropy emergy. The orbital degeneracy of Ni**
ion in its free state is lifted partially by the cubic crystalline field, which is the main
part of the crystalline field acting on the octahedral sites, the ground state being singlet
in this case. We shall here neglect the effect of a small trigonal part of the crystalline
field. Like the case of the magnetic dipole-dipole interaction we shall deal with the
exchange interaction, together with the crystalline field energy, as the unperturbed energies.
The perturbing Hamiltonian in this case is the spin-orbit interaction of one Ni?" ion.
We shall calculate the perturbed energy of the ground state for completely aligned spins.

The orbital states of Ni** jons subjected to an octzhedral cubic crystalline field are
split into the following three groups: ‘
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r, I r,
P =(1/Y2) (¢ ¢-s), 2.=¢,,
@=(1/V2) (fs—P2), 0="5/84—V3/8¢.5, @=V3/84+V5/8¢.,
@=V5/8¢_—V3/8¢;, @=V3/8¢_+V5/8¢,
E=o0, E=JE,, E=AJE,,
(4-1)

where ¢f,, means the wave function of the state in which the z-component of the orbital
angular momentum is m. As mentioned before, we shall neglect the effect of the trigonal
field and further we shall put the effect of P state out of our consideration. The matrix
elements of (L-S) with respect to (4:1) are calculated as

(2] @1 (0‘2—7 @3 P @5 (7]
. o 28, V7 s V7 §+ 0 o 0
oo V7§t —27172;& —%sz 0 %s— ‘/21? s, 0
o V7§ 7‘172=s— 0 é—sz %y 0 _ I/ZE s,
@5 0 Z}E—S* 1/21—5 S: 0
(4-2)

Now we suppose that in the ground state each ion isin I, state and its spin points
to a direction with direction cosines (n, n,, n,) referred to the cubic axes. Taking the
spin orbit coupling as the perturbation, the anisotropy energy is given by the perturbed
energy which includes the biquadratic form of the direction cosines (n,°n,4-nSn?+4-n’n?).
Taking the &- and 7-axes perpendicular to the {-axis and to each other and denoting
their direction cosines by (I, l,, I,) and (m,, m,, m.), there are following relations betwee:
the spin components S* =S, -+ i, and §, and those referred to the &-, - and C-axes, §'*

and §.':
8t = (1/2) {(li—im;) +i(ly—imy)} §'* + (1/2) { i +im) +i(l4-imy) } §'=
+ (m +iny) S/,
§™=(1/2) {(li—im) —i(l,—im,) } 8" + (1/2) {({,-Fim) —i(l,+im)} §'~
+ (n,—iny) 8/, (4-3)

Zz0z 1snbny Lz uo1senb Aq gze9asgL/LEE/E/. L/sIone/did/woo dno olwepeoe)/:sdny woly papeojumoq



On the Origin of the Magnetic Anisotropy Energy of Ferrites 341

S.= (1/2) (l,—im)S"" + (1/2) (;+im,) S~ +"3S‘;,-

As seen from this expression, the fourth order terms with respect to n,, n, and n, come
from the fourth order perturbation of A(L-8). In the case in which the diagonal element
of the perturbing Hamiltonian vanishes in the ground state, the fourth order perturbed
energy can be expressed by

4E,=> 1V (lV]9) < (91 V) (v [ ¥]9)

nEg AE’:-’ nl A’En,
(4-4)
_ (G| Vn) | V)n") ('\V]0") 0"\ V]g) |
nyn! \nt kg AEn AEn/ AEn//

" mean the ground and excited states. The first term of this

where ¢ and =, n', n
expression does not give any anisotropy because each factor of it is of the second order
with respect to the direction cosines and so it is reduced to a mere constant in cubic
case.

The perturbation processes which contribute to the second term in (4-4) can be

divided into the following two groups as seen from (4:2) :

1) Those which include only [7 states as the excited states.

1. (0—1—2—1—0) 7. (0—1—2—2—0)
2. (0—1—3—1—0) 8. (0—1—3—3—0)
3. (0—2—1—2—0) 9. (0—2—2—1—0)
(4-5)
4. (0—2—1—3—0) 10. (0—3—3—1—0)
5. (0—3—1—3—0) 11. (0—2—2—2—0)
6. (0—3—1—2—0) 12. (0—3—3—3—0)
2) Those which include both [y and [, states.
1. (0—1—5—1—0) 7. (0—2—4—3—0)
2. (0—1—6—1—0) 8. (0—2—5—2—0)
3. (0—1—5—2—0) 9. (0—3—4—2—0)
(4-6)
4, (0—1—6—3—0) 10. (0—3—6—1—0)
5. (0—2—4—2—0) 11. (0—3—4—3—0)
6. (0—2—5—1—0) 12. (0—3—6—3—0)

The perturbed energy denominator for the first group is 4E;’, while that for the second
group is 4E24E, provided we do not take account of the change of the exchange energy.
The numerator is given by the product of #* and four matrix elements of (L-S) cot-
responding to each process. The matrix elements of the numerators for the cases of
(4-5) and (4-6) can be written with the use of (4-2) as
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1) 1. (1/2)8,8°8*S, 7. —(1/2)8.5°§.8*
2. (1/2)8.8*S5°6, 8. —(1/2)8.5*8.8"
3. (1/4)S-S*§-§* 9. —(1/2)8-8,8"8,
4 —(1/4)5-§*8§*S- 10. —(1/2)§*8.5-S, (*-7)
5. (1/4)S*$-8§+S- 11. (1/2)8-8,S,8*
6. —(1/4)§*8-§-§* 12. (1/2)8+%8.5.5-,
2) 1. (15/2)8,S°8*S. 7. —(15/4)§- 88§~
2. (15/2)8,8* S8, 8. (15/2)8-5,8,5*
3. (15/2)$8.5°8,8* 9. —(15/4)8+§+*§* 8+
4. (15/2)S.5% 8.8 10. (15/2)8*S.8-S. (4-8)
5. (15/4)§-§-§*S§* 11. (15/4)$'S*S§- 8-
6. (15/2)8-8.8*S. 12. (15/2)8*8,S.5".

In the ground state the spin component of Ni*' jon along the (-axis is §, and possible
processes of the change of the spin component in the fourth order perturbation and spin
operators producing those processes are limited to the following six cases:

AL )= ()= ()= () —(5): 5/5,5/8

B,. (§)—(8)—(8)—(S—1)—(8): 8/, 8§

B, (8)—(S)—(S—1)—(8)—(8): §/§~85*5,

B,, (5)—(S—1)—(S)—(S)—(8): -85S/

C === () —(—1)—(5): §F-5+§-§+
D. (§)—(—1)—(—2)—(S—1)—(5): S-§~§+8§+

(4-9)

where the quantities in the parentheses represent the {-component of the spin. Other
processes have zero matrix elements in the case of spin one.

Now we shall turn to the calculation of the fourth order perturbed energy. First
we express the products of four §’s in (4-7) and (4-8) in terms of those of four
primed §”s with the use of (4:3) and add them over twelve terms of (4:7) and (4-8).
Then we find that all the coefficients of the products of four primed §”’s corresponding to
processes described by (4:9) for the group (1) vanish. Thus, the ani.otropy energy
appears from the group (2) alome. The calculated anisotropy energy arising from the
second group for each of the six processes of (4-9) is as follows:

6082
4E 2 4,

(ninl+nln’+nlnf),

308%4%

B,.
" " 4E,4E,(4E,+dE,)

(nlnf+ nin’tninf®),
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154458 2,2 2.2 2, 2
BQ' - AEQ(AE +AE) {1—'2(1!, ny +n2n2 +n3 nl)}a (410)
1 2 X

30448°
B,. (g +n'nl+nln’),

(dE, + 4E ) 4E, 4E,

-
c. — 1548 (ninf+nlnl+nln?),

(AET +AE\)QAE2

304'8(S— (1/2)) 1 2,2 2,2 2. 2
(AE1+AE\)2(AE2+2£IE\) { + ("1 "2 +n2 s +n3 n )}9

D. -—

where JE, means the change of the exchange energy of the ion due to the change of
its spin component by one in the Weiss molecular field produced by the neighboring
spins. Summing up the above six terms of (4-10) and putting §=1, we obtain the
coefficient of (n’ny +nn’+n’n?), namely the anisotropy constant per molecule, as

K=—154 4% 2 - 2
\ JE2dE,  4E,dE,(dE,+4E,) AE2(dE,-+ 4E,)
2 1

+
(dE,+JE)4E,dE, = (4E,+4E,)*4E,

1
. 4.11
T I GETEY (410
If we expand (4-11) with respect to 4E./4E,,, we obtain
.4 .
K=—30__" e, 4E, (4-12)

JE24E, \ 4E, 4E, /°

This anisotropy energy tends the spin to point to the {111} direction. It is inversely
proportional to the fifth power of the etiergy separation 4E in the cubic field so that it
depends sensitively upon the strength of the cubic field. If we treat the exchange interac-
tion as the perturbation together with the L-S coupling, we obtain the same result in
its sixth order perturbation. The above calculation is concerned only with the excitation
of one Ni ion, but it can be easily shown that processes which include the excitation of
two Ni ions give only an isotropic energy up to the fourth order with respect to A(L-S).
The g-factor of a Ni ion becomes

g—2=—(84/4E)). (4-13)

For the energy separation due to the cubic field the ratio of 4E; to 4E, is equal to 5/9.
If we use this relation, (4:12) becomes

K,=—40.3- (X/4E") - (4E,/4E,)*. (4-14)

Considering exchange interactions only between octahedral ions and tetrahedral ions, the
change of the exchange energy JE, at absolute zeto using the molecular field approxima-
tion can be put as
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dE, =2]z8ve , (4-15)

where | is the exchange integral and z the number of tetrzhedral sites neighboring zn
octahedral ion and Sy, means the spin of an Fe** jon, namely 5/2. 2Jz can be estimated
from the Curie temperature of Ni-ferrite in the same approximation as

T.=(2Jz/3k) [ {Sre(Sre+1) + i (Sxi+1) } Spe (Swe+1) /2 (4-16)
Using T,=860°K and Sy;=1, we obtain
4E,=465 cm™, 2Jz=186 cm™. (4-17)

This value of 4E, is less than dEg of (3:22) by ten per cent. Inserting 4E, of (4-17)
into (4-14) and taking the value of 4 equal to —335 cm™ in (4-14) and (4-13),
we obtain the following table :

Table IT
4E; cm~—1 5000 7000 10000 15000
—K; cm—1/mole. 3.5x10~2 6.6X10-3 1.1X10-2 1.5 104
g 2.54 238 2.27 2.18

Considering the experimental g-value equal to about 2.2, it would be reasonable to assume
4E;=1~1.5X10"' cm™. Then, we might conclude that the anisotropy constant arising

from the anisotropic exchange interaction is less than 107* cm™

per molecule.

As another source of the anisotropy energy we can consider the electric quadrupole-
quadrupole interaction between two Ni ions. As seen from the above calculations, we
must in this case also consider the perturbed energy quartic in L-8 coupling because the
quadrupole-quadrupole interaction does not include the direction cosines of the spins. Such
energies would have an order of (4/4E)*H,, where H, represents the quadrupole-
quadrupole interaction in the free state of the ions. This part of anisotropy is estimated
as 107" em™ if we put H,=10? cm™.

Thus, it becomes very probable that the anisotropy energy found experimentally in
Ni-ferrite arises from Fe®* ions which occupy the tetrahedral and octahedral sites. Using
the value of the anisotropy constant of Ni-fertite in Table I, we obtain the fine structure

constant « of Fe®' ion as
ab+af.=1.87 X107 cm™, (4-18)

where 4 and B mean the tetrahedral and octahedral sites respectively.

§ 5. Anisotropy energy of Fe?* ions in magnetite

In magnetite, anisotropy energy arising from Fe®* jons exists besides that arising from
Fe’* ions. In this section, we shall estimate this part of the anisotropy cnergy. The
orbital state of Fe’* ion occupying an octahedral site is considered to be split by the
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large cubic part of the crystalline field. The ground state is triply degenerate. If we
assume, for simplicity, that the charges of Fe®* and Fe® ions on the octahedral sites
are replaced by their average, the low symmetry part of the crystalline field becomes
trigonal and its axis lies in one of the four {111} directions. Therefore, the Fe** ions
are divided into four kinds of ions according as the direction of the axis of the field to
which the ions are subjected.

We chall concentrate our attention to one Fe®* ijon whose trigonal axis coincides
with the [111] direction. If we denote the five degenerate orbital wave functions of Fe?*
ion in its free state by ¢,, ¢, and @.,, where suffixes represent the z-components of
the orbital moment, the cubic field splits these states into doubly degenerate states [;:
0, (1/ V2) (@3t ¢_s) =@, and triply degenerate states I': (1/“/2_1') (Py—@_2) =0,y,
—(1/V2i) (ot o) =¢,., —(1/V2)(¢;—¢_;) =¢,,. The energy separation between
these two groups will be denoted by JE. These states are further split by the trigonal
field, whose expressions are, following Abragam and Pryce,®” represented by

Ve=T,(yz+zx+xy) + T, {(Py+y’ 2422 +2Pz+y*x-+2%)
_6(x2yz+y22x+z2xy)} ...... . (5.1)

The matrix element of this trigonal field with respect to the five cubic wave functions
can be calculated as follows :

Py Pz Py Do+ Po
Pye 0 a a — 3% b
P a 0 a v3p b
Vp) =0, a a 0 0 —2b (5-2)
¢ | —V'3b V35 0 0 0
@ b b —2b 0 0 s

where

1 4
a= “7— <72>av. Tz_ 21 <r4>av. T,,
(5-3)

b=

1 1
P Tob (e T

The matrix (5-2) including the cubic part can be brought into the diagonal form by
the f{ollowing unitary transformation §:

1 1 1 ]
~5 ~3 vy 90
1 1 . 2
—— _sinf ———sinf, —Z_si
l! Vg sinl/ , e sm? , Ve sind, 0, cosl
S“’ Tig costl , —}g:,cosﬁ , ——;;g cosfl/, 0, sin 0 (5-4)
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; 2,sinl'f, —;}2 sin/, 0, cost , 0
1 1 .
— V,z_cosﬂ, vz_cmﬂ, 0, sinf, 0
where
___2V6b 5-5
tan 20 === | 4E) (3:3)
The eigenfunctions and their eigenvalues are
- 1 -
Po 7? (501/2 + Pz + spz:r/)
o, «;6 sinfl (2¢,,—9,. —¢.,) +cosf. ¢,
s€”= Do (=] — ;6— COS“}(Z%;,"'%z—%z) +Sin0'¢0 (5 '.6)
@ 4}5 sind (Spyz - szr) +cos 0‘¢2+
1 .
@y J - /\/z Cos(}(spyz_?zx) +51n0' 122
and
2a 0 0 0
0 E, 0 0
SVs—'=| o 0 E, 0 0 (5-7)
0 0 0 E, 0
0 0 0 0 E J,
where

E,=4E cos?f—a sin?0—2+'6 b sinf cost ,

_ (5-8)
E,= —acos?f -+ AE sin?tl-1-2v'6 b sinf cosf.

As shown by these results, the trigonal field splits the energy levels into one singlet and
two doublets. From the distribution of Fe ions around the considering Fe?* ion, it may
be reasonable to assign the ground state to a singlet. This fact is consistent with the
g-value near two obtained by ferromagnetic resonance absorption. Otherwise, the enormous-
ly large anisotropy would come out, because of the surviving orbital moment in the doublet
states. The actual crystalline field acting on an individual Fe?* jon has a lower symmetry
than trigonal and is different from ion to ion so that the trigonal field assumed here
must be interpreted as the average representation.

The matrix elements of the L-S coupling with respect to the basic functions of
(5:6) omitting a factor 4 are obtained as
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( 0 i(sz—sy) :i(sx—Sy) 17"—34(S,,;+.S‘y—ZS,7) —7%: (Sz+Sy—282)
——=sin f—cos @ ——=cos 0 +sin @
X(stm cos ) X(l/zcos +sin ) X(T/%sino—cosd) X(%?cos0+sin0)
i
. — = (Sz+ Sy +S.)
, S ssasy | 73
o ‘,»——(S —5) X (sin @ cos @
vz R X (sin® § —2v/ 2 sin? )
+2v"Zsin § cos 6) 34
~ & $atSy)
T-9)=
i
_’,‘/—‘? (Sz+Sy+S52) i
X (sin § cos 8 V'3 GatSy+5.)
0 —
+2v 2 cos? 6) X (cos® §
3; —2v 2 cos fsin 6)
+1/? (Sz+Sy)
conjugate complex ;
0 *V——Z(Sz—sy)
0
. )
(5-9)
With the use of (5-7) and (5-9) we can calculate the g-value of Fe®* ion, namely
g=2(1—iA),
A, =>1(0|L,|n) (n|L,{0)/4E, (5-10)

where 4 is the coefficient of the L-S coupling, and

4 1 1 24
Ap=A,=1,= ? . AA—E—< ey sinf —cos 0) -}-T .

A_,..,,=/1,»=/1”=——§— . A%Z,H ;2 sinU—cos(?)-—%A . AIE J cosﬂ+s1n0>

(5-11)
where JE,=E,—2a and 4E,=E,~—2a. Thus, the g-value has a trigonal symmetry.
The .g-values of the other three kinds of ions for which the trigonal axes are in [111],
[111] and [111] directions respectively can be derived by changing the signs of (xy),
(yz) and (zx). Averaging (5-11) over these four values, the off-diagonal part vanishe-
and we obtain the following result:

g—2z= ——_8 - !— ( —= smﬂ —Cos 0>

: <,~__ cos 1 +-sin 0) - 12)

3 “AE
Compared with the calculation of the g-value, the calculation of the cubic anisotropy

constant fo Fe®' ions is considerably complicated. The perturbation in this case consists
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of two parts, one is the L-S coupling and the other is the intra spin-spin interaction
which has been expressed as

—p[(L-8)?+ (1/2) (L-S) — (1/3) L(L+1)S(S+1) ] (5-13)

23,24

who also have estimated p to be 0.95cm™ for Fe’* ion.
The latter interaction is very small in its magnitude, but it contains (L-S)? so that the

by Pryce and Abragam

cubic anisotropy poscibly arises from the lower order perturbation than the L-S coupling
alone which needs the fourth order calculation to produce the cubic anisotropy, because
it has a quartic form of the spin operator S.

We will omit the detailed description of this perturbation calculation, but its gist is
as follows. We select the part including the fourth order of the spin S from each order
of perturbed energy, because the second order term with respect to S vanishes when it
is averaged over the four kinds of ions. Such parts appear in the second order pertur-
bation quadratic only in the intra spin-spin coupling (5-13), the third order perturbation
linear in the intra spin-spin coupling and quadratic in the L-S coupling and the fourth
order perturbation quartic only in the L-S coupling. In these calculations, we can ignore
the non-commutability between the components of 8 because surplus terms produced by
the commutation have a lower order of S. The calculated result for the coefficient of

($282+8282+5.282) is as follows:

16 .4{ 1 | 2 1 <‘1 AN
5 A AE,Q(VISInﬁ cosﬂ) +F22 ——fz_cosl9+sm0>}

3 ¢ 1 | .1 /1 . >“’}
X{Z 7+7E< 1/2~sm(7 cosﬁ>+AE2<VE‘C080+Sln0

8 -4< 1 3p 1 £ 1
i £~
+ 9 dE? + 2 4dE? + A 4E,

X < ’\}f sinf —cos 0)2 (sin20 422 sin 0 cosb)?

8 < 1 30 1 I
+—4 SEvale—
9 dEj} + 2 dE} 1 U4dE,

2 S
X< Jz_cosl9+sin0> (cos?0 —2v'2 cos b sinfl)?

2
(L 2 . }
ta AE? 4E, Tz AE? + 4E, 4E, >+ P 4E,

X {%(sinﬁ costl —2v'2 5in%0)? +é6;/j2t (sint cos ) —2+2 sin?f) +—89§——}
J

1 - 0 0 2
x(v,z..sm —cos )
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21
O
+ 4E? 4E, R dE? + 4E, JE, T 4E,

X { 16 (sinfl cos 0 —2+'2 sin2l) ——S_;/E} (sin0 4-2+'2 sin 0 cos0)

9
X < Jz_sin(}-—cosﬂ>< ;i_cosﬁ—l—sinﬂ)

1 p ( 1 2 ) [ | }
+_ U
4dE, 4E} 2\ JdE? + 4dE, JE, + 2 4dE,

+#{

X {—:- (sinf cos0+2 \/Z—cos20)2—5_6f19/_{_ (sinf cos 0 4+2v2 cos?l) +89—8}

X < Jz_cos0+sin0>2

. 1 1 2 2 1
A4{ N N }
+ 4E, JE 2 e ( 4dE? + 4E, AE2>+ i 4E,

|

196 (sinfl cos 0 4+2 V2 cos?t) +—§— ‘/2—} (cos? — 242 cos O sin )

X < Ji,.cos 0 +sin b')(ir}zjin  —cos ﬂ).

(5-14)
In order to evaluate the above detived anisotropy constant, it is necessary to know the
magnitudes of the cubic separation 4E and the strength of the trigonal field a and b.
From the point charge approzimation, 4E and the trigonal separation are expected to be
about 10* em™' and 10° em™’, respectively, and in (5-3) the first term is considerably

larger than the second term so that a is approximately '3 times as large as 5. Putting
—(2v6 /dE)b=f, —a/dE=a, (5-15)

and p=0.95 cm™, we obtain the following table which shows
the g-value calculated from (5-12) for several combinative sets of &« and f:

and using A=—100 cm™

Table II1
E v @ B { 9—2
10t em—! 0.05 0.15 0.13
”» 0.08 0.24 0.10
" 0.10 0.30 0.09
" 0.10 0.50 0.11

The experimental g-value obtained by Bickford at high temperature range from 2.1 to
2.09.  Thus, the values of @=0.08 and 3=0.24 would be considered appropriate. We
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calculated the anisotropy constant with the use of these two values and obtain the follow-

ing value :
K,;=—3.56X10"2 cm™ per Fe?* ion. (5-16)

The anisotropy energy arising from the anisotropic exchange interaction might be
considered to come from the higher order perturbation with respect to 4E./dE, where
4E, is the change of the exchange energy from the view-point of the molecular field
treatment mentioned in Sec. 4, in which the exchange energy is treated as an unperturbed
energy. Therefore, this contribution would be less than (5-16). Thus, the anisotropy
constant is concluded to consist of (5-16) and the anisotropy constant from Fe®' ions.
As seen from Table I, the sum of (5-16) and the anisotropy constant of Niferrite is
nearly equal to the experimental value of magnetite.

In deriving (5-16) we assumed the uniform charge distribution of Fe’' and Fe®*
ions of octahedral sites. At low temperature where the short range order in the arrange-
ment of those two kinds of ions develops, this assumption will not be allowed any longer
even as an approximation. The reason of the drastic change of the anisotropy constant
in its magnitude and even in its sign might be due partly to the effect of the short
range order on the crystalline field.

6. Temperature dependence of the anisotropy energy of Mn-ferrite
S p P PY gy

From the considerations made in the preceding sections, we arrive at the conclusion
that the experimental anisotropy energies of Ni-, Fe- and Mn-ferrites can be accounted
for by the fine structure coupling of Fe®', Mn®" and Fe?" ions with the surrounding
-crystalline field. For such 2nisotropy energies, the temperature variation can be described
by (2-9). In this section we shall calculate the temperature dependence of the anisotropy
energy of Mn-ferrite and determine the fine structure constant « for Fe®* and Mn?* of
octahedral and tetrahedral sites. The reason why we choose Mn-ferrite is that all the
magnetic ions in this substance have spin of 5/2 and the Curie temperature is relatively
low so that we may neglect the effect of thermal expansion.

We shall begin with the determination of the exchange couplings between magnetic
ions. Since there has not been any experimental data of the susceptibility above the
Curie temperature, we shall utilize the spontaneous magnetization vs. temperature curve
obtained by Guillaud and Greveaux™ for the determination of parameters. The total
magnetizations of N ions situated in the tetrahedral and octahedral positions, M, and
M, can, respectively, be expressed by

WMy=—Ngps{S s, Ma=—Ngu,{(S)s | (6-1)

where ¢ is the g-factor of ions of tetrahedral and octahedral sites, /1., is the Bohr magneton
and (S;), and (§:), represent the average values of the spin component along the -
axis. Here, we neglect the difference between Fe?* and Mn?' ions in the octahedral sites

in order to diminish the number of parameters. Introducing 4 and # which express the
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fractions of the numbers of tetrahedtal and octahedral lattice points, we put the molecular
fields acting on the tetrahedral and octahedral sites, after Néel,”™ as

HA:qAA'ZﬂRA +qantt Mz,
HRZQI}AZEDEA +qlflf/’ls~vel? s (6:2)
A=1/3, p=2/3.

Putting q4x=9¢s4=—n, gaa=n& and ¢z, =n3 and denoting the absolute values of the

magnetizations N, and WM, by M, and M,, (6-2) can be written as
Hy=—n(aiM,+pMy),
, (6-3)
Hy=n(M,+ppM,),

where we take the direction of YN, as the positive direction. With the use of (6-3),

(6-1) becomes
My=M, Ba/z [Mo n (“'ZMA + /‘LMB) /RT] »

2 =M By [M;n (BpeM 5+ AM ) /RT] s

where M,=Ngp,§ and R=kN, and B is the Brillouin function. (6-4) is equivalent
to the following set of equations:

MA=M0B;'7/2[1‘] y U= (Mo"/RT) - (aiM4-pM ),
My=M,B;p[v], v=(Myn/RT)-(fpM ~+iM,) .

(6-4)

(6-5)

We define ¢ and ¢ by the relations:
M,/My=B;[ul/By[v]=9, u/v=(aip+p)/(Bpt+ip)=¢. (6-6)
¢ is related to the temperature by the equation of
RT /M n= (Bp+I¢) (B;p[v]/v). (6-7)

Denoting the value of ¢ corresponding to the Curie temperature by ¢,, we obtain from
(6-7)
T =E . Br+ie . Bs/z[v] .

T, 7 Pptie. v (6-8)
@, is determined by the following equation which is derived from (6-6) :
‘ol + (Bp—ia)p,—p=0. (6-9)
Solving this equation, we obtain
@o=(1/2) {— (2f—a) + v (28— a)*+38}. (6-10)
The magnetization per mol is given by
Ms=3(puM,—IM,) =3 (pt—2p) M, B;s[v] . (6-11)

If a value of v is determined for an arbitrary value of ¢, the temperature and magneti-
zation for that value of ¢ can be obtained by (6-7) and (6-11). The value of v is
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obtained by solving the simultaneous equations (6-6). As has bzen shown by Neéel,®
it may be convenient to express them in the logarithmic equations :

log Byyo[u] —log Bys[v]=log g,
logu—logv=log ¢,

= (alp+p)/(Br+ip). (6-12)

The value of & and # must be taken from
the hatched region in Fig. 1 in-order to fit
the calculated magnetization to the experi- A
mental one of Mn-ferrite. We move a point
(a, B) in this region with the precision 0.01
and seek a point which fits best to the ex-
perimental magnetization curve obtained by
Guillaud and Greveaux™ in the temperature
region of 25°K to 290°K. The values of &
and B thus determined are

a=—0.50, f=-—0.10. (6-13) .
Fig. 1
The magnetization curve calculated with these
values of @ and @ is shown in Fig. 2. The agreement with the experimental values is
very good in the whole temperature range.

1. 0]

0.3 AN

AN |

o N

0 1 | ! | ]
0 0.2 0.4 0.6 0.8 1.0

Fig. 2. The calculated magnetization vs. temperature curve of Mn-ferrite,
The points represent the experimental values by Guillaud and Greveaux.
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Another parameter n can be determined from the Curie temperature. We obtain
n=361. (6-14)

The interaction between the ions of tetrahedral sites and that between the ions of
octahedral sites are represented by na and nf3. These are shown below together with

those of magnetite which have been calculated by Néel.”

Table IV
ne np
Mn-ferrite —181 —36.1
Fe-ferrite —282 4-5.53

Now we shall turn to the calculation of the temperature dependence of the anisotropy
constant. As seen from (2-9), the anisotropy constant K; in Mn-ferrite is expressed by

K1=—%[(41«€+4Mﬁ)<“1i ’;4\P—_{S(S+1)—'—} <S 2>B
+iS(S+1) {S(S+1)—2})
Faid( (5= 2 s+ = 2[5
+%s<s+1) {S(S+1)—-2}>], (6-15)

where 4 and B mean respectively the tetrahedral and octahedral sites. The average
value of (§,) is obtained as

(§)= 218, exp(—pSy) =-—{(S-I—%)coth(&‘+—;—>p——%coth~—§——},

>lexp(—pS:)
_ 9rsH .
p= e (6-16)

It can be shown that (S%*') satisfies the following recurrence formula :
(8§57 )=(—08/3p+{8:))X8") - (6-17)

Therefore, if we use the two relations
3y SI=(P (8 ot =5+, (6-18)
—8—coth (1—-—coth2 P) (6:19)

together with the above recurrence formula, we can calculate (§;*) for an arbitrary =

value. Putting

{(S,)=x, cothp/2=y,
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(6-17), (6-18) and (6-19) can be expressed in a more simplified form,
(§¢"1)=(—0/0p+x)"x

Bx/dp=o"—xy—S(S+1) (6-

9y/8p=(1/2) (1—y).
(8¢*) and (8;*) calculated with the use of (6-20) are as follows:

($)=8(S+1) +xy, (6-

(8 =30 +25(§+1)y*+2{S(S+1) —1}xy +82(S+1)2—S(S+1). (6
Using (6:21) and (6:22) we obtain

35 soa 15 _ 5 )seena 3 o
|22 =2 fssn =2 Jesa+ 2 s+ 6+ -2 |

=%[105 o +708(S+1)y2+ {40S(S+1) — 45} xy

+-882(§+1)2—165(S+1)]. (6
If we put
=Sp=gp,SH/KT (6-
we obtain
x=(8;)=—5Bs[z], (6-
and
y=coth(p/2) =coth (z/25) . (6-

Inserting (6-25) and (6-26) into (6-23) and putting §=5/2, we get

35 ,oa 15 5 ),ena 3 B
|22 59— s+ — 2} s+ 2 565+ 56+ —2) |

_ 3 z ¥ z ¥
—T[—IOS B,g[z]<coth 25 >+245 (coth 25 )
—305.Bs(7] coth;—s+189]=%[z] (6-
Then, we can write (6-15) as
Ki=—N-2{(afl+ani))[v] +aid [u]}, (62
or
Koo L L Lty L i) (6-
M, 24 gp,, m m |

where

20)

21)

-22)

-23)

24)

25)

26)

27)
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m=MS/Ng/‘¢BS:

[u] and [v] defined by (6-27) with z=u and z=v can be calculated with the use of
the values of @, f and n determined by (6-13) and (6-14). Dillon, Geschwind and
Jaccarino® have measured K,/M; of Mn-ferrite over the temperature range of 4°K to
300°K. We shall select two points, T=4.2°K and T=300°K, and determine the
values of (aff+ay) and af so that the calculated K,/Ms may coincide with the ex-

perimental values at these two points. The determined values of (af+af?) and ail
are as follows:

afitarfi=4.21X1072 em™,
(6-30)
ais=—0.817X 1072 cm™.
The anisotropy constant vs. temperature cutve calculated with the use of (6-30) is shown
in Fig. 3. The agreement with the experimental value is satisfactory. This curve is
very sensitive for a slight change of the a-value.

-~ 500

RN

-~ 400 N

=300

- 200 - ™

~100
N

—— !

0 100 200 300 400 500 600

0

Fig. 3. The calculated temperature dependence of Ki/M, of Mn-ferrite. The points
represent the experimental values obtained by Dillon, Geschwind and Jaccarino.

In the vicinity of the Curie temperature, {(S¢) defined by (6:21) or (6-22) can
be expanded in a power series of p or z, because the molecular field there is small, and
we obtain

(5/8)[z]=5p"+ - = (2/5) "+ -+ . (6-31)

On the other hand, u and v are proportional to (7T,—T)" in the neighborhood of the
Curie temperature so that the anisotropy constant K, is propottional to (T,—T)* near
the Curie temperature. In the calculation of K,/My in Fig. 3 this expansion formula
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has been used in this region.

The fact that the sign of the a-value of the ions of octahedral sites is opposite to
that of the jons of tetrahedral sites, as seen from (6-30), seems to be reasonable because
the cubic crystalline field acting on the tetrzhedral position is opposite in sign to that
on the octahedral position. The ¢-value of Fe’" ion in-several alums is about —1.34
to —1.27X 1072 ecm™" and that of Mn?®* jon in Tutton salts and fluosilicates is -+0.10
to +0.03X1072 em™* %, The avalue of Mn®" ion is less than one tenth of that of
Fe** ion. Thus, % has a magnitude neatly three times as large as that of the Fe®*
ions in alums and has the opposite sign to the latter if we neglect the contribution of
ay in (6-30). Recently, Low® has measured the fine structure of the paramagnetic
resonance absorption of Fe®' ion in the single crystals of MgO and obtained a considerably

!, though its sign has not been determined. Therefore,

large a-value of 1.83X107? cm™
the a-value given by (6-30) does not seem to be unreasonable. For Niferrite, the -

value of Fe®* ion of the octahedral site is considered to ke about 2.0X 1072 cm™
1.3

and
this is quite reasonable. Very recently Sugiura et 41.% observed the patamagnetic resonance
absorption of Fe®* ion in the mixed ferrite of ZnOALO, and ZnOFe,O, and that of
MgOALO, and MgOFe,O, and found that the resonance widths extrapolated to zero
content of Fe®* ion are, respectively, about 600 and 180 oetsteds. The fact that the
ratio is equal to 33 :1 seems to be favourable for our result (6-30) because Fe®* ions
in the former mixed ferrite occupy the octahedral sites and those in the latter occupy
the tetrahedral positions.*

§ 7. Conclusion

From the results of calculations made so far, we draw the conclusion that the
anisotropy enetgies of Ni- and Mn-ferrites arise from the fine structure coupling of Fe®*
ions which occupy the octahedral and tetrahedral positions. For Mn-ferrite, we determined
the a-values of Fe®' ions of the octzhedral and tetrahedral sites by analyzing the ex-
petimental anisotropy constant vs. temperature cutve obtained by Dillon, Geschwind and
Jaccarino to be a4i=—0.8X107"? cm™ and 45=4.2X1072 em™'. This value of a4
seems to be somewhat larger than that expected from the a-value of Fe?* ion in MgO.
The magnitude of a7 in Ni-ferrite is expected from the anisotropy constant of this
ferrite to be about 2X 1072 cm™.
large a-value of Fé** jon in Mn-ferrite is not clear at the present stage. HHowever, the

This value is quite reasonable. The reason for the

temperature dependence of the anisotropy constant of Mn-ferrite calculated with the use
of these a-values shows a good agreement with the experiment.
For Co-ferrite, the situation is very complex. It has a very large anisotropy constant,

* G. T. Rado and V. J. Folen have found that at room temperature the anisotropy constant for Fe’+
ion at the B site is negative and that for Fe'+ ion at the A site is pesitive and the ratio of “these is about
3.1 by the magnetic. measurcments of single crystals of (MgQO)1—.(FeO) Fe:O3;. See G. T. Rado :nd V.
J. Folen, Eull. Am. Phys. Soc. Ser. 2, 1 (1956), 132. We would like to thank to Dr. Rado for his private

communication.
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namely 2 cm™ per molecule and also has a very large magnetostriction of 4;,=5.9X10™"

and 4;;=1.1X 107"  Thus, it might be supposed that in this substance the orbital
moment is only partially quenched and the combined action of the electric quadrupols-
quadrupole interaction, the exchange interaction between Co ions and the spin-orbit
interaction would give rise to a large anisotropy energy.

For magnetite, it is considered that the anisotropy energies arising from Fe®* and
Fe’" ions are leading terms in the high temperature range. The anisotropy energy below
the transition temperature at 120°K is orthorhombic becaure of the orthorhomkbic super-
structure of the arrangement of Fe’" and Fe’* ions in the octzhedral sites. This anisotropy
energy may be due to the Fe’" and Fe’" ions and th: magnetic dipole-dipole interaction
betwecen these magnetic ions. In the temperature region zbove the transition, where the
anisotropy conctant decreases drastically and changes its :ign from plus to minus, the
effect of the rchort range order may pley 2 certein role in determining the anisotropy
energy. In order to account for the behavior of the anisotropy constant over this range,
precise knowledge about the nature of the order-disorder transition would be needed.

In conclusion, the authors would like to express their sincere thanks to Professor
T. Nagamiya and Mr. J. Kanamori for their valuable discussions.
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Note added in proof

A recent neutron diffraction experiment by J. M. Hastings and .. M. Corliss (Phys. Rev. 104 (1956),
328) on MrnAferrite shows that the fiactien of the tetrahedral sites occupied by mangenese jons is 0.8 for
three samples used. We, on the other hand, assumed that Mn-ferrite is of the inverse spinel type, i. e. the
fraction is zero. To get. out of this contradiction, the following three pessibilities may be suggested.

1. The fraction of 0.8 is assumed to be valid also in the sample used by Dilllon? for measuring
the anisotropy constant and in the sample used by Guillaud®? for measuring the magnetization; Our analysis
is based on these two measurements. Then the following values of “I‘/}e and aEe (neglecting the anisotropy
constants arising from the manganese ions) can be shown to explain excellently the curve of Ki/M, versus
temperature of Dillon,

However, a§e+d£i .= —1.8X10"%cm~} in this case, which seems to be unacceptable since in Ni-ferrite the cor-
responding value is +1.87X10-%em=! (the opposite sign).

2. The fraction of 0.8 and the value of apy, +av,e found for Ni-ferrite are assumed to be valid for
Mn ferrite, again neglecting the contribution of the manganese jons to the anisotropy constant. Taking the
Dillon’s® expetimental value of K:/M, at 300°K-Dillon’s and Tannenwald’s® measurements give about the
same value at 300°K-we obtain

a¥,=137X102em™,  aff =0.50X10~*cmL.

The ratio age/aﬁe =274 is favourable for the experimental results due to Sugiura® and Rado (private
communication) but the sign of aﬁe is opposite to that found by Rado. The temperature dependence of
K;/M; comes nearer to that observed by Tannerwald® (Fig. 4).

3. The sample used by Dillon? is acsumed to have had a different fraction of the manganese jons

on the tetrahedral sites. This fraction will be denoted by x. The following numerical values found by our
analysis are assumed to be valid :

(1—x) ap,=—082X102cm™, (1+x) af,=4.21X10~2 1,

aﬁe + aﬁe =1.87X10"2cm~! (for Ni-ferrite).

Then we obtain

x=0347, a5 =—126X10"%em™, ap, =3.13X10~%cm,

'S
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The ratio ]a}:i“/ a} | is 2.48 and the sign of ap, is in agreement with that found by Rado.

We note that the sublattice magnetizations per ijon observed by neutron diffraction experiment and
those found by our calcu'aion (based on Guillaud’s?® measurements) are in good agreement:

neutron diffra: lon study: our calculation :
m, e m oK
Y VI )k 015
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m oK m eI
TR g41 Ik g1
(ma) 1,00 (mp)a.20
-—300 Y
[ )
.
w —200
3 \
3
g b
']
o]
.8
= 100
5 N
L
T
o —
4] 100 200 300 400 500

Temperature (K°)

Fig. 4. The calculated temperature dependence of K)/M, of M,ferrite. The points tepresents
the expetimental values obtained by Tannenwald.
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