
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information 
Sciences 

2010 

On the outage of multihop parallel relay networks On the outage of multihop parallel relay networks 

Bappi Barua 
University of Wollongong 

Farzad Safaei 
University of Wollongong, farzad@uow.edu.au 

Mehran Abolhasan 
University of Technology Sydney, mehran.abolhasan@uts.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/infopapers 

 Part of the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Barua, Bappi; Safaei, Farzad; and Abolhasan, Mehran: On the outage of multihop parallel relay networks 
2010. 
https://ro.uow.edu.au/infopapers/3578 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F3578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F3578&utm_medium=PDF&utm_campaign=PDFCoverPages


On the outage of multihop parallel relay networks On the outage of multihop parallel relay networks 

Abstract Abstract 
In this paper we analyze the outage probability of a cooperative multihop parallel relay network in 
Nakagami-m fading channels. The general closed form expression of the outage probability is derived 
both for integer and arbitrary Nakagami parameter m. We present numerical results on the performance 
of the network. It shows a careful configuration of the network size and power sharing between nodes 
can ensure optimal outage performance in the network. 

Disciplines Disciplines 
Physical Sciences and Mathematics 

Publication Details Publication Details 
Barua, B., Safaei, F. & Abolhasan, M. (2010). On the outage of multihop parallel relay networks. 2010 IEEE 
72nd Vehicular Technology Conference Fall: Proceedings (pp. 1-5). Piscataway, New Jersey, USA: IEEE. 

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/3578 

https://ro.uow.edu.au/infopapers/3578


On the Outage of Multihop Parallel Relay Networks
Bappi Barua and Farzad Safaei

ICT Research Institute
Faculty of Informatics

University of Wollongong
Wollongong, NSW 2522, Australia

Email: {bb868, farzad}@uow.edu.au

Mehran Abolhasan
Faculty of Engineering and IT

University of Technology Sydney
Sydney, NSW 2007, Australia

Email: mehran.abolhasan@uts.edu.au

Abstract—In this paper we analyze the outage probability of
a cooperative multihop parallel relay network in Nakagami-m
fading channels. The general closed form expression of the outage
probability is derived both for integer and arbitrary Nakagami
parameter m. We present numerical results on the performance
of the network. It shows a careful configuration of the network
size and power sharing between nodes can ensure optimal outage
performance in the network.

I. INTRODUCTION

Wireless networks reliability, severely affected by temporal
multipath fading, can be improved through cooperative com-
munication using relays. Past many research, such as [1]–[3]
and references therein, have worked on dual hop cooperative
systems. Relaying over multiple hops in addition with cooper-
ation has come up with the solution of temporary extension of
a network without substantial establishment of infrastructure
or bringing the dead-spots into the network coverage of a
cellular system [4]–[14]. Multihop relay networks can be
divided into two categories, one with relaying layers/stages
having a single relay [6]–[9], and the other with multiple relays
in each relaying layer [11]–[14]. In this paper the network is
divided into arbitrary K parallel relaying paths, each path with
arbitrary number of relays. We analyze the outage probability
of this system using selective decode and forward (DF) relays
[2] in Nakagami-m fading. In contrast to amplify and forward
(AF) relaying, DF protocol blocks the propagation of noise at
the expense of complex circuitry.

An important statistical analysis of the outage probability
with nonregenerative relays has been performed in [6] for a
multihop series relaying network. It has presented a limited
closed form expression of the MGF (moment generating func-
tion) of the end to end SNR with relays that use the inverted
channel gain of the following channel for scaling. Recently [4]
has investigated the BER (bit error rate) of KPP (K parallel
path) network [10] with diversity branch using MGF based
approach with AF relaying in generalized fading channels.
However the closed form expression of the CDF (cumulative
distribution function) or the PDF (probability density function)
of the end-end SNR has not been presented. In particular,
the exact expression of the PDF and the CDF of the end
to end SNR involves inverse Laplace transform in complex
mathematical form, which usually confines authors to evaluate
the performance numerically rather expressing in closed form

[4], [6]. However in many papers authors such as [7]–[9]
have come up with the performance bounds in closed form.
Boyer in [7] has introduced multihop network with diversity
and has derived the outage and error probability bounds for
multihop network in both DF and AF relaying cases. Using
an inequality of harmonic-geometric mean of end-to-end SNR
in Nakagami-m fading, [8], [9] have presented a lower bound
over outage and average error probability. On the other hand,
high SNR performance analysis has been performed in [11]
and [12] for networks considering multiple relays per layer
assuming flat Rayleigh fading channels. Using the benefits
offered by STBC (space-time block code), [13] has studied a
multihop network for both flat and frequency-selective fading
channels. Furthermore a list of multihop routing protocols has
been proposed in [14] subject to the minimization of outage
probability. It has affirmed that the centralized channel state
information (CSI) is vital for optimal routing in multihops.

In this paper we extend the result of the model [4] without
a diversity link (since the source-destination link will be too
weak to contribute any significant diversity signal in practical
multihop networks) considering DF relaying. We have derived
the closed form expression of the outage probability for a
multihop K parallel path network without centralized CSI.
The numerical results are presented to analyze the performance
behavior with different network parameters such as, power
sharing factor among nodes and fading parameters. We observe
that the total power constraint plays the dominant role in case
of power sharing between the relays and the source or in
selecting the size of the network in terms of parallel paths. The
interference signals from other adjacent nodes are neglected
here by assuming that the distance between two adjacent
relaying paths are far away from each other.

II. SYSTEM MODEL

Consider a single source-destination pair communicates via
total R single antenna relays in a multihop parallel network
(Fig. 1). There are K possible parallel relay paths with arbitrary
number of relays in each path. We let path i have a total
Ni − 1 number of relays in series (i.e. total Ni hops in path
i). A selective decode and forward (DAF) protocol has been
considered over independent Nakagami-m fading channels. We
assume that the relays of different parallel paths are far away
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Fig. 1. Multihop parallel relaying network.

from each other to contribute significant interference in the
network.

The total power for the whole system is constrained to
Ptot. This total power is split into the whole network by a
power sharing coefficient ξ so that the source and the total
relay power is given by, PS = (1 − ξ)Ptot and PR = ξPtot

respectively, where, ξ ∈ (0, 1]. We consider the network has
no centralized controller, so the relaying paths share a equal
proportion of the total power assigned in PR. For example,
the relay path i has total power constraint PR,i such that,

PR,i =
PR

K
(1)

and the individual relays of path i share this total power PR,i

equally, i.e. the power of the relay node Rj,i (node j in path
i) is PRj,i

, given by,

PRj,i
=

PR,i

Ni − 1
(2)

We define the instantaneous SNR at the jth relay in ith path
as γj,i, where j ∈ {1, 2, .., Ni − 1} and i is an element of
parallel path set K such that K = {1, 2, ..,K}. And thus the
average SNR of nith hop and ith path is defined as γni,i =
Ωni,i

P
N0

. Where, Ωni,i = E{|hni,i|2}, P is the corresponding
transmitted power and N0 is the noise variance modeled as
circularly symmetric complex Gaussian random variable. hni,i

is the Nakagami-m distributed channel gain parameter.

III. OUTAGE ANALYSIS

In a typical KPP model (Fig. 1), we define a relaying path
i to be in outage if any link SNR of path i falls below the
predefined threshold SNR value γth. Thus an event where
all paths are in outage, will cause the outage of the whole
network. We consider all possible relays will try to participate
in cooperation if their links are not in outage, and at the last
hop the signals from decodable paths are coherently combined
by MRC at the destination. To avoid the synchronization
problem due to transmission delays between the relay paths at
the destination, we assume Ni ≈ Nj , for i �= j [15]. Here we
define decodable path set Dp as,

Dp
Δ= {i ∈ K : γni,i ≥ γth} ; ni ∈ {1, 2, ......, Ni − 1}

(3)

where, K is the parallel path set such that, K = {1, 2, ......,K}.
Thus we can determine the probability of decodable path Dp

as,

Pr{Dp} =
∏

i∈Dp

Pr
{

min
ni∈{1,2,..,Ni−1}

{γni,i} > γth

}

×
∏

j /∈Dp

Pr
{

min
nj∈{1,2,..,Nj−1}

{γnj ,j} < γth

}
(4)

where, γni,i is the Gamma distributed SNR expressed as [16,
eq. (2.21)] of the link of relay hop ni of path i. Here to
calculate the outage, we simplify the model of a multihop
series path to a single relay link, denoting the link is active if
the path is decodable. Now the total probability of the outage
at the destination will be the sum of the signals from all
decodable relay paths. Thus the total outage will be conditional
on the set of the decodable relay paths.

Taking the cardinality of Dp as p, we can write the outage
probability of the system using the law of total probability as,

Pout =
K∑

p=0

∑
Dp

P{outage|Dp}Pr{Dp} (5)

where

P{outage |Dp } = Pr
{∑

γNi,i < γth |i ∈ Dp

}
(6)

using (4) and (6) in (5),

Pout =
K∑

p=0

∑
Dp

Pr

⎧⎨
⎩
∑
i∈Dp

γNi,i < γth

⎫⎬
⎭Pr{Dp}

=
K∑

p=0

∑
Dp

Pr

⎧⎨
⎩
∑
i∈Dp

γNi,i < γth

⎫⎬
⎭

×
∏

i∈Dp

Pr
{

min
ni∈{1,2,...Ni−1}

{γni,i} > γth

}

×
∏

j /∈Dp

Pr
{

min
nj∈{1,2,...Nj−1}

{γnj ,j} < γth

}
(7)

Now invoking the result from order statistics, the equation (7)
can be written as,

Pout =
K∑

p=0

∑
Dp

⎡
⎣Pr

⎧⎨
⎩
∑
i∈Dp

γNi,i < γth

⎫⎬
⎭

×
∏

i∈Dp

Ni−1∏
n=1

[
Γ (mn,i,mn,iγth/γ̄mn,i)

Γ (mn,i)

]

×
∏

j /∈Dp

⎛
⎝1 −

Nj−1∏
n=1

Γ (mn,j ,mn,jγth/γ̄mn,j)
Γ (mn,j)

⎞
⎠
⎤
⎦ (8)

The CDF sum of eq.(8) can be calculated by using the random
sum of random variables. If the gamma variates with parameter



Fig. 2. Outage probability of 4 path multihop relay network as a function
of total power in Nakagami-m fading channels.

m and λ are restricted to only integer m’s, then for distinct
λ’s we have the CDF of the random sum Y ,

FY (y)=

(
p∏

i=1

1
λmi

i

)
p∑

i=1

mi∑
l=1

dl−1

dsl−1

⎧⎪⎨
⎪⎩

p∏
q=1
q �=i

(
s +

1
λq

)−mq

⎫⎪⎬
⎪⎭∣∣∣s=− 1

λi

× λai+1
i

(ai)! (l − 1)!

{
Γ (ai + 1) − Γ

(
ai + 1,

y

λi

)}
(9)

where, ai = mi − l, Gamma distribution parameter λi = ωi

mi

and Γ (a, z) is upper incomplete Gamma function defined as,
Γ (a, z) Δ=

∫∞
z

ta−1e−tdt
Proof: See Appendix A.

While the value of m is not restricted to integer values the
CDF can be written as Moschopoulos et. al. [17]

FY (y) =
p∏

r=1

(
λ1

λr

)mr ∞∑
k=0

θk

[
1 − Γ (β + k, y/λ1)

Γ (β + k)

]
,

y ≥ 0; (10)

where, λ1 = min
r

{λr}, β =
p∑

r=1
mr and,

⎧⎪⎨
⎪⎩

θ0 = 1

θk+1 = 1
k+1

k+1∑
i=1

[
N∑

j=1

mj

(
1 − β1

βj

)i
]
θk+1−i; k = 0, 1, 2, ..

Substituting the above result in eq. (9) and putting λi = γi

mi

we will have the total outage expression as eq. (11), shown at
the bottom of the next page.

Again using (10) we can express the outage probability of
the system as (12) shown at the bottom of the next page, where
θk is given by eq. (10)

Fig. 3. Outage probability of 4 path and 4 hop relay network as a function
of power sharing coefficient ξ with different SNR groups in Nakagami-m
fading channels.

Fig. 4. Outage probability of 4 hop relay network as a function of number of
relaying paths K with different SNR groups in Nakagami-m fading channels.

IV. NUMERICAL RESULTS

Numerical results are plotted by taking SNR threshold
γth = 2NR − 1, with a data rate R = 1bps and noise variance
as unity. We consider all relaying paths have equal number of
relays, i.e. Ni = Nj = N . Furthermore figures are plotted for
three distinct Nakagami parameter m, that is m=1 (Rayleigh
fading), 1.5 and 2.

Fig. 2 plots the outage probability in Nakagami-m fading
channels as a function of total power measured in SNRdB
with 4 relays per layer scenario in 4 and 6 hop networks. In
general outage probability is inversely related to the SNR. The
network size in terms of the number of hops exposes a similar
behavior on the outage. The figure indicates that an increase
of 2 hops from 4, requires an SNR penalty of around 9dB to



ensure an outage about 10−3. Moreover the high SNR slope
suggests that the diversity of the network is not effected by
the number of hops rather than by the number of relaying
paths. Fig. 3 and Fig. 4 show the outage probability behavior
as a function of power sharing factor, ξ and the number
of relaying paths, K respectively in a 4 hop network. The
outage probability in Fig. 3 is divided into three different total
power groups, that is 25dB, 30dB and 35dB. It reveals that
the outage performance will be optimum if the total power is
equally divided into the source and the relay stages. However
surprisingly the increasing number of parallel paths does not
always guarantee the lower outage as shown in Fig. 4. With the
same total power groups as in Fig. 3, it shows that the outage
probability take an upward bell shaped curves while plotted as
a function of K. The observation shows that, the total power
constraint of the network limits the number of optimum paths
to ascertain minimum outage. For example, with a total power
constraint of 35dB we can use about 15 relays per relaying
layers for optimal outage performance while the source and
each relaying layers share equal aggregated power.

V. CONCLUSION

In this paper the general expression of the outage probability
of a cooperative multihop DF relay network is presented.
The numerical results show that the outage probability can
be reduced by increasing the number of relay nodes in each
stage with sufficiently high SNR. However the total power
constraint plays the dominant role in case of power sharing
between the relays and the source or in selecting the size of
the network in terms of parallel paths.

APPENDIX

A. Proof of CDF

The sum of the received SNR, γni,i is a random sum of
independent random variables. Let, Y =

∑
k∈Dp

= Xk, X is
gamma distributed random variable with parameters (mk, ωk)
such that,

fX (x) =
xmk−1mmk

k

ωmk

k Γ (mk)
e
− xmk

ωk ; x ≥ 0.

Defining λk = ωk

mk
, we have the MGF of Y as,

ΦY (s) = E
{
e−sY ||Dp| = p

}
=

p∏
k=1

(1 + sλk)−mk (13)

For distinct values of mn, the PDF of Y is the inverse Laplace
transform of eq. (13), using [18, eq. (2.1.4.8)],

fY (y) =

(
p∏

k=1

1
λmk

k

)
p∑

k=1

mk∑
l=1

Akl

(
− 1

λk

)
ymk−l

(mk − l)! (l − 1)!
e
− y

λk ,

y ≥ 0. (14)

where Akl
(s) = dl−1

dsl−1

⎧⎪⎨
⎪⎩

p∏
q=1
q �=k

(
s + 1

λq

)−mq

⎫⎪⎬
⎪⎭
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