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Abstract. We examine some recent results of Bownik on density and connectivity of
the wavelet frames. We use orthogonality (strong disjointness) properties of frame and
Bessel sequences, and also properties of Bessel multipliers (operators that map wavelet
Bessel functions to wavelet Bessel functions). In addition we obtain an asymptotically
tight approximation result for wavelet frames.

1. Introduction

This article is motivated by Bownik’s recent solutions to two problems posed by the
second author on the density and connectivity of the wavelet frames. We examine these
results from the point of view of orthogonality (also called strong disjointness) of frame
and Bessel sequences, and the corresponding properties for generators of wavelet frame and
wavelet Bessel sequences. Along the way we obtain a new approximation result. A sequence
of wavelet frames {ψn} is called asymptotically tight if limn→∞

Bn

An
= 1, where Bn and An

are the upper and lower frame bounds of ψn. We show that every function in L2(R ) is the
limit of an asymptotically tight sequence of wavelet frames.

About twelve years ago [36] the second author raised the question of whether the set of all
Riesz wavelets for the dyadic wavelet system on L2(R) is a norm-dense path-wise connected
subset of L2(R). This is related to the problem that was posed earlier by Guido Weiss and
his group [31, 32] and independently by Dai and Larson ([11], problem 1) of whether the
set of all orthonormal dyadic wavelets is connected. Neither conjecture has been settled to
date, although it has been shown [44] that the set of MRA orthonormal dyadic wavelets
is connected. Shortly after this, the two authors developed an operator-theoretic approach
to frame theory in [27], and the same problems (density and connectivity) were posed for
wavelet frames (also called frame wavelets or framelets). This density problem was not
posed formally in [27] but was alluded to in that memoir, and also in the semi-expository
papers [37] and [39] , and it was finally posed formally (along with some other related
problems) in [38]. In [27] it was pointed out that for the Gabor-frame case, and for the
group-frame case (i.e. frame sequences generated by the action of a unitary group on a single
generator vector), both the density and the connectivity problems have positive solutions.
This follows immediately from the parametrization theorem for frame vectors. It was later
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proven that the parametrization result presented in [27] is also valid for the more general
projective unitary group representations (cf. [16, 18, 19, 25]). These systems were also
called group-like systems, and they include the Gabor systems as special cases. The frame
density and connectivity problems also have positive solutions for these systems.

There has been steady progress on the connectivity and density problems for special
classes of wavelets and wavelet frames, including the MSF (s-elementary) and MRA (mul-
tiresolution analysis) wavelets and their analogues for wavelet frames and especially Parseval
wavelets. The interested reader should refer to (c.f. [7, 9, 10, 20, 21, 22, 29, 34, 40, 42, 44])
for details and exposition of these results. However, the general connectivity and density
problems for the set of all wavelet frames remained open until recently Marcin Bownik [5]
settled both problems affirmatively. His argument was clever, elegant, and short. In fact
Bownick proved the density of wavelet frames not only in the Hilbert space norm but also in
another natural logmodular norm associated with wavelet theory (see [41] and [23] for the
definition of this norm). While the general connectivity and density problems are settled
for the case of wavelet frames, they are still open for the case of wavelets.

In this paper, we examine the density and connectedness results obtained in [5]. We
observed that the essential ingredient that makes the proofs work seems to be a very clever
use of frame-orthogonality (or strong-disjointness), a concept that arose simultaneously and
independently to Balan [2] and the authors some time ago [27]. This is a natural geometric
concept in frame theory which was formally introduced and studied in [2, 27], and it has
proven useful for developing the theory of frames and its applications (cf. [1, 2, 3, 4, 12,
13, 14, 15, 26, 27, 30, 35, 43]. We note that Bownik does not explicitly use this term, or
this property, in his argument; it is just that we have observed that the essential reason
the argument works seems to involve the orthogonality concept. The point of this paper
is to try to make this observation crystal-clear, to borrow a phrase of Kadison. The key
observation is that if a wavelet Bessel function f is strongly disjoint with a wavelet frame
ψ, then f + tψ is a wavelet frame for all t 6= 0 and hence f is the limit of a sequence of
wavelet frames. This allows us to obtain a new type of approximation result for wavelet
Bessel sequence generators. And we also pose some new questions.

A frame for a Hilbert space H is a sequence of vectors {fn} in H such that there exist
positive constants A and B such that

(1.1) A||f ||2 ≤
∑

n∈N

|〈 f , fn 〉|2 ≤ B||f ||2

holds for every f ∈ H, and we call the optimal constants A and B the lower frame bound
and the upper frame bound, respectively. A tight frame refers to the case when A = B, and
a Parseval frame refers to the case when A = B = 1. If we only require the right-hand side
of the inequality (1.1), then {xn} is called a Bessel sequence. The analysis operator Θ for a
Bessel sequence is defined by

Θ(f) =
∑

n∈N

〈 f , fn 〉en, f ∈ H,

where {en} is the standard orthonormal basis for the ℓ2(N)-sequence space. It is easy to
verify that Θ∗Θ =

∑

n fn ⊗ fn, where the convergence is in the strong operator topology
(SOT for short), and f⊗g is the elementary tensor rank-one operator defined by (f⊗g)(h) =
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〈h , g 〉f . Moreover, it is true that a sequence {fn} is a frame (resp. a Bessel sequence) if
and only if

∑

n fn ⊗ fn is SOT-convergent to a bounded invertible operator (resp. bounded
operator) on H

Let Θ1 and Θ2 be the analysis operators for Bessel sequences {fn} and {gn}, respectively.
We say that the two Bessel sequences are strongly disjoint (or orthogonal) if the two range
spaces ran(Θ1) and ran(Θ2) are orthogonal. Clearly, {fn} and {gn} are strongly disjoint if
and only if

∑

n∈N

〈 f , fn 〉〈 gn , g 〉 = 0

for all f, g ∈ H. Two Parseval frames {xi}, {yi} are strongly disjoint if and only if the
inner direct sum {xi ⊕ yi} is also a Parseval frame, and this was the basis for defining
strong disjointness in [27], where it was shown that the strongly disjointness of two frames
is equivalent to the orthogonality of the ranges of the analysis operators for the two frames.

A special class of frames that has been extensively studied is the class of wavelet frames.
Let H = L2(R ), and let T , D be the translation and dilation unitary operators on L2(R)
defined (Tf)(t) = f(T − 1), (Df)(t) =

√
2f(2t). A wavelet frame is a function ψ ∈ L2(R)

such that the affine system {DnT ℓψ}n,ℓ∈Z is a frame for L2(R ). Tight wavelet frames and
Parseval wavelet frames are defined similarly as generators of tight or Parseval (resp.) frame
sequences under the action of the affine system. In the case that {DnT ℓψ}n,ℓ∈Z is a Bessel

sequence, we say that ψ is a wavelet Bessel function. If {DnT ℓψ}n,ℓ∈Z is an orthonormal
basis for L2(R ), then ψ is called an (orthonormal) wavelet.

We will show that every function in L2(R ) is a limit of an asymptotically tight sequence
of wavelet frames. This extends to arbitrary expansive wavelet systems on L2(R n). (See
Section 3). This property can be false for group-frames (see Example 1 in Section 3 for a
Fourier type system).

2. Bessel multipliers

Let F denote the Fourier transform defined by

(Ff)(ξ) = f̂(ξ) =
1√
2π

∫

R

e−iξtf(t)dt, f ∈ L1(R) ∩ L2(R).

This operator is isometric and so can be extended to a unitary operator on L2(R). Moreover,

we have T̂ := FTF−1 = Me−iξ and D̂ := FDF−1 = D−1.
By a Fourier Bessel multiplier for the wavelet system we mean an L∞-function h such

that the inverse Fourier transform of the multiplication operator Mh maps every wavelet
Bessel function to a wavelet Bessel function. More generally, a Bessel multiplier operator
for the wavelet system is a bounded linear operator B on L2(R ) such that B maps wavelet
Bessel functions to wavelet Bessel functions.

The family of Fourier Bessel Multipliers is quite rich, as the following proposition and the
remark following it show. The set of all the Fourier Bessel Multipliers the wavelet system
is clearly a linear subspace and is closed under pointwise multiplication. So it is a function
algebra. We do not have a complete characterization of it, however, and we leave that as
an open problem. See also the remark after the proof of the next proposition, where we
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indicate some other Fourier Bessel multipliers. The following proposition will be sufficient
for our purpose in this article.

Proposition 2.1. If h ∈ L∞(R ) is either 2π - translation-periodic or 2- dilation-periodic,
then h is a Fourier Bessel multiplier.

Proof. First assume that h is 2π -translation periodic. Let f and g be arbitrary compactly
supported bounded functions. Then we have

∑

ℓ∈Z

〈 f , T̂ ℓψ̂ 〉〈 T̂ ℓψ̂ , g 〉 =

∫

[0,2π]

(

∑

k∈Z

f(ξ − 2kπ)ψ̂(ξ − 2kπ) ·
∑

k∈Z

g(ξ − 2kπ)ψ̂(ξ − 2kπ)
)

dξ.

Replacing both f and g by D̂−nf , we obtain

∑

ℓ∈Z

|〈 D̂−nf , T̂ ℓψ̂ 〉|2 = 2n

∫

[0,2π]
|
∑

k∈Z

f(2n(ξ − 2kπ))ψ̂(ξ − 2kπ)|2dξ,

and so
∑

n∈Z

∑

ℓ∈Z

|〈 f , D̂−nT̂ ℓψ̂ 〉|2 =
∑

n∈Z

2n

∫

[0,2π]
|
∑

k∈Z

f(2n(ξ − 2kπ))ψ̂(ξ − 2kπ)|2dξ.

Assume that |h(ξ)| ≤ K and let ϕ̂(ξ) = h(ξ)ψ̂(ξ). Replace ψ by ϕ in the above equality
and use the π-periodic property of h, we obtain

∑

n∈Z,ℓ∈Z

|〈 f , D̂−nT̂ ℓϕ̂ 〉|2 =
∑

n∈Z

2n

∫

[0,2π]
|
∑

k∈Z

f(2n(ξ − 2kπ))h(ξ − 2kπ)ψ̂(ξ − 2kπ)|2dξ

=
∑

n∈Z

2n

∫

[0,2π]
|h(ξ)|2|

∑

k∈Z

f(2n(ξ − 2kπ))ψ̂(ξ − 2kπ)|2dξ

≤ K2
∑

n∈Z

2n

∫

[0,2π]

∑

k∈Z

f(2n(ξ − 2kπ))ψ̂(ξ − 2kπ)|2dξ

= K2
∑

n∈Z

∑

ℓ∈Z

|〈 f , D̂−nT̂ ℓψ̂ 〉|2

Thus ϕ is Bessel, as claimed.
For the case when h is a 2 -periodic L∞ function, the statement follows immediately from

the fact that the multiplication operator Mh commutes with both D̂ and T̂ [11]. ¤

Remark 1. There are many other Fourier Bessel multipliers. For example, any function h
satisfying one of the following two conditions is a Fourier Bessel multiplier.

(i) h ∈ L∞(R ) with the property that h(ξ) = O(|ξ|δ) as ξ → 0 and h(ξ) = O(|ξ|−1/2−δ)
as |ξ| → ∞ (In this case the statement that h is a Fourier Bessel multiplier follows from
Theorem 10.0.1 in [33] and the fact that all the Bessel functions are L∞(R )-functions).

(ii) h(ξ) and 1/h(ξ) are bounded, and h(ξ)/h(2ξ) is 2π-periodic (We will not include
the proof for this case since it will not be used in this paper. This will be included in a
subsequent paper, where we develop the theory of these operators for wavelets and more
general unitary systems).
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3. Asymptotic tight frame sequence approximation

We require some results that involve strongly disjoint wavelet Bessel functions. For
wavelet systems, there is a general equation characterization for strongly disjoint Bessel
functions [43]. In this paper we will only need a simple sufficient condition (Lemma 3.2)
which is given in terms of the support of the Fourier transform of Bessel functions. Although
this sufficient condition can be easily derived from the general characterization of Eric
Weber, we provide an elementary proof for self-completeness of the paper.

Two measurable subsets E, F of R are called essentially disjoint if E ∩ F is a Lebesgue
measure zero set. For any set E ⊆ R , we write τ(E) = ∪n∈Z(E + 2nπ). We say that E
and F are translation disjoint if τ(E) and τ(F ) are essentially disjoint. By a Bessel shift
sequence we mean a Bessel sequence of the form {ψ(· − ℓ)}ℓ∈Z. The following is well-known
and we insert a proof for the reader’s convenience.

Lemma 3.1. Two Bessel shift sequences {ψ(x − ℓ)}ℓ∈Z and {ϕ(x − ℓ)}ℓ∈Z are strongly

disjoint if and only if supp(ψ̂) and supp(ϕ̂) are translation disjoint.

Proof. The two sequences are strongly disjoint if and only if
∑

ℓ∈Z

〈 f , e−iℓξϕ̂ 〉〈 e−iℓξψ̂ , g 〉 = 0, ∀f, g ∈ L2(R ).

A standard argument shows that this is equivalent to

0 =
∑

ℓ∈Z

(

∫

[0,2π]
eiℓξF (ξ)dξ

)

·
(

∫

[0,2π]
e−iℓξG(ξ)dξ

)

,

where F (ξ) =
∑

k∈Z f(ξ − 2kπ)ϕ̂(ξ − 2kπ) and G(ξ) =
∑

k∈Z g(ξ − 2kπ)φ̂(ξ − 2kπ). This
says that the Fourier coefficient sequences for F and G are orthogonal, so F is orthogonal
to G in L2[0, 2π]. Equivalently,

0 =

∫

[0,2π]

(

∑

k∈Z

f(ξ − 2kπ)ϕ̂(ξ − 2kπ) ·
∑

k∈Z

g(ξ − 2kπ)φ̂(ξ − 2kπ)
)

dξ.

This is trivially satisfied if τ(supp(ψ̂)) and τ(supp(ϕ̂)) are essentially disjoint. Conversely,
if this integral is 0 for all f, g, we can fix k and j, and set

f = χ[2kπ,2(k+1)π] · sgn(ϕ̂), g = χ[2jπ,2(j+1)π] · sgn(ψ̂).

So we have
∫

[0,2π]
|ϕ̂(ξ − 2kπ)| · |φ̂(ξ − 2kπ)|dξ

for all k, j. It follows that τ(supp(ψ̂)) and τ(supp(ϕ̂)) are essentially disjoint. ¤

The above strongly disjointness condition for two Bessel shift sequences is not necessary
for the corresponding affine sequences (indexed by Z×Z) to be strongly disjoint. However,
it is sufficient for strongly disjointness of affine sequences, which is enough for our purpose.

Lemma 3.2. Let ψ, φ ∈ L2(R ) be two wavelet Bessel functions, and let E = suppψ̂
and F = suppϕ̂. If τ(E) and τ(F ) are disjoint, then ψ and φ are strongly disjoint, i.e.,
{DnT ℓψ}n,ℓ∈Z and {DnT ℓφ}n,ℓ∈Z are strongly disjoint.
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Proof. By Lemma 3.1 we have that the “partial” Bessel sequences {ψ(x−ℓ)}ℓ∈Z and {ϕ(x−
ℓ)}ℓ∈Z are strongly disjoint. So

∑

ℓ∈Z

〈 f , T ℓϕ 〉T ℓψ = 0, ∀f ∈ L2(R ).

For each fixed integer n, replace f by D−nf and apply Dn to both sides of the above equality
we get

∑

ℓ∈Z

〈 f , DnT ℓϕ 〉DnT ℓψ = 0, ∀f ∈ L2(R ),

and so
∑

n∈Z

∑

ℓ∈Z

〈 f , DnT ℓϕ 〉DnT ℓψ = 0, ∀f ∈ L2(R ).

Therefore ψ and ϕ are strongly disjoint. ¤

Remark 2. As mentioned above, the translation disjointness condition on suppψ̂ and
suppφ̂ is not necessary in general for the strong disjointness (orthogonality) of the two
Bessel sequences {ψk,ℓ} and {φk,ℓ}. However, the condition will become necessary if we
assume that one of these two Bessel sequences is semi-orthogonal. For example, assume
that {ψk,ℓ} is semi-orthogonal, i.e., ψk,ℓ ⊥ ψk′,ℓ′ whenever k 6= k′. Then the orthogonality
definition

∑

k∈Z,l∈Z

〈 f , DkT lφ 〉DkT lψ = 0 (∀f ∈ L2(R ))

and the semi-orthogonality condition of the Bessel sequence {ψk,ℓ} imply that
∑

l∈Z

〈 f , DkT lφ 〉DkT lψ = 0 (∀f ∈ L2(R ), k ∈ Z).

In particular, we have
∑

l∈Z〈 f , T lφ 〉T lψ = 0 (∀f ∈ L2(R )), which implies that suppψ̂

and suppφ̂ are translation disjoint.
We also need the following proposition. This was proven in [27] for the case of two

disjoint (a condition that is weaker than the strongly disjointness) general frames for the
same Hilbert space, and so in particular, it holds for strongly disjoint frames. The proof
goes through in fact for the case when one is a frame and one is a Bessel sequence. The
proof for wavelet system case is simple, and so we include it for completeness.

Proposition 3.3. Assume that ψ is wavelet frame and g is Bessel. If ψ and g are strongly
disjoint, then ϕ = ψ + g is also a wavelet frame. Moreover, if ψ has upper and lower frame
bounds A and B, respectively, and g has a Bessel bound C, then ϕ has a lower frame bound
A, and upper frame bound B + C.

Proof. By the strong disjointness of ψ and g, we have for any f ∈ L2(R ) that
∑

j,k∈Z

|〈 f , ϕjk 〉|2 =
∑

j,k∈Z

|〈 f , ψjk 〉 + 〈 f , gjk 〉|2

=
∑

j,k∈Z

|〈 f , ψjk 〉|2 +
∑

j,k∈Z

|〈 f , gjk 〉|2.
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Thus we get

A||f ||2 ≤
∑

j,k∈Z

|〈 f , ψjk 〉|2 ≤
∑

j,k∈Z

|〈 f , ϕjk 〉|2 ≤ B||f ||2 + C||f ||2.

So ϕ = ψ + g is a wavelet frame with the claimed frame bounds. ¤

Now we prove that every L2-function can be approximated by almost tight wavelet frames
(in the L2-norm).

Theorem 3.4. Every function f ∈ L2(R ) is a limit of as asymptotic tight sequence of
wavelet frames.

Proof. Since the set of all wavelet Bessel functions is dense in L2(R ), it suffices to show
that for any wavelet Bessel function ψ with Bessel bound D > 0 and any given ǫ > 0 and
A > 0, there exists a wavelet frame η with frame bounds in the interval [A,A + D] such
that

||ψ − η|| < ǫ.

Choose a small neighborhood G of 0 such that ψ̂|τ(G) has norm less than ǫ
2 . Let E =

τ(G)c. Then, by the Proposition 2.1, ψ̂χE and ψ̂χτ(G) are Bessel functions. Since their

support are 2π-translation disjoint, we get by Proposition 3.2 thatψ̂χE and ψ̂χτ(G) are
strongly disjoint Bessel functions.

Assume that D1 is the Bessel bound for ψ̂χE and D2 is the Bessel bound for ψ̂χτ(G).

Then, from Proposition 3.3, since these two functions are strongly disjoint and add to ψ̂ we
have D ≤ D1 + D2 and D1, D2 ≤ D.

Let N ≥ 1 be any positive integer such that

2−N ([−2π,−π) ∪ [π, 2π)) ⊂ G.

Then for any n ≥ N the function ϕn with

ϕ̂n(ξ) =
1√
2π

χ2−n([−2π,−π)∪[π,2π))

is a Parseval wavelet frame, and ||ϕn|| = 2−n.
Let A > 0 be any positive number, and choose n > N large enough so that A2−n < ǫ/2.

Let σ = Aϕn. Then σ is a tight wavelet frame with frame bound A, and ||σ|| ≤ ǫ/2.

Moreover, ψ̂ · χE and σ̂ are strongly disjoint. So

η̂ := ψ̂ · χE + σ̂

is a wavelet frame. By Proposition 3.3, η has the lower frame bound no smaller than A,
and the upper frame bound no bigger than A + D. We also have

||ψ − η|| = ||ψ̂ − (ψ̂ · χE + σ̂)||
= ||ψ̂|τ(G) − σ̂||
≤ ||ψ̂|τ(G)|| + ||σ̂|| < ǫ.

¤
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In many cases, frames associated with group structures have better topological properties
than wavelet frames. However this is not true in general. The following example shows that
the above theorem fails for Fourier frames:

Example 1. Let H = L2(E) where E is a subset of [0, 2π) with positive measure. Let
G = Z, and U be the multiplication unitary operator by eit. Then {Unf}n∈Z is a frame
if and only if both f and f−1 are L∞(E)-functions(Here f−1 denotes the reciprocal of f
on E). Moreover, the frame bounds are given by A = ||f ||L∞(E) and B = ||f−1||L∞(E).
We usually refer f as a Fourier frame generator. Now assume that {ψn} are Fourier frame
generators with frame bounds An and Bn such that ||ψn − g|| → 0 and limn→∞

Bn

An
= 1.

Since Anµ(E) ≤ ||ψn||2 ≤ Bnµ(E), we get

An

Bn
µ(E) ≤ ||ψn||2

Bn
≤ µ(E).

So, by the conditions limn→∞
Bn

An
= 1 and limn→∞ ||ψn||2 = ||g||2, we have {Bn} is a

bounded sequence. Similarly we can show that {An} is a sequence bounded from below.
Therefore {Ung} is a frame, and hence both g and g−1 are L∞(E)-functions. Thus the
above theorem fails for Fourier frames.

We remark that similar argument can be applied to show that this is also true for frames
of the form {Uξ : U ∈ U}, where U is an abelian group of unitary operators on a Hilbert
space H.

Theorem 3.4 suggests the question of whether the set of all tight wavelet frames is dense in
L2(R ). When we restrict ourselves to the set of MRA wavelet frames, then the this question
has an negative answer. In fact, a much stronger result is proved in [29]: The set of all
MRA (not necessarily tight) wavelet frames is nowhere dense in L2(R). The next example
shows that the answer to the question on density of tight frames is negative if we replace
wavelet frames by frames induced by infinite dimensional projective unitary representations
of groups (these include Gabor frames, and frames obtained from group representations).
We refer to [26] for the definitions of projective unitary representations.

In an early version of the present article we formally posed the question “Is the set of
all tight wavelet frames dense in L2(R )?” In response to our question, recently Bownik
proved that the answer is negative by showing that every function in the norm closure of
the set of tight wavelet frames satisfies the second equation in the equation-characterization
of the tight wavelet frames. His paper will appear in the same special volume as the present
article.

Example 2. Let π be a projective unitary representation of a countable group G on an
infinite dimensional Hilbert space H. A (tight) frame generator is a vector ξ such that
{π(g)ξ}g∈G is (tight) frame for H. Then the set of all tight frame generators is not dense
in H. In fact we will prove that the limit of a sequence of tight frame vectors must be
a Bessel vector, which will lead to a contradiction since not every vector is Bessel for an
infinite dimensional projective unitary representation.

Fix a Parseval frame vector ψ for a projective unitary representation of a countable group
G. Let {ψn} be a sequence of tight frame vectors for π with the tight frame bound Bn such
that ||ψn − η|| → 0. To show that η is Bessel, it suffice to prove that {Bn} is a bounded
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sequence. In fact, by the parametrization result of tight frame vectors (c.f. [25]), for each n
there exists a unitary operator operator Un in the von Neumann algebra generated by π(G)
such that ψn =

√
BnUnψ. So Bn||ψ|| = ||ψn|| → ||η||. This implies that {Bn} is convergent

and hence bounded. Thus η is Bessel.

We remark that the statement in the above example is false when π is a finite dimensional
projective unitary representation. For instance, assume that π is an irreducible unitary
representation of a finite group G on a finite dimensional Hilbert space H. Then every
vector x ∈ H is a Bessel vector for π. Let x ∈ H be any non-zero vector and Θx be the
analysis operator for {π(g)x : g ∈ G}. Then the frame operator S = Θ∗

xΘx commutes with
π(G) and hence S = αI for some α 6= 0 since π is irreducible. Hence every nonzero vector
x is a tight frame vector for π, and therefore set of all tight frame vectors for π is dense in
H. However, it can be shown that this (the irreducibility of π) is the only case when the
set of all tight frame vectors for a finite dimensional projective unitary representation π is
dense in H.

Using Proposition 3.3 we also provide a slightly more constructive proof for the connec-
tivity result.

Proposition 3.5. Assume that ψ is a wavelet frame and f ∈ L2(R )∩L∞(R ). Then there
exists a continuous path ψt such that ψ0 = ψ, ψ1 = f and ψt is a wavelet frame for every
0 ≤ t < 1. In particular, this also implies that the set of all wavelet frames is path-connected
and is dense in L2(R ).

Proof. We will work in the frequency domain, all the functions involved are considered to
be functions in frequency domain. Let f ∈ L2(R ) and ψ0 = χE , where E = [−π,−π/2) ∪
[π/2, π). Then ψ0 is wavelet frame. It suffices to show that there is a continues path
connection ψ0 and f and satisfying the requirements of the theorem.

For each n, let {δn}∞n=1 be a decreasing sequence such that
∫

G |f(t)|2dt ≤ 1
n whenever

µ(G) < δn, where µ is the Lebesgue measure on R . Pick a positive integer increasing
sequence {mn}∞n=1 such that

µ([−2(n + 1)π, 2(n + 1)π] ∩ τ(2−mnE)) ≤ 1

2
δn.

Let ψn = χ2−mnE for n ≥ 1. Then ψn is a wavelet frame for L2(R ). Moreover ψn is strongly
disjoint with ψk when n 6= k. Thus tψn + (1− t)ψk will be always a wavelet frame for each
t.

For each n ≥ 0, pick a small interval In = (−ǫn, ǫn) such that ǫn < 1
2δn, and then define

a compactly supported function gn ∈ L2(R ) by

gn(t) =

{

0 |t| > 2(n + 1)π or t ∈ τ(2−mnE) ∪ τ(2−mn+1E) or t ∈ In

f(t) otherwise

where we set m0 = 0. Then clearly we have τ(supp(gn))∩τ(supp(ψn)) = ∅ and τ(supp(gn))∩
τ(supp(ψn+1)) = ∅ for all n ≥ 0, and hence gn is strongly disjoint with both ψn and ψn+1.
This implies that every function in the following list is a wavelet frame:

(3.2) ψ0, ψ1 + g0, ψ1 + g1, ..., , ψn + gn, ψn+1 + gn, ψn+1 + gn+1, ...
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Moreover, we have

‖gn − f‖2 =

∫

|t|>2nπ
|f(t)|2dt +

∫

[−2nπ,2nπ]∩[τ(2−mnE)∪τ(2−mn+1E)]
|f(t)|2dt +

∫

In

|f(t)|2dt

≤
∫

|t|>2nπ
|f(t)|2dt +

1

n
+

1

n
,

where in the last inequality we use the fact that µ(In) ≤ δn and

µ([−2nπ, 2nπ] ∩ [τ(2−mnE) ∪ τ(2−mn+1E)]) ≤ 1

2
δn +

1

2
δn+1 ≤ δn.

Thus ‖gn − f‖ → 0 as n → ∞. Our next step is to construct a continues wavelet frame
path between any two neighboring wavelet frames from the list (3.2): Let

ϕ
(0)
t = tψ0 + (1 − t)(ψ1 + g0),

and






h
(n)
t = ψn + tgn−1 + (1 − t)gn

ϕ
(n)
t = tψn + (1 − t)ψn+1 + gn

Since ψ0 and ψ0+g0 are strongly disjoint wavelet frames, we get that ϕ
(0)
t is a wavelet frame

Similarly, because of the strong disjointness of ψn, ψn+1 and gn, we have that h
(n)
t and ϕ

(n)
t

are wavelet frames for n ≥ 1.

To complete the proof, it suffices to show that ‖h(n)
t − f‖ → 0 and ‖ϕ(n)

t − f‖ → 0
uniformly for 1 ≤ t ≤ 1 as n → ∞. Note that

‖h(n)
t − f‖ ≤ ‖ψn‖ + ‖gn−1 − f‖ + ‖gn − f‖

and

‖ϕ(n)
t − f‖ ≤ ‖ψn‖ + ‖ψn+1‖ + ‖gn − f‖.

Thus the statement follows immediately since we already have ‖ψn}|| = µ(2−mnE) → 0 and
‖gn − f‖ → 0. ¤

Remark 3. Both Theorem 3.4 and Proposition 3.5 in this section also hold for higher
dimensions and any dilations. Let A be an expansive d × d real matrix and DA be defined
on L2(R d) by DAf(t) =

√

|detA|f(At). Then ψ ∈ L2(R d) is called wavelet frame for

L2(R d) if there exist two positive constants A and B such that

A||f ||2 ≤
∑

n∈Z,ℓ∈Zd

|〈 f , Dn
ATℓψ 〉|2 ≤ B||f ||2

holds for all f ∈ L2(R d). It can be shown (c.f. [17]) that there exists F ∈ [−π, π)d such that
A−nF ∈ [−π, π)d for n ≥ 0,and {A−nF}∞n=0 is disjoint. Replacing E by F , and [−2nπ, 2nπ]
by [−2nπ, 2nπ]d in the proofs of Theorem 3.4 and Proposition 3.5 and keeping the rest of
the argument, then we get the same results for the high dimension and arbitrary dilation
wavelet frames. Similar techniques can be used to show that both theorem are valid for
subspace wavelet frames.
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