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Abstract Quite recently, an Orlicz Minkowski problem has been posed and the ex-
istence part of this problem for even measures has been presented. In this paper, the
existence part of the Orlicz Minkowski problem for polytopes is demonstrated. Fur-
thermore, we obtain a solution of the Orlicz Minkowski problem for general (not
necessarily even) measures.
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1 Introduction

The solution of the classical Minkowski problem for convex bodies is a central topic
in convexity with many applications. Although the solution of the Minkowski prob-
lem has been known in the mathematical literature since the work of Minkowski
[44, 45], Alexandrov [1–3], Fenchel and Jessen [10], analytic versions or algorith-
mic issues of the problem are still subject of current research and highly relevant
(see, e.g., Chou and Wang [7], Jerison [21], Klain [23], Lamberg [24], Lamberg and
Kaasalainen [25], and the reference therein).

The Lp Minkowski problem extends the classical Minkowski problem, which was
first defined by Lutwak in [30] as part of the Lp Brunn-Minkowski theory (see, e.g.,
[4, 5, 8, 13–16, 20, 26–40, 43, 46–48, 50, 55, 56]). It requires necessary and sufficient
conditions on a Borel measure μ on Sn−1 to be the Lp surface area measure of a
convex body; i.e., is there a convex body K such that

h
1−p
K dSK = dμ?
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Here, hK is the support function of K and SK is the surface area measure
of K . The even Lp Minkowski problem asks which even measures are Lp sur-
face area measures of convex bodies. For p = 1, this problem reduces to the
classical Minkowski problem. For p > 1 but p �= n, the even Lp Minkowski
problem was solved by Lutwak [30]. However, in [36] an equivalent volume-
normalized version of the Lp Minkowski problem was proposed, and the even
volume-normalized Lp Minkowski problem was solved for all p > 1. The solution of
the Lp Minkowski problem for polytopes for all p > 1 was given by Chou and Wang
[8], while an alternate approach to this problem was presented by Hug et al. [20].
Other approaches towards the Lp Minkowski problem have also been extensively
studied over the last years (see, e.g., [6, 9, 17, 19, 22, 51–54]). Despite impressive
success in this direction, not all problems concerning the Lp Minkowski problem are
completely solved.

Quite recently, an embryonic Orlicz–Brunn–Minkowski theory emerged in a series
of papers [18, 41, 42]. The Orlicz Minkowski problem is a natural and important task
to be considered. Haberl, Lutwak, Yang and Zhang [18] first proposed the following
Orlicz Minkowski problem: what are necessary and sufficient conditions for a Borel
measure μ on Sn−1 to be the Orlicz surface area of a convex body; i.e., given a
suitable continuous function ϕ : (0,+∞) → (0,+∞), is there a convex body K such
that for some c

cϕ(hK)dSK = dμ?

In the case that ϕ(t) = t1−p (p �= n), this problem reduces to Lp Minkowski problem.
Under some suitable conditions on ϕ, the even Orlicz Minkowski problem was

solved by Haberl, Lutwak, Yang and Zhang in [18]. One of their results [18, Theo-
rem 2] is the following: Suppose ϕ : (0,∞) → (0,∞) is a continuous function such
that φ(t) = ∫ t

o
1

ϕ(s)
ds exists for every positive t and is unbounded as t → ∞, and μ is

an even finite Borel measure on Sn−1 which is not concentrated on a great subsphere
of Sn−1, then there exists an origin symmetric convex body K ⊂ R

n and c > 0 such
that cϕ(hK)dSK = dμ and ‖hK‖φ,μ = 1 simultaneously, where ‖hK‖φ,μ is the Or-
licz norm of the support function hK with respect to μ.

The main purpose of this paper is to provide a solution of the general Orlicz
Minkowski problem without assuming that μ is an even measure. But besides the
assumptions on ϕ in [18], we have to assume that ϕ(s) tends to infinity as s → 0+. In
order to serve this purpose, we first solve the Orlicz Minkowski problem for discrete
measures, that is, if μ is a discrete measure then the solution body K is a polytope
(Theorem 1.1). The proof relies on techniques developed by Haberl, Hug, Lutwak,
Yang, and Zhang in [18] and [20], but it is not just an immediate generalization. Next,
we give a solution of the Orlicz Minkowski problem for general measures (Theo-
rem 1.2), by means of an approximation argument.

We denote by Kn the set of convex bodies in R
n, P n

0 the set of convex polytopes
in R

n which contain the origin in their interiors, h(P, ·) the support function of P ,
S(P, ·) the surface area measure of P , δui

the probability measure with unit point
mass at ui . One can consult Sects. 2 and 3 for more details.

Our main result may be formulated as follows:
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Theorem 1.1 (Discrete measures) Suppose ϕ : (0,∞) → (0,∞) is a continuous
function such that φ(t) = ∫ t

o
1

ϕ(s)
ds exists for every positive t and is unbounded as

t → ∞, and ϕ(s) tends to infinity as s → 0+. Let vectors u1, . . . , um ∈ Sn−1 that
are not contained in a closed hemisphere and real numbers α1, . . . , αm > 0 be given.
Then, there exist a polytope P ∈ P n

0 and c > 0 such that

m∑

i=1

αiδui
= cϕ

(
h(P, ·))S(P, ·), (1)

‖hP ‖φ,μ = 1. (2)

Theorem 1.2 (General measures) Suppose ϕ : (0,∞) → (0,∞) is a continuous
function such that φ(t) = ∫ t

o
1

ϕ(s)
ds exists for every positive t and is unbounded

as t → ∞, and ϕ(s) tends to infinity as s → 0+. Let μ be a finite Borel measure
on Sn−1 whose support is not contained in a closed hemisphere. Then there exist a
convex body K ∈ Kn with 0 ∈ K and c > 0 such that

dμ

ϕ(h(K, ·)) = c dS(K, ·), (3)

‖hK‖φ,μ = 1. (4)

However, just as the case of even measures, the uniqueness part of the Orlicz
Minkowski problem for general measures cannot also be solved. Hence, this problem
is still open and seems to be very difficult.

This paper is organized as follows: In Sect. 2 we list for quick reference some
basic facts regarding convex bodies. In Sect. 3 we study some properties of the Orlicz
norm on the basis of [18]. The proofs of Theorem 1.1 and Theorem 1.2 are presented
in Sects. 4 and 5, respectively.

2 Background and Notation

In this section we present the terminology and notation we shall use throughout.
For general reference the reader may wish to consult the books of Gardner [11],
Gruber [12], and Schneider [49].

For x, y ∈ R
n, we denote their inner product by x · y and the Euclidean norm of x

by |x| = √
x · x. The unit sphere {x ∈ R

n : |x| = 1} is denoted by Sn−1 and the unit
ball {x ∈ R

n : |x| ≤ 1} by Bn
2 . For u ∈ Sn−1, let H−

u,t := {y ∈ R
n : u · y ≤ t} denote

the halfspace with exterior normal vector u and the distance t ≥ 0 from the origin.
Let V stand for n-dimensional Lebesgue measure, and |μ| := μ(Sn−1) for a finite

Borel measure μ on Sn−1. We write C(Sn−1) for the set of continuous functions on
Sn−1 which will always be viewed as equipped with the max-norm metric:

‖f − g‖∞ = max
u∈Sn−1

∣
∣f (u) − g(u)

∣
∣, (5)

for f,g ∈ C(Sn−1).
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A convex body is a compact convex set of R
n with nonempty interior. Let Kn

denote the set of convex bodies in R
n endowed with the Hausdorff metric, and P n

the subset of convex polytopes. We write Kn
0 for the set of convex bodies containing

the origin in their interiors, and P n
0 := P n ∩ Kn

0 .
For K ∈ Kn, let hK = h(K, ·) : R

n → R denote the support function of K ; i.e.,
for any x ∈ R

n, hK(x) = h(K,x) = max{x · y : y ∈ K}. It is easy to show that the
support function of the line segment v̂ joining the points 0, v ∈ R

n is given by

hv̂(u) = (u · v)+ = max{u · v,0} = |u · v| + u · v
2

, u ∈ R
n. (6)

We shall require the obvious facts that for compact, convex K,L ⊂ R
n,

K ⊂ L if and only if hK ≤ hL, (7)

and that for c > 0 and x ∈ R
n,

hcK(x) = chK(x) and hK(cx) = chK(x). (8)

If Ki ∈ Kn, we say that Ki → K ∈ Kn in the Hausdorff metric provided

‖hKi
− hK‖∞ := max

u∈Sn−1

∣
∣hKi

(u) − hK(u)
∣
∣ → 0. (9)

For a Borel set ω ⊂ Sn−1, the surface area measure SK(ω) = S(K,ω) of the con-
vex body K is the (n − 1)-dimensional Hausdorff measure of the set of all boundary
points of K for which there exists a normal vector of K belonging to ω. Observe that
for the surface area measure of cK we have

ScK = cn−1SK, c > 0. (10)

We will use the fact that SK is weakly continuous in K [49]; i.e., for Ki ∈ Kn,

Ki → K ∈ Kn =⇒ SKi
→ SK, weakly, as i → +∞. (11)

For K,L ∈ Kn, the mixed volume V1(K,L) may be defined by

V1(K,L) = 1

n

∫

Sn−1
hL dSK. (12)

In particular, for K ∈ Kn,

V1(K,K) = V (K),

or equivalently,

V (K) = 1

n

∫

Sn−1
hK dSK. (13)

Minkowski’s inequality states that for convex bodies K,L:

V1(K,L)n ≥ V (K)n−1V (L) (14)
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with equality if and only if K and L are homothetic.
We will use the following simple fact:
Let f,f1, . . . ∈ C(Sn−1), μ,μ1, . . . be finite measures on Sn−1. If fi → f uni-

formly on Sn−1, and μi → μ weakly on Sn−1, then

lim
i→+∞

∫

Sn−1
fi(u) dμi(u) =

∫

Sn−1
f (u)dμ(u). (15)

3 Orlicz Norms

Definition 3.1 [18] Let φ : [0,∞) → [0,∞) be continuous, strictly increas-
ing, continuously differentiable on (0,∞) with positive derivative, and satisfy
limt→∞ φ(t) = ∞. Let μ be a finite Borel measure on the sphere Sn−1. For a contin-
uous function f : Sn−1 → [0,∞), the Orlicz norm ‖f ‖φ,μ is defined by

‖f ‖φ,μ = inf

{

λ > 0 : 1

|μ|
∫

Sn−1
φ

(
f

λ

)

dμ ≤ φ(1)

}

. (16)

As in [18], the Orlicz norm of a function f not only depends on μ but also depends
on φ. The usual Lp norm is obtained by taking φ(t) = tp .

As was shown in [18], the following properties for continuous f : Sn−1 → [0,∞)

hold:

‖cf ‖φ,μ = c‖f ‖φ,μ, c > 0. (17)

In particular

‖c‖φ,μ = c, c > 0. (18)

Moreover, the monotonicity of φ guarantees that for continuous f,g : Sn−1 →
[0,∞),

f ≤ g =⇒ ‖f ‖φ,μ ≤ ‖g‖φ,μ. (19)

Lemma 3.2 [18, Lemma 3] Suppose μ is a finite Borel measure on Sn−1 and the
function f : Sn−1 → [0,∞) is continuous and such that μ({f �= 0}) > 0. Then the
Orlicz norm ‖f ‖φ,μ is positive and

‖f ‖φ,μ = λ0 ⇐⇒ 1

|μ|
∫

Sn−1
φ

(
f

λ0

)

dμ = φ(1).

Lemma 3.3 [18, Lemma 4] Suppose f : Sn−1 → [0,∞) is a continuous function
with μ({f �= 0}) > 0 and {fi} is a sequence of nonnegative functions in C(Sn−1)

with μ({fi �= 0}) > 0. If

fi → f in C
(
Sn−1),

then

‖fi‖φ,μ → ‖f ‖φ,μ.
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Lemma 3.4 Suppose f : Sn−1 → [0,∞) is a continuous function with μ({f �= 0})
> 0 and {μi} is a sequence of finite Borel measures on Sn−1. If

μi → μ weakly on Sn−1, (20)

then

‖f ‖φ,μi
→ ‖f ‖φ,μ. (21)

Proof First, we will show that the sequence {‖f ‖φ,μi
} is bounded. The fact f ∈

C(Sn−1) guarantees that there exists a real C > 0 such that f (u) ≤ C for all
u ∈ Sn−1. Together with (18) and (19), it follows that

0 ≤ ‖f ‖φ,μi
≤ ‖C‖φ,μi

= C

for all Borel measures μi on Sn−1, i ∈ N. Thus the boundedness of the sequence
{‖f ‖φ,μi

} is established.
The Bolzano–Weierstrass theorem guarantees that the sequence {‖f ‖φ,μi

} has a
convergent subsequence. In order to show that the sequence {‖f ‖φ,μi

} converges to
‖f ‖φ,μ, it suffices to prove that every convergent subsequence converges to ‖f ‖φ,μ.
To simplify the notation, we denote an arbitrary convergent subsequence of {‖f ‖φ,μi

}
by {‖f ‖φ,μi

} as well.
Next, we will show limi→∞ ‖f ‖φ,μi

> 0. Suppose it is not true; i.e., ‖f ‖φ,μi
→ 0.

The condition μ({f > 0}) > 0 yields the result that there exists a sufficiently small
c > 0 such that μ({f ≥ c}) > 0. Given M > 0, there exists a sufficiently small δ > 0

such that φ( c
δ
) >

M|μ|
μ({f ≥c}) , since φ is strictly increasing and limt→∞ φ(t) = ∞. Then

the assumption limi→∞ ‖f ‖φ,μi
= 0 implies there exists N1 such that ‖f ‖φ,μi

< δ

whenever i > N1 for the above given δ. Thus φ(
f

‖f ‖φ,μi
) ≥ φ(

f
δ
) for i > N1. Note

that since μ({f �= 0}) > 0, f ∈ C(Sn−1) and μi → μ weakly on Sn−1, there exists
N2 such that μi({f �= 0}) > 0 whenever i > N2. From Lemma 3.2, it follows that

‖f ‖φ,μi
> 0, (22)

and

1

|μi |
∫

Sn−1
φ

(
f

‖f ‖φ,μi

)

dμi = φ(1), (23)

whenever i > N2.
We therefore deduce

φ(1) = lim
i→∞

1

|μi |
∫

Sn−1
φ

(
f

‖f ‖φ,μi

)

dμi

≥ lim inf
i→∞

1

|μi |
∫

Sn−1
φ

(
f

δ

)

dμi

= 1

|μ|
∫

Sn−1
φ

(
f

δ

)

dμ
(
by (20)

)
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≥ 1

|μ|
∫

{f ≥c}
φ

(
f

δ

)

dμ

≥ φ

(
c

δ

)
1

|μ|
∫

{f ≥c}
dμ

>
M|μ|

μ({f ≥ c}) · μ({f ≥ c})
|μ| = M,

since M > 0 is arbitrary, this is a contradiction.
Since limi→∞ ‖f ‖φ,μi

> 0, by (22), there exists a real c > 0 such that ‖f ‖φ,μi
> c

whenever i > N2. Let λi := ‖f ‖φ,μi
, then we may rewrite (23) as

∫

Sn−1
φ

(
f

λi

)

dμ̄i = φ(1), (24)

where dμ̄i = dμi/|μi |, for i > N2.
Suppose that for the subsequence {λi} we have λi → λ.
Finally, we prove λ = ‖f ‖φ,μ. Observe that

∣
∣
∣
∣
f (u)

λi

− f (u)

λ

∣
∣
∣
∣ = f (u)|λi − λ|

λiλ
≤ C|λi − λ|

c2
whenever i > N2,

which means that f (u)/λi uniformly converges to f (u)/λ for all u ∈ Sn−1. Note
that |f/λi | ≤ C/c for i > N2, and φ is uniformly continuous on [0,C/c], hence the
function φ(f (u)/λi) uniformly converges to φ(f (u)/λ) on Sn−1. Moreover, μi → μ

weakly on Sn−1 implies μ̄i → μ̄ weakly on Sn−1, by (15), we obtain from (24) that
∫

Sn−1
φ

(
f

λ

)

dμ̄ = φ(1).

Then, Lemma 3.2 again yields the desired result. �

Corollary 3.5 Suppose f : Sn−1 → [0,∞) is a continuous function with
μ({f �= 0}) > 0, {fi} is a sequence of nonnegative functions in C(Sn−1) and {μi}
is a sequence of finite Borel measures on Sn−1. If

fi → f in C
(
Sn−1),

and

μi → μ weakly on Sn−1,

then

‖fi‖φ,μi
→ ‖f ‖φ,μ.

Proof Let ε > 0 be given, by Lemma 3.3, there exists a sufficiently small δ > 0 such
that

∣
∣‖f + δ‖φ,μ − ‖f ‖φ,μ

∣
∣ <

ε

2
(25)
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and
∣
∣‖f0‖φ,μ − ‖f ‖φ,μ

∣
∣ <

ε

2
, (26)

where f0 := max{f − δ,0} satisfies μ(f0 > 0) > 0.
Evidently, f0 : Sn−1 → [0,∞) is a continuous function. Since fi → f ∈ C(Sn−1),

there exists N1 such that f0 ≤ fi ≤ f + δ for i ≥ N1. Using (19), we obtain
‖f0‖φ,μi

≤ ‖fi‖φ,μi
≤ ‖f + δ‖φ,μi

for i ≥ N1.
We now apply Lemma 3.4 to the function f + δ: there exists N2 such that

∣
∣‖f + δ‖φ,μi

− ‖f + δ‖φ,μ

∣
∣ <

ε

2
, whenever i ≥ N2. (27)

Similarly, there exists N3 such that

∣
∣‖f0‖φ,μi

− ‖f0‖φ,μ

∣
∣ <

ε

2
whenever i ≥ N3. (28)

For N = max{N1,N2,N3}, the inequalities (25) and (27) yield

∣
∣‖f + δ‖φ,μi

− ‖f ‖φ,μ

∣
∣ < ε whenever i ≥ N.

Similarly, the inequalities (26) and (28) yield

∣
∣‖f0‖φ,μi

− ‖f ‖φ,μ

∣
∣ < ε whenever i ≥ N.

Since ‖f0‖φ,μi
≤ ‖fi‖φ,μi

≤ ‖f + δ‖φ,μi
, the two inequalities above give

∣
∣‖fi‖φ,μi

− ‖f ‖φ,μ

∣
∣ < ε

whenever i > N . �

Recall (6) that hv̂(u) = (u · v)+ = |u·v|+u·v
2 .

Lemma 3.6 If μ is a finite Borel measure on the sphere Sn−1 whose support is not
contained in a closed hemisphere, then there exists a real c > 0 such that ‖hv̂‖φ,μ ≥ c

for every v ∈ Sn−1.

Proof Since the support of μ is not contained in a closed hemisphere of Sn−1

μ
({hv̂ > 0}) = μ

(
Sn−1\H−

v,0

)
> 0 for every v ∈ Sn−1.

According to Lemma 3.2, we have ‖hv̂‖φ,μ > 0. Since Sn−1 is compact, it suffices to
show that the function v �→ ‖hv̂‖φ,μ is continuous.

Suppose vi ∈ Sn−1 and vi → v as i → +∞. Note that hv̂(u) = |u·v|+u·v
2 implies

hv̂i
→ hv̂ uniformly on Sn−1, and thus ‖hv̂i

‖φ,μ converges to ‖hv̂‖φ,μ by Lemma
3.3. So the desired continuity of v �→ ‖hv̂‖φ,μ is established. �
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Corollary 3.7 If a sequence of finite discrete measures {μi} weakly converges to a
finite Borel measure μ on Sn−1, and the supports of μi and μ are all not contained
in a closed hemisphere, i ∈ N. Then, there exists a real c > 0 such that ‖hv̂‖φ,μi

≥ c

for every v ∈ Sn−1 and i ∈ N.

Proof Recall that a finite discrete measure μi on Sn−1 is a Borel measure. Observe
that hv̂ ≤ 1, combining (19) and (18), we have ‖hv̂‖φ,μ ≤ 1 for any Borel measure
μ. From Lemma 3.6, for each i, let

ci = min
v∈Sn−1

‖hv̂‖φ,μi
= ‖hv̂i

‖φ,μi
> 0, (29)

where vi ∈ Sn−1 is any point where this minimum is attained. Similarly, there exists
c0 > 0 such that ‖hv̂‖φ,μ ≥ c0 for all v ∈ Sn−1. The compactness of [0,1] guarantees
that the sequence {ci} has a convergent subsequence.

In order to prove this corollary, it suffices to show that no convergent subsequence
of the sequence {ci} converges to 0. We argue by contradiction, assume there exists
a subsequence {ci′ } of the sequence {ci} such that ci′ → 0. From (29), for the subse-
quence {ci′ } we can write ci′ = ‖hv̂i′ ‖φ,μi′ for some vi′ ∈ Sn−1 as well. Since Sn−1

is compact, there exists a subsequence {vi′′ } of the sequence {vi′ } such that vi′′ con-
verges to v0 ∈ Sn−1. Thus we obtain a subsequence {ci′′ } of the sequence {ci′ } such
that ci′′ converges to 0 by the assumption, where ci′′ = ‖hv̂i′′ ‖φ,μi′′ . Meanwhile, hv̂i′′
converges to hv̂ uniformly on Sn−1 as shown in Lemma 3.6. By Corollary 3.5, we see
that ci′′ = ‖hv̂i′′ ‖φ,μi′′ → ‖hv̂0‖φ,μ. Note that ‖hv̂‖φ,μ ≥ c0 for all v ∈ Sn−1, while
ci′′ = ‖hv̂i′′ ‖φ,μi′′ → 0, this is the desired contradiction. �

4 The Orlicz Minkowski Problem for Discrete Measures

This section is devoted to the proof of Theorem 1.1.

Lemma 4.1 Suppose ϕ : (0,∞) → (0,∞) is a continuous function such that φ(t) =∫ t

o
1

ϕ(s)
ds exists for every positive t and is unbounded as t → ∞, and ϕ(s) tends to

infinity as s → 0+. Then,

(i) limt→0+ φ(t) = 0, limt→0+ φ′(t) = 0.
(ii) Let α(t) := 1

ϕ(t)
, β(t) := t

ϕ(t)
, both of them are continuous on (0,∞). Moreover,

we can extend the domain of α(t), β(t) right continuously to the origin; i.e.,
α(0) = limt→0+ α(t) = 0, β(0) = limt→0+ β(t) = 0.

(iii) limt→0+(φ−1)′(φ(h) − bφ(t)) is bounded from above and below by positive
reals, for any given b,h > 0.

Proof First, we extend the domain of φ to [0,∞) by

φ(t) =
∫ t

o

1

ϕ(s)
ds, for t > 0, and φ(0) = lim

t→0+ φ(t).

Indeed, (i) and (ii) are easily verified.



290 Discrete Comput Geom (2012) 48:281–297

Next, we will show (iii).
Note that the function φ is strictly increasing and continuously differentiable on

(0,∞), and φ′ > 0. Since limt→0+ φ(t) = 0 and limt→∞ φ(t) = ∞, φ has an inverse
φ−1 : [0,∞) → [0,∞) which is continuously differentiable on (0,∞).

Hence for any given b,h > 0, there exists δ > 0 such that

φ(h) − bφ(t) ∈ φ

((
h

2
, h

))

for all t ∈ (0, δ). Obviously, φ((h
2 , h)) ⊂ (0,∞), thus (φ−1)′(φ(h)−bφ(t)) exists for

a sufficiently small t . Observe (φ−1)′(φ(s)) = 1
φ′(s) = ϕ(s) when s ∈ (h

2 , h), and the

function ϕ is continuous on (0,∞), thus limt→0+(φ−1)′(φ(h) − bφ(t)) is bounded
from above and below by positive reals. �

By this lemma we can assume in the proofs of Theorems 1.1 and 1.2 that the
domains of φ(t), α(t), and β(t) contain zero; i.e., φ(0) = limt→0+ φ(t) = 0, α(0) =
limt→0+ α(t) = 0, and β(0) = limt→0+ β(t) = 0.

In the following, we denote by R
m+ the set of all x = (x1, . . . , xm) ∈ R

m with
positive components. Recall that H−

u,t := {y ∈ R
n : u · y ≤ t} is the halfspace with

exterior normal vector u and the distance t ≥ 0 from the origin.

Lemma 4.2 [20, Lemma 3.2] Let u1, . . . , um ∈ Sn−1 be pairwise distinct vec-
tors which are not contained in a closed hemisphere. For x ∈ R

m+, let P(x) :=⋂m
i=1 H−

ui ,xi
. Then V (P (x)) is of class C1 and ∂iV (P (x)) = S(P (x), {ui}) for

i = 1, . . . ,m.

With these lemmas in hand, we can complete the proof of Theorem 1.1.

Proof of Theorem 1.1 Let R
m∗ be the set of all x = (x1, . . . , xm) ∈ R

m with nonnega-
tive components, define the set

M :=
{

x ∈ R
m∗ :

m∑

i=1

αiφ(xi) =
m∑

i=1

αiφ(1)

}

.

Since φ is strictly increasing, the surface M is compact. For x ∈ M , we define P(x)

as the convex polytope

P(x) :=
m⋂

i=1

H−
ui ,xi

=
m⋂

i=1

H−
ui ,h

x
i
, (30)

where hx
i := h(P (x),ui) for i = 1, . . . ,m.

Since M is compact and the function x �→ V (P (x)) is continuous, there is a point
z ∈ M such that

V
(
P(x)

) ≤ V
(
P(z)

)
for all x ∈ M.
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Note that if we set x∗ = (1, . . . ,1) ∈ R
m, then clearly x∗ ∈ M . Since 0 < V (Bn

2 ) ≤
V (P (x∗)) ≤ V (P (z)), this gives P(z) ∈ P n.

We will prove that P(z) is the desired polytope.
First, we want to show

0 ∈ int
(
P(z)

)
. (31)

Observe for any x ∈ M , 0 ∈ P(x), that is, either 0 ∈ bd(P (z)) or 0 ∈ int(P (z)). Recall
that hz

i := h(P (z), ui) for i = 1, . . . ,m. Suppose 0 ∈ bd(P (z)), so there exist hz
1 =

. . . = hz
k = 0 and hz

k+1, . . . , h
z
m > 0 for some 1 ≤ k < m. We shall get a contradiction

by showing that under this assumption there is some zt ∈ M such that V (P (zt )) >

V (P (z)), which contradicts the definition of z. For a small t > 0, we define

zt := (
φ−1(φ(z1) + φ(t)

)
, . . . , φ−1(φ(zk) + φ(t)

)
,

φ−1(φ(zk+1) − αφ(t)
)
, . . . , φ−1(φ(zm) − αφ(t)

))
,

where

α :=
∑k

i=1 αi∑m
i=k+1 αi

.

Obviously, zt ∈ M if t > 0 is sufficiently small.
Analogously, for a small t > 0, we define

hz
t := (

φ−1(φ
(
hz

1

) + φ(t)
)
, . . . , φ−1(φ

(
hz

k

) + φ(t)
)
,

φ−1(φ
(
hz

k+1

) − αφ(t)
)
, . . . , φ−1(φ

(
hz

m

) − αφ(t)
))

.

Since φ(0) = 0, by (30), we have

P
(
hz

t

) :=
k⋂

i=1

H−
ui ,t

∩
m⋂

i=k+1

H−
ui ,φ

−1(φ(hz
i )−αφ(t))

.

A glance at (30) again shows P(hz
0) = P(z). Since hz

i ≤ zi for all i ≤ m and the func-
tion φ is strictly increasing, P(hz

t ) ⊂ P(zt ) and 0 ∈ int(P (hz
t )), if t > 0 is sufficiently

small. For simplicity, we write

Si := S
(
P(z),ui

)
and St

i := S
(
P

(
hz

t

)
, ui

)
,

and thus for the n-dimensional polytope P(hz
t ), P (z), according to the discrete form

of (13) and (12), it follows that

nV
(
P

(
hz

t

)) = t

k∑

i=1

St
i +

m∑

i=k+1

φ−1(φ
(
hz

i

) − αφ(t)
)
St

i ,

and

nV1
(
P

(
hz

t

)
,P (z)

) = 0
k∑

i=1

St
i +

m∑

i=k+1

hz
i S

t
i .
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Note that each open set intersecting P(z) intersects P(hz
t ) if t > 0 is sufficiently

small and each closed set having empty intersection with P(z) has empty intersection
with P(hz

t ) if t > 0 is sufficiently small. Hence P(hz
t ) → P(z) as t → 0+ [49, p. 57],

and (11) gives St
i → Si as t → 0+. Now, we conclude that

lim
t→0+

V (P (hz
t )) − V1(P (hz

t ),P (z))

t

= 1

n
lim

t→0+

(
k∑

i=1

t − 0

t
St

i +
m∑

i=k+1

φ−1(φ(hz
i ) − αφ(t)) − hz

i

t
St

i

)

= 1

n

k∑

i=1

Si > 0.

Since limt→0+ φ′(t) = 0 and limt→0+(φ−1)′(φ(hz
i ) − αφ(t)) is bounded by

Lemma 4.1

lim
t→0+

φ−1(φ(hz
i ) − αφ(t)) − hz

i

t
= lim

t→0+
(
φ−1)′(

φ
(
hz

i

) − αφ(t)
)(−αφ′(t)

) = 0,

thus the last equality is obtained. By Minkowski’s inequality (14) and P(hz
t ) → P(z)

as t → 0+, we obtain

0 < lim
t→0+

V (P (hz
t )) − V1(P (hz

t ),P (z))

t

≤ lim inf
t→0+

V (P (hz
t )) − V (P (hz

t ))
1− 1

n V (P (z))
1
n

t

= V
(
P(z)

)1− 1
n lim inf

t→0+
V (P (hz

t ))
1
n − V (P (z))

1
n

t
.

Consequently, V (P (hz
t )) > V (P (z)) if t > 0 is sufficiently small. However, since

P(hz
t ) ⊂ P(zt ), the required contradiction V (P (zt )) > V (P (z)) follows.

Next, we will prove the main conclusions (1) and (2). From (31), we have

z ∈ M+ :=
{

x ∈ R
m+ :

m∑

i=1

αiφ(xi) =
m∑

i=1

αiφ(1)

}

.

By the Lagrange multiplier rule there is some λ ∈ R such that

∇V
(
P(z)

) = λ∇
(

m∑

i=1

αiφ(zi) −
m∑

i=1

αiφ(1)

)

,

where V (P (z)) is differentiable by Lemma 4.2, and φ′(zi) exists since zi > 0 for all
i = 1, . . . ,m. Thus

Si = λ
αi

ϕ(zi)
, i = 1, . . . ,m. (32)
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The fact that Si > 0 for some i ∈ {1, . . . ,m} and αi,ϕ(zi) > 0 for all i = 1, . . . ,m,
shows λ > 0. Together with the above expression (32), it follows that Si > 0 for all
i = 1, . . . ,m. Hence, h(P (z), ui) = zi for all i = 1, . . . ,m. By the discrete form of
(13), and (32), it follows that

nV
(
P(z)

) =
m∑

i=1

Sizi = λ

m∑

i=1

αizi

ϕ(zi)
.

Therefore, for i = 1, . . . ,m,

S
(
P(z),ui

) = Si = αi

cϕ(zi)
,

where c = 1
nV (P (z))

∑m
i=1

αizi

ϕ(zi )
.

Indeed, together with h(P (z), ui) = zi , it follows that

μ =
m∑

i=1

αiδui
= cϕ

(
h
(
P(z), ·))S(

P(z), ·).

Observe the definition of M+ and h(P (z), ui) = zi , hence

m∑

i=1

αiφ
(
h
(
P(z),ui

)) =
m∑

i=1

αiφ(1).

Moreover, take μ = ∑m
i=1 αiδui

in Lemma 3.2 to conclude

∥
∥hP (z)

∥
∥

φ,μ
= 1. �

5 The Orlicz Minkowski Problem for General Measures

Proof of Theorem 1.2 As was shown in [49, Theorem 7.1.2], for a given Borel mea-
sure μ on Sn−1 which is not concentrated in a closed hemisphere, one can construct a
sequence of discrete measures {μi} on Sn−1, i ∈ N, such that the support of μi is not
contained in a closed hemisphere and μi → μ weakly as i → ∞. By Theorem 1.1,
for each i ∈ N there exists a polytope Pi ∈ P n

0 with

μi = ciϕ
(
h(Pi, ·)

)
S(Pi, ·).

First, we claim that the sequence {Pi} is bounded. For each i, let vi ∈ Sn−1 be
chosen such that rivi ∈ Pi with |rivi | maximal for suitable ri > 0. Thus we derive
rihv̂i

(u) ≤ hPi
(u) for all u ∈ Sn−1 from (8) and (7). Together with (17), (19), and (2),

we see that

ri‖hv̂i
‖φ,μi

= ‖rihv̂i
‖φ,μi

≤ ‖hPi
‖φ,μi

= 1. (33)
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By Corollary 3.7, there exists a real c > 0 such that ‖hv̂‖φ,μi
≥ c for every v ∈ Sn−1,

i ∈ N. It follows that the ri ’s are bounded from above, and hence the sequence {Pi}
is bounded. We set hPi

≤ R for i ∈ N.
Now Blaschke’s selection theorem guarantees the existence of a convergent sub-

sequence of {Pi}, which will also be denoted by {Pi}, with limi→∞ Pi = K . Now,
0 < V (Bn

2 ) ≤ V (Pi) for all i ∈ N implies that 0 < V (Bn
2 ) ≤ V (K), that is, K ∈ Kn.

Thus, from (9) it is clear that h(Pi, ·) → h(K, ·) uniformly on Sn−1. Since 0 ∈ int(Pi)

for all i ∈ N, this gives 0 ∈ K .

For a discrete measure μi , we rewrite ci = 1
nV (Pi )

∫
Sn−1

hPi

ϕ(hPi
)
dμi . We also set

c = 1
nV (K)

∫
Sn−1

hK

ϕ(hK)
dμ. From Lemma 4.1(ii) and 0 < hPi

≤ R, we find that

β(t) := t
ϕ(t)

is uniformly continuous on [0,R]. Meanwhile, h(Pi, ·) → h(K, ·) uni-

formly on Sn−1, and it follows that h(Pi ,·)
ϕ(h(Pi ,·)) uniformly converges to h(K,·)

ϕ(h(K,·)) on

Sn−1. Combining V (Pi) → V (K) and μi → μ weakly, as i → ∞, by (15), we ob-
tain ci → c as i → ∞.

Next, for a continuous function f ∈ C(Sn−1) and i ∈ N, we have

∫

Sn−1

f (u)

ϕ(h(Pi, u))
dμi(u) = ci

∫

Sn−1
f (u)dS(Pi, u). (34)

From Lemma 4.1(ii) and 0 < hPi
≤ R, we see that α(t) := 1

ϕ(t)
is uniformly con-

tinuous on [0,R]. Meanwhile, h(Pi, ·) → h(K, ·) uniformly on Sn−1, and it fol-
lows that 1

ϕ(h(Pi ,·)) uniformly converges to 1
ϕ(h(K,·)) on Sn−1. Since μi → μ and

S(Pi, ·) → S(K, ·) weakly by (11), as i → ∞, using (15) again, it follows from (34)
that

∫

Sn−1

f (u)

ϕ(h(K,u))
dμ(u) = c

∫

Sn−1
f (u)dS(K,u). (35)

The existence assertion (3) now follows, since (35) holds for any f ∈ C(Sn−1).
Moreover, since ‖hPi

‖φ,μi
= 1, and h(Pi, ·) → h(K, ·) uniformly on Sn−1, we

obtain from Corollary 3.5 that

‖hK‖φ,μ = 1. �

The following proof of Corollary 5.1 is similar to the one of [18, Corollary 2],
which is known as the Lp-Minkowski problem. We include it for the sake of com-
pleteness.

Corollary 5.1 If μ is a finite Borel measure on Sn−1 which is not concentrated on a
closed hemisphere, then

(i) for p > 1, there exists a convex body K ∈ Kn with 0 ∈ K such that

h
p−1
K dμ = c dSK, (36)

where c = 1/V (K).
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(ii) for 1 < p �= n, there exists a convex body K ∈ Kn with 0 ∈ K such that

h
p−1
K dμ = dSK. (37)

Proof (i) Note that ϕ(t) = t1−p for p > 1 satisfies the requirements of Theorem 1.2.
From (3) we have (36) and from (4) it follows that

1

|μ|
∫

Sn−1
h

p
K dμ = 1. (38)

Using (13) and (3), we conclude
∫

Sn−1
h

p
K dμ = cnV (K). (39)

From (38) and (39) it follows that c = |μ|/nV (K). Therefore

h
p−1
K dμ = |μ|

nV (K)
dSK.

In order to get the desired c = 1/V (K), we will show that a dilation of K yields
this c. Let K = λK ′, then the homogeneity properties of (8) and (10) imply

λph
p−1
K ′ dμ = |μ|

nV (K ′)
dSK ′ .

Then K ′ is the desired convex body, by choosing λp = |μ|/n.
(ii) If K ′′ = λK satisfies (37), then by (8) and (10) we have

h
p−1
K dμ = λn−p dSK.

Since there exists K satisfying (36), we can choose λn−p = c, where n �= p makes
the reverse process feasible. �
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