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ON THE OSCILLATION OF DIFFERENTIAL EQUATIONS
WITH AN OSCILLATORY COEFFICIENT

B. J. HARRIS AND Q. KONG

Abstract. We derive lower bounds for the distance between consecutive zeros

of solutions of

(*) y" + q(t)y = 0

when q takes both positive and negative values. We apply our results to the

limit point/limit circle classifications of (*).

1. Introduction

We consider the linear, second order differential equation

(1.1) y" + q(t)y = 0

where we suppose that q is a real-valued member of L,'oc.

The question that we consider here is that of determining a lower bound for
the distance between consecutive zeros of a solution of (1.1). Perhaps the best

known existing result of this type is due to Lyapunov.

Theorem A. Let q be continuous on [a, b]. A necessary condition for a non-

trivial solution of (1.1) to have two zeros in [a, b] is that

b                     4
q+(t)dt > t-    where q+(t) := max(0, q(t)).

A proof of this result may be found in the books [1] and [3] and extensions

are given in [2] and [4].

Intuitively, one would expect that if q had a large negative part, or if q were

oscillatory, then the distance between consecutive zeros would tend to become

larger. Theorem A would be unable to detect this difference. Our object in this

paper is to extend Theorem A in such a way as to use the negative part of q to

obtain a keener bound. This is achieved in Corollary 2.2 below.

We also demonstrate, by means of Examples 2.1 and 3.1, the rather surprising

fact that, under certain circumstances, the greater the frequency of oscillation

of q , the smaller the frequency of oscillation of solutions of (1.1). This effect

could not have been observed by previous results.
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1832 B. J. HARRIS AND Q. KONG

Lower bounds for the distance between successive zeros of non-trivial solu-
tions of (1.1) have application to the limit point/limit circle classification of

(1.1). This connection was established by Patula and Wong in [6] and exploited

by Yan in [7].
In §3 we use our results to derive simple criteria for ( 1.1 ) to be the limit point

at infinity.

2. Preliminary results

Lemma 2.1. If y is a solution of (1.1) satisfying y'(d) = 0,y(b) = 0, and
y(t) > 0 and y'(t) < 0 for t € (d, b), then

sup   / q(s) ds > 0.
d<t<bJd

Proof Suppose the contrary.   Then ¡¿q(s)ds < 0 for t e [d, b].   We let

Q(t) := ¡d q(s) ds, and we define the Riccati variable

(2.1) r(t):=-y'(t)/y(t).

We thus have r(d) = 0,  lim r(t) = oo and r(t) > 0 for t e (d, b). It follows

from (1.1) that

(2.2) r'(t) = q(t) + r(t)2

whence

r(t) = Q(t)+ fr(s)2ds.
Jd

In a similar way, if z is the non-trivial solution of the equation z" = 0 with

z'(d) = 0 and R(t) := -z'(t)/z(t), then

R(t)= ['r(s?
Jd

ds

so that R(t) = 0 for all t e [d, oo). As a simple consequence of the general
theory of integral inequalities (see [4, Lemma 3]) we see that r(t) < R(t) = 0

for t e [d, b), thus contradicting the fact that   lim r(t) = oo. The proof is

now complete.   □

Theorem 2.1. Let y denote a non-trivial solution of (1.1) satisfying y'(d) =

0, y(b) = 0, and y(t) ^ 0 for te [d, b). Then

(2.3) (b-d) sup    /  q(s)ds > 1.
d<t<b\Jd

Moreover, if there are no extreme values of y in (d, b), then

(2.4) (b-d) sup   / q(s)ds> 1.
d<t<bJd
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OSCILLATION OF DIFFERENTIAL EQUATIONS 1833

Proof We assume, without loss of generality, that y(t) > 0 for t e [d, b)
With r defined by (2.1 ) we set

(2.5) w(t) := / r(s)2ds   for te[d, b).
Jd

Thus, r(d) = w(d) = 0 and from (2.2)   lim r(t) = lim w(t) = oo because
t-> b~ t->b~

(2.6) r(t) = [ q(s)ds + w(t)   for te[d, b).
Jd

We set Q* :=  sup | /J q(s) ds\ and observe that
d<t<b

\r(t)\<Q* + w(t)

so that

w'(t) = r(t)2<(Q* + w(t))2

and

w'(t)

(Q*+w(t))

Integrating (2.7) over [d, b] we obtain

(2 7) _^^_< 1

j

Q* + w(t)
<b-d.

which implies that 1/ß* < b - d or (b - d)Q* > 1. We remark that equality

cannot hold, for otherwise \Q(t)\ = \\~tdq(s)ds\ = Q* a.e. on [d, b), which

contradicts the fact that Q is continuous and Q(d) = 0.

If d is the largest extreme point of y in [d, b), then y'(t) < 0 and thus

r(t) > 0 for t e [d, b). We set ß» :=  sup /j q(s) ds. By Lemma 2.1, ß, > 0 ;
d<t<b

and from (2.6)

0<r(t)<Q, + w(t).

The proof of the second part of the theorem now follows in a way similar to

that of the first,   o

Theorem 2.2. Let y denote a non-trivial solution of (1.1) satisfying y (a) = 0,

y'(c) = 0, and y(i) ^ 0 for te(a,c]. Then

> 1.(2.8) (c - a) sup    /   q(s) ds
a<t<c \Jt

Moreover, if there are no extreme values of y in (a, c), then

(2.9) (c-a) sup   /   q(s)ds> 1.
a<t<cJt

The proof of this result is similar to the proof of Theorem 2.1 and is omitted.
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Corollary 2.1. If

I /"
(b - d) sup    /  q(s) ds < 1,

d<t<b \Jd

then (1.1) is right disfocal on [d, b);  if

sup    /   q(s),
<t<c\Jt

(c - a) sup    /   q(s) ds < 1

then (1.1) is left disfocal on (a, c]. (See [4, p. 486] for the definition of (1.1)
to be right or left disfocal on an interval. )

Theorem 2.3. Let a and b denote two consecutive zeros of a non-trivial solution,

y, of (1.1) . Then there exist two disjoint subintervals of [a,b], I\ and I2,

satisfying

(2.10) (b-a) [     q(s)ds>4

and

(2.11) / q(s)ds<0.
7[ü,¿,]\(/,u/2)

Proof. Let c and d denote the least and greatest extreme points of y on [a, b],

respectively. If there is only one zero of y' in (a, b), then c and d coincide.

Then y'(d) = 0, y(b) = 0, and y'(t) ^0 for t e (d, b]. By Theorem 2.1
inequality (2.4) holds. There thus exists b\ e (d, b] such that

Zb\ 1 rb, çb
q(s)ds>r—-3    and     /    q(s)ds> /   q(s)ds.

Similarly, we can choose a\ £ [a, c) such that

/   q(s)ds>-   and     /   q(s)ds> /   q(s)ds.
Ja, c — a Jai Ja

Let Ii := [d, ¿1] and I2 := [ûi , c], then

(b-a) [     q(s) ds > [(b - d) + (c - a)] I f ' q(s) ds + f q(s) ds)
Jhuh \Jd Ja, )

>i(6-rf)+(c-.>](jV;rb)

b-d     c- a

and (2.10) is verified. It is also easy to see that Jb q(s)ds < 0 and

/"' q(s) ds < 0. To verify (2.11) it is sufficient to show that  ff q(s) ds < 0. In
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fact, since y'(c) = y'(d) = 0, we have r(c) = r(d) = 0. From (2.2),

/d rd
q(s)ds+ /   r(s)2ds.

This means that Jc q(s) ds < 0 and hence that (2.11) holds.   D

Corollary 2.2. Suppose that for every two disjoint subintervals,  I\  and I2, of
[a, ß], we have

(2.12) (ß~a)[     q(s)ds<4.
Ji, u/2

Then equation (1.1) is disconjugate on [a, ß].

Proof. Suppose the contrary, then there exists a non-trivial solution y of ( 1.1 )

with y(a) = y(b) = 0 for a < a < b < ß. Without loss of generality we

assume that y(t) ^ 0 for t e (a, b). By Theorem 2.3, there exist two disjoint

intervals, I\ and I2, of [a, b] c [a, ß] with

(b-a) /      q(s)ds > 4.
Jl,uh/,u/2

Hence, (ß - a) /7 u/ q(s) ds > 4, which gives a contradiction.   □

Corollary 2.3. Suppose that a non-trivial solution 0/(1.1) has N zeros in [a, b]

for N > 2. There exist 2N disjoint subintervals of [a, b], I¡j for i =
I, ... , N, j = 1, 2, such that

I  r r i 1/2

(2.13) N<2
r

(b-a) / q(s)ds + 1

and

(2.14) /        q{s)ds<0
J[a,b]\I

wherel:=\]lx{j)=xli}.

We remark that Corollary 2.3 provides an extension of [3, Corollary 5.2] in

that we use the negative part of q to achieve a sharper bound.

Proof. Let t¡, i = I, ... , N, be the zeros of y in [a, b]. By Theorem 2.3,
for /' = 1, ... , TV — 1 there are two disjoint subintervals of [t¡, t¡+\], I¡\ and
7,2, with

4
(2.15) /       q(s)ds>

and

(2.16) f q(s)ds<0.
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We sum (2.15) for i from 1 to 7Y - 1 and see that

¿v-i

Ji ~[ ti+i - ti

> jï — i |
q(s)ds>4Yl-—

and by the inequality for the harmonic mean

f   . .,       4(/V-l)2      4(N-l)2
/ q(s) ds > -±--Í- >   \       '   ;

Ji tN -1\ b-a

whence,

(N-l)2<^- jq(s)ds.

This implies (2.13). From (2.16) it is easy to deduce (2.14).   D

In fact, (2.14) is true for the case that a = t\ and b = t^ . For the case that

a < t\, let 7i i = [s\, s2] be the first disjoint subinterval of 7. If /*' q(s)ds > 0,

then replace I\\ in I by /{, = [a, Í2] • Similar manipulation can be done for

the case that b > tu. Then for the new I both (2.13) and (2.14) are satisfied.

Example 2.1. Consider the equation

(2.17) y" + (cos kt)y = 0   for k > 0.

Conclusion 1. Equation (2.17) ¿s ríg«í disfocal on [0, 6)  a«d /e/í disfocal on

(0,b]tf0<b<%.

Conclusion 2. Equation (2.17) ¿s disconjugate on [0, b] if 0 < b < k.

Proof. We set #(£) := cos(rci) and suppose that 0 < b < \ . Then

0<í<¿>

Thus

I /"' I I /"'
sup    /  q(s)ds\ ~ sup    /  cos(A:5)ö?5

2

I /" I
6 sup    /  ^(5)^5 < 1.

0<Kft |7o

By Corollary 2.1, equation (2.17) is right disfocal. It may be shown in a similar

way that it is also left disfocal. Suppose now that 0 < b < k. In (2.12)

Thus,

/      q(s)ds= /      cos(ks)ds
7/,u/2 Ji¡ui2

b [     q(s) ds < 4.

4

l\Ul2

By Corollary 2.2, equation (2.17) is disconjugate on [0, b].   D

3. The distance between consecutive zeros

For any t and S > 0 we denote by (7i U I2)(t, ô) the union of two disjoint

subintervals of [t,t + S], I\ and I2.
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Theorem 3.1. Let y denote an oscillatory solution of (1.1). If

(3.1) limsupja/ q(s)ds\<4
i—oo     y    Jl¡uI2(t,S) J

for all a > 0 and for every two disjoint subintervals, I\ and I2 of [t, t + ô],
then the distance between consecutive zeros of y is unbounded as t —* oo.

Proof. We suppose for a contradiction that (1.1) has a solution, y, whose
sequence of zeros {i«}£Li contains a subsequence {i^}^, such that 0 <

t„k+1 - t„k < ô for some S and all k. By Theorem 2.3 there are disjoint

subintervals of [t„k, t„k+l], I\(nk, ô) and I2(nk , ô), such that

('«*+, ~tnk) I q(s)ds>4   for all k.
J(l^I2)(nk,ô)

This implies that

ô I q(s) ds > 4   for all k,
J(I,Ul2)(nk,ô)l(Ix\Jh)'nk,S)

which contradicts (3.1) and completes the proof.   D

Theorem 3.2. Let y denote an oscillatory solution 0/(1.1). If there exists Sq> 0

such that

(3.2) Urn / q(s)ds = 0
'^J^uhWJo)

for every two disjoint intervals I\ and I2 of[t,t + ¿o]. then the distance between

consecutive zeros of y is unbounded as (-»oo.

Proof. We first show that for all ô > 0 and any disjoint intervals I\ and I2 of

[t,t + 3]

(3.3) Urn / q(s)ds = 0.

Let k denote the least integer with kôo > ô , and t¡ = t + iôo, i = 0, I, ... ,

k - 1, and tk = ô ; then

(3.4) / q(s)ds = Y <*Wds
7(/,u/2)(/,á)                  £q¡«'(/mU/¡.2)(<í>*>)

where /,,;((,, <50) = Ij(t, ô) n [t¡, ti+i] for i = 0, ... , k - 1 and ;' = 1,2.
Noting that i, —► oo as t —> oo, we have from (3.2) that

(3.5) Urn/ q(s)ds = 0       for i = 0, ... , k - 1.
'^°°./(/,.,,u/,,2)(i,;,5o)

Combining (3.4) and (3.5) we obtain (3.3). In consequence of (3.3) we see that

q(s) ds) =0Urn ¡Ô [
i_<00 V   JViUh)(t,S)

for all ô > 0 and any disjoint subintervals of [t, t + ô], I\ and 72. The result

follows from Theorem 3.1.   D
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Lemma 3.1 [6]. If equation (1.1) is the limit circle, then it is oscillatory and the
distance between consecutive zeros of any solution approaches zero as t —► oo.

Corollary 3.1. If the conditions of Theorem 3.1 or Theorem 3.2 hold, then equa-

tion (1.1) is limit point.

The proof of this result is immediate from Lemma 3.1.

Example 3.1. Consider the equation

(3.6) y" + (cos0(/))v = O

where 4> e C1 : R+ -> R, 4>'(t) is increasing, and <f>'(t) -* oo as t -» oo.

Conclusion 3. The distance between zeros of any solution of (3.6) tends to infinity

as t —► oo, as long as the equation is oscillatory. Hence the equation (3.6) is
the limit point.

Proof. Let {in}£Li be the sequence of zeros of q(t) = cos(<j>(t)) such that

(j)(tn) = nn + |. By the Mean Value Theorem

71 = 4>(tn+l) - 4>(tn) = <t>'(tn)(tn+l ~ tn)

for Cn € (t„ , t„+\). We thus have that tn+\ - t„ —► 0 as « —> oo . For a fixed

¿o > 0 and for any t > t2, let k be the least integer such that tk > t. Then

for two given disjoint subintervals I\ and 72 of [t, t + So], we have

L(/,U/2)(/,áo

<7(s) ú?5
/,

cos <p(s)ds
(/,U/2)(í,á0)

<2
Jtk-i

cos(0(s)) ds < 2(ijfc — ijfc_i)

and lim /{/ UI..( s . q(s) ds = 0. To see this define 6 := (f>(s) and, since 4> is

increasing, 5 = (¡>~l(6), ds = [4>~l(6)]'dd . We thus have

rh+\

i

cos(<f>(s)ds
Ak+l)n+n/2

'kx+n/2

=[</>-' (&)]'

=2[r1(í*)]/

cos(ö)[</.-'(ö)]'iiÖ

(k+l)n+7c/2/•(K+ÍJ71-

Jkn+n/2
cos(d)dd

by the Mean Value Theorem where t\k e (tk, tk+\). Since </>' is increasing, we

have that [</>-1(0)]' is decreasing; whence [0_1 (&,)]' - [^-1(ífc2)]' whenever

^i > ^2 > which implies that ¡¡k_lcos((f>(s))ds is a decreasing function of fc.

The conclusion follows from Theorem 3.2 and Corollary 3.1.   D
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