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Abstract

We evaluate the outage performance in a three-terminal full-duplex relay channel that adopts a selective decode-

and-forward protocol, taking relay self-interference into account. Previous work focused on coverage extension

scenarios where direct source-destination transmissions are neglected or considered as interference. In this work,

we account for the relay self-interference, and exploit the cooperative diversity offered by the independently fading

source/relay message replicas that arrive at the destination. We present an approximate, yet accurate, closed-form

expression for the end-to-end outage probability that captures their joint effect. With the derived expression in

hand, we propose a relay transmit power optimization scheme that only requires the relay knowledge of channel

statistics. Finally, we corroborate our analysis with simulations.

Index Terms

Full-duplex relay, self interference, selective decode-and-forward, cooperative diversity, outage probability.

I. INTRODUCTION

Multi-hop communication has been considered in recent cellular standards as a cost-effective solution

for coverage extension and throughput enhancement [1]. Despite its offered performance gains, half-

duplex relaying (HDR) is known to suffer from an inherent spectral efficiency loss when compared to

direct transmission. This is owing to its nature of allocating orthogonal listening/forwarding phases at the

relay. Full-duplex relaying (FDR), on the other hand, overcomes this inefficiency by allowing the relay

to simultaneously transmit and receive on the same channel [2].
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Early FDR performance evaluation attempts, however, assumed perfect isolation of the relay’s receive

antenna from its own overwhelming transmissions, which overestimates its actual performance merits [3].

In practice, even with recent advances in prototyping full-duplex nodes, all known analog, digital and

spatial isolation/cancellation techniques cannot guarantee perfect isolation [4], [5]. As a result, a level of

residual self-interference (RSI) persists. Moreover, the adverse effect of RSI proportionally grows with

the relay transmit power. Hence, a clear tradeoff exists in FDR between its gained temporal efficiency

and the corresponding degradation due to RSI, which is directly controlled by the relay power.

Recent FDR studies captured the effect of RSI in their models [6]–[11], and concluded the mentioned

tradeoff. In [6]–[8], outage performance was studied for the Rayleigh-fading FDR channel with RSI, where

closed-form expressions were presented for decode-and-forward (DF) and amplify-and-forward (AF) pro-

tocols. Further comprehensive capacity results were reported in [9], and addressed relay power optimization

to locate the optimal tradeoff. As the relay forwards a delayed version of the source message while the

destination employs symbol-by-symbol decoding, [6]–[10] focused on coverage extension scenarios with

weak direct link gain, where the interfering source signal is treated as noise at the destination.

Beyond coverage extension scenarios, the existence of two independently-fading paths from source

to destination motivates further work to exploit the available cooperative diversity via combining. In

[9], a hybrid scheme was suggested to adaptively switch to direct transmission mode based on the relay

knowledge of the end-to-end performance via both paths. This can be equivalently viewed at the destination

as selective combining in which one of two signals is selected; direct source signal or relay signal with

source interference. In a different approach to efficiently exploit the available diversity, the authors in [11]

considered the communication over a block of symbols in AF relaying. Taking the relay’s processing delay

into account, the received vector at the destination over one block is a superposition of shifted versions

of the source vector arriving through different paths. Despite addressing a different relaying strategy

than the one we target, closed-form outage performance bounds could only be presented in [11] for two

extreme cases; either RSI or direct link is considered at a time. Moreover, no relay power optimization

was addressed.

In this work, we focus on regenerative FDR, and address scenarios where the source-destination link

can be of non-negligible gain. Specifically, we study the performance of an FDR channel with RSI while

adopting a selective relaying technique. Selective DF (SDF) was first proposed in [12] in the context of

HDR, where it was shown to outperform its fixed counterpart in terms of outage probability. In SDF, the
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Fig. 1. System model.

relay node assists only when it is able to decode the source message. In FDR with direct link, SDF still

offers considerable performance merits due to its ability to dynamically switch from cooperation mode to

direct transmission mode whenever RSI prohibits proper decoding at the relay. This selection approach

differs from that in [9], where SDF actually encourages the simultaneity of source/relay transmissions as

long as the source-relay link is not in outage. Moreover, SDF only requires local channel state information

(CSI) at the relay. With SDF relaying adopted, we present an approximate, yet accurate, closed-form

expression for the end-to-end outage probability that captures the joint effect of RSI and direct link.

Then, we propose a relay power optimization scheme that only requires relay knowledge of channel

statistics. Finally, through simulations, we show the gains offered by the adopted SDF scheme over

available schemes in the literature.

II. SYSTEM MODEL

We consider the FDR channel depicted in Fig. 1. As shown, a source (S) communicates with a destination

(D) through a direct link with non-negligible gain, with possible assistance of a FD relay (R). We denote

the channel between node i ∈ {s, r} and node j ∈ {r, d} by hij , and assume it to experience block fading.

Thus, hij remains constant over one block, and varies independently from one block to another following

a circularly symmetric complex Gaussian distribution with zero mean and variance πij . Accordingly, the

channel envelope is Rayleigh distributed, and thus, the channel gain, |hij|2, is an exponential random

variable with mean parameter πij . As mentioned earlier, the relay loopback channel introduces self-

interference that cannot be perfectly cancelled in practice. For notational convenience, we assume that hrr

denotes the RSI channel after undergoing all known practical isolation and cancellation techniques, see

[4]–[7], [9] and the references therein. Also, without loss of generality, all additive white Gaussian noise

components are assumed of unit variance.
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At time t, node S transmits x[t] with rate R bits/s/Hz, and E{|x[t]|2} = 1. Simultaneously, due to

processing delay D, node R forwards x[t−D], which imposes self-interference. Thus, the received signal

at R is given by:

yr[t] = hsrx[t] +
√
Phrrx[t−D] + nr[t], (1)

where P and nr[t] denote the relay power and noise, respectively, while the source power is absorbed

into both the S-R and S-D channel coefficients without loss of generality. At time t, assuming complex

Gaussian inputs and unit bandwidth, the mutual information between the input and output of the S-R

channel, denoted by Isr, is given by:

Isr = log2

{
1 +

|hsr|2

P |hrr|2 + 1

}
. (2)

Node R is assumed to adopt SDF relaying, in which it keeps silent whenever the S-R link is found in

outage, and assists only when Isr > R . Now, we discuss the signal model in each of the two S-R link

states.

A. No Outage in S-R Link (Isr > R)

It is assumed that the outage event dominates the error event, and thus, R successfully decodes the

source message when Isr > R. The received signal at the destination is given by:

yd[t] = hsdx[t] +
√
Phrdx[t−D] + nd[t], (3)

where nd[t] denotes the destination noise at time slot t.

All channel gains remain constant over a block duration of L + D time slots corresponding to L

successive codewords transmitted from the source, in addition to the D time slots delay due to relay

processing. Hence, we rewrite (3) in vector form to jointly account for the L+D received signals as:

yd = Hx+ nd, (4)

where yd = (yd[1], . . . , yd[L+D])T , x = (x[1], . . . , x[L])T , nd = (nd[1], . . . , nd[L+D])T , and

H = hsd

 IL

0D×L

+
√
Phrd

 0D×L

IL

 . (5)
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B. S-R Link in Outage (Isr < R)

In this case, the relay does not assist. Thus, the received signal at the destination at time t is given by:

yd[t] = hsdx[t] + nd[t]. (6)

For large L
D

, in order to keep the same block structure adopted by the no outage case, it is equivalent to

use the vector form in (4) with the value of P set to zero.

III. OUTAGE PERFORMANCE OF SDF-FDR

A. Outage Analysis

The overall SDF-FDR channel outage probability can be expressed in terms of individual link outage

probabilities as:

P = PsrPsd + (1− Psr)P(s,r)→d, (7)

where Psr and Psd are the outage probabilities of the S-R and S-D links, respectively, whose expressions

are easily derived starting from (1) and (6), see [10], to be:

Psr = P {Isr < R} = 1− πsre
− 2R−1

πsr

(2R − 1)Pπrr + πsr
, (8)

Psd = P {Isd < R} = 1− e−
2R−1
πsd . (9)

In (7), P(s,r)→d is the probability of outage in the cooperative multiple access channel formed by S and

R as the transmitter side and by D as the receiver side. Thus, it is defined as:

P(s,r)→d = P
{

1

L+D
I(s,r)→d <

L

L+D
R

}
, (10)

where I(s,r)→d = I (x;yd) is the mutual information per block between x and yd in (4). Assuming

complex Gaussian inputs and unit bandwidth, it can be readily given by:

I(s,r)→d = log2 det
{
IL +HHH

}
= log2

L∏
i=1

(1 + λi) , (11)

where

HHH = αIL + βBL
D + β∗F L

D, (12)
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with α = |hsd|2 + P |hrd|2 and β =
√
Ph∗sdhrd, while BL (F L) denotes a square backward (forward)

shift matrix of size L, with ones only on the first subdiagonal (superdiagonal) and zeros elsewhere. Also,

{λi}Li=1 denote the eigenvalues of HHH . For D = 1, HHH is a tridiagonal Toeplitz matrix, whose

eigenvalues are given in closed-form, [13, pp. 80], by:

λi = α + 2|β| cos iπ

L+ 1
, i ∈ {1, 2, · · · , L}. (13)

It can be shown that the expression in (13) can be further generalized for L = mD, m ∈ Z+, to be on

the form:

λD(i−1)+1 = α + 2|β| cos iDπ

L+D
, i ∈ {1, 2, · · · ,m}, (14)

with each eigenvalue of multiplicity D. This is owing to the special structure of HHH that can allow

us to split it into D orthogonal sets of m equations each. Each set can be separately solved in a similar

way to that of the D = 1 case, yielding identical sets of eigenvalues for all D sets. The proof is deferred

to the appendix. Hence, (11) becomes:

I(s,r)→d=log2

m∏
i=1

(
1 + α + 2|β| cos iDπ

L+D

)D
=D

m∑
i=1

log2

{
(1 + α)

(
1 +

2|β| cos iπ
m+1

1 + α

)}

=Llog2(1+α)+D
m∑
i=1

log2

(
1+

2|β|cos iπ
m+1

1 + α

)
. (15)

|β| =
√
P |h∗sdhrd| is the envelope of a product of two independent complex Gaussian Random variables

with zero means and variances of πsd and Pπrd, whose distribution is given in [14], in terms of K0 (.);

the modified Bessel function of the second kind, as:

f|β| (z) =
4z

Pπsdπrd
K0

(
2z√

Pπsdπrd

)
. (16)

To analytically obtain the desired probability of outage, we need to derive the CDF of an m-fold product

of functions comprising dependent random variables with non-elementary probability distributions, or

alternatively, an m-fold product of even more complicated functions of the original simpler independent

exponential random variables. Fortunately, with the aid of Taylor series expansion, we can reach an

approximate compact form of this function product that additionally gets around any tedious analysis
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involving Bessel functions. Yet, it is verified through simulations to be in close matching with the

exact behavior. Thanks to the arithmetic-geometric mean inequality, we know that α ≥ 2|β|, and hence,

2|β| cos iπ
m+1

< 2|β| ≤ α < α + 1. Thus, in the second term of (15), |2|β| cos
iπ
m+1

1+α
| < 1. For mathe-

matical tractability, we only use the first order Taylor expansion that ln(1 + x) ≈ x, or alternatively,

log2(1 + x) ≈ x
ln(2)

. Noting that
∑m

i=1 cos
iπ
m+1

= 0, the second term vanishes, and the desired outage

probability can be approximated as:

P(s,r)→d ≈ P {log2 (1 + α) < R} = Fα
(
2R − 1

)
(17)

where Fα (z) is the cumulative distribution function (CDF) of α. Since |hsd|2 and |
√
Phrd|2 are independent

exponential random variables with mean parameters πsd and Pπrd, respectively, α is a hypoexponential

random variable with two rate parameters, 1
πsd

and 1
Pπrd

. Thus, according to [15, Eq. (5.9)], its CDF is

given by:

Fα (z) = 1− Pπrde
− z
Pπrd − πsde

− z
πsd

Pπrd − πsd
. (18)

Now, substituting (8), (9), (17) and (18) into (7), and performing some manipulations, the overall outage

probability is obtained as:

P ≈ Psd − g(P ), (19)

where

g(P ) =

πsre
− 2R−1

πsr × Pπrd

A︷ ︸︸ ︷(
e
− 2R−1
Pπrd − e−

2R−1
πsd

)
(
(2R − 1)Pπrr + πsr

)
× (Pπrd − πsd)︸ ︷︷ ︸

B

. (20)

In agreement with intuition, it can be easily seen from (19) that the end-to-end outage probability is less

than that in the S-D link by a non-negative function1 of the relay power, g(P ), ∀P ≥ 0. Moreover, its

value is exactly equal to zero when P = 0, i.e., when no cooperation takes place, leading to P = Psd.
1It is to be noted that the terms multiplied by A and B are clearly non-negative in P , ∀P > 0, while the signs of A and B are

simultaneously flipped from negative to positive when Pπrd crosses πsd. Thus, the non-negativity of the ratio is preserved. Also, it can be
verified by applying l’Hôpital’s rule that AB > 0 at Pπrd = πsd. As a result, g(P ) is non-negative in P , ∀P > 0.
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B. Relay Transmit Power Optimization

To minimize the end-to-end outage probability, it is equivalent to maximize g(P ) over all possible

values of P , i.e., we need to solve the following optimization problem:

Popt = argmax
P

g(P ) s.t. 0 ≤ P ≤ Pmax, (21)

where Pmax is the maximum relay power. The optimization problem in (21) has a nonlinear objective

function and a single linear, hence convex, constraint. Thus, the concavity of the problem under consider-

ation solely depends on the concavity properties of g(P ). Although it is not straightforward to show due

to its non-elementary form with the reciprocal of P in the exponent, we conjecture that g(P ) is quasi-

concave in P > 0. This is primarily motivated by the observed quasi-concave shape of the function when

evaluated numerically for numerous combinations of system parameters, i.e., rate and channel variances.

Conjecturing the quasi-concavity of g(P ) allows us to use known numerical methods designed for the

maximization of quasi-concave functions, e.g., the bisection method. Even for functions that are not

quasi-concave, the bisection method always succeeds to locate a local optimum. To further investigate its

quasi-concavity, we generated 105 random combinations of the system parameters drawn from the ranges:

πi,j ∈ [0, 30] dB for i ∈ {s, r} and j ∈ {r, d}, and R ∈ ]0, 5] bits/s/Hz. Over each of these combinations,

we numerically compared the optimal points obtained using the bisection method with those distilled via

grid search, in which the function was exhaustively evaluated over 5×106 equally spaced points covering

the relay transmit power range. Interestingly, the bisection method always located the global optimum,

which comes in favor of the original quasi-concavity conjecture.

IV. NUMERICAL RESULTS

In this section, we present simulation results for the proposed SDF-FDR scheme, and compare them to

the theoretic results obtained in the previous sections. We consider two variants of the SDF-FDR scheme

based on the adopted relay power allocation: 1) maximum power with Pmax set to unity, and 2) optimal

power, Popt, via the bisection method. We compare the SDF-FDR scheme to existing schemes in the

literature, namely, 1) non-cooperative direct transmission (DT) via the S-D link, 2) cooperative multi-hop

DF (MHDF) in which the direct source transmissions are treated as interference at the destination and

3) a hybrid scheme (MHDF/DT) that was proposed in [9], in which adaptive switching between MHDF

and DT occurs based on the available CSI at the relay. Two CSI scenarios are considered here for the
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Fig. 2. Outage prob. vs. rate for πsd=0dB, πsr=πrd=20dB, andπrr=10dB.

hybrid scheme, namely, a) full global CSI, in which the relay knows all instantaneous channel gains, and

b) statistical global CSI, which is more practical, in which the relay only knows the average S-D and R-D

channel gains/capacities, and the instantaneous local (receive) CSI. It is to be noted that the first variant

of the proposed SDF scheme utilizes only local CSI, while the second additionally utilizes only statistical

global CSI for power optimization. This makes the statistical CSI scenario more fair in comparison. We

run the simulation over 106 channel realizations for L = 20 symbols per block and D = 2 symbols, i.e.,

m = 10.

First, we plot the outage probability over a range of source information rates. In Fig. 2, we can see that

DT fails at πsd = 0, i.e., at noise level, while all cooperative schemes result in close performance. This is

due to the limited cooperative diversity offered in this scenario, where all cooperative schemes tend to rely

solely on the multi-hop path. In Fig. 3, as πsd increases, the performance gap grows between MHDF and

SDF. Although all cooperative schemes yield almost the same performance for small values of πsd, the

performance gap grows between MHDF and SDF as πsd increases, as shown in Fig. 3. This is due to the

fact that the direct link strength adversely affects MHDF due to the higher level of interference introduced

at the destination, while it actually improves the performance of SDF by boosting the cooperative diversity

in the channel. With statistical global CSI, the MHDF/DT scheme performs at least as the better of MHDF

and DT, yet remains with lower performance than that of SDF. If we further provide MHDF/DT with
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full global CSI at the relay, its performance improves and almost meets that of SDF under these channel

conditions. Yet, under different channel conditions, SDF-FDR yields lower outage probability as will be

shortly highlighted.

Next, we investigate the outage performance for different link strengths. In Fig. 4, the outage probability

is plotted with varying source power. Equivalently, we sweep the S-R and S-D link variances together,

and fix their relation to πsr = πsd+10 dB. It can be clearly seen that the outage probability of SDF drops
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with the source power faster than MHDF due to the additionally offered cooperative diversity. Although

the performance over the first hop is enhanced when the source power increases, the communication

via MHDF starts to fail due to the growing level of interference at the destination. We can also notice

that a performance gap starts to arise between MHDF/DT with full global CSI and SDF-FDR when the

source transmit power is high. Specifically, this gap occurs when the R-D link becomes the bottleneck

in the MHDF scheme. In this case, the MHDF/DT scheme switches to non-cooperative mode whenever

the R-D link gain falls below that of the direct link. On the other hand, as long as the source messages

are successfully delivered to the relay, performance of SDF-FDR will be enhanced due to combining.

This effect can be further noticed in Fig. 5, where we plot the outage performance over a range of R-D

link variances. We can notice that the performance gap exists over a wide range of πrd when the S-R

link happens to be in very good condition. Fig. 6 shows the effect of πrr on the outage performance. As

expected, the performance of all cooperative schemes degrades with the increase in πrr. This is due to

the increase in self-interference at the relay that leads the S-R link, and accordingly the whole multi-hop

path, to outage states. However, the performance of selective schemes does not go worse than that of

direct transmission, since selective relaying switches the relay node to non-cooperative mode in the case

of high πrr.

Discussion: When only local CSI is available at the relay, the SDF-FDR scheme is shown to outperform

all existing schemes in terms of outage probability. When full global CSI is further fedback to the relay
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in MHDF/DT, its performance meets that of SDF-FDR under some channel conditions, yet yields higher

outage probability in others. This owes to the suboptimality of the selection criterion in MHDF/DT, where

the relay stops cooperation whenever the direct link capacity becomes higher than that of the multi-hop

path, while the relay always cooperates in SDF-FDR as long as the S-R link is not in outage. It is to

be noted that, since the idea of the proposed SDF-FDR scheme primarily depends on block-decoding,

it would still hold its known limitations when compared to existing schemes that depend on symbol-

by-symbol processing, namely, delayed and higher-complexity decoding. However, due to the special

structure of the channel matrix, the source codewords per block can be grouped into disjoint sets that can

be separately decoded without loss of performance, thus reducing significantly the decoding complexity.

Further reduction in complexity can be achieved if we employ conditional detection techniques. Finally, for

the SDF schemes, the results obtained via simulations are shown to be well-matching with the theoretical

results for m = 10, and they further coincide for larger values of m.

V. CONCLUSION

In this work, we studied the outage performance of a selective decode-and-forward full-duplex relay

channel with loopback interference at the relay. We presented an approximate end-to-end outage probability

expression that captures the joint effect of relay self-interference, and the cooperative diversity offered by

additionally exploiting the direct link with non-negligible gain. In order to minimize the outage probability,
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we proposed a relay transmit power optimization scheme that only requires the relay knowledge of

channel statistics. Through numerical results, selective relaying was shown to outperform its fixed relaying

counterpart since it switches to non-cooperative mode whenever the relay’s self-interference drives the

source-relay channel to an outage state. In conclusion, selective relaying is shown to represent a promising

approach that can boost the performance of practical full-duplex relay channels.

APPENDIX

Let L = mD, m ∈ Z+, and consider a family of square matrices K(α; β;L;D) = (k1, · · · ,kL) on

the form:

K(α; β;L;D) = αIL + βBL
D + β∗F L

D, (22)

where α ∈ R+, β ∈ C, while BL (F L) denotes a square backward (forward) shift matrix of size L, with

ones only on the first subdiagonal (superdiagonal) and zeros elsewhere. Consider the eigenvalue problem:

Ku = λu. (23)

It can be noticed that the nonzero elements of K are limited to positions on the form (iD + j, j),

∀ j ∈ {1, · · · , L}, i ∈ {−1, 0, 1}, 1 ≤ iD + j ≤ L. This makes a column linearly dependent only on its

two neighboring D-spaced columns and orthogonal on all others. Motivated by this special structure, we

can split K as the sum of D matrices with orthogonal column spaces:

K =
D∑
j=1

Kj, (24)

where the matrix Kj holds only m nonzero columns corresponding to the m D-spaced columns of K

with shift j, i.e., {k(i−1)D+j}mi=1, at their respective positions, while the remaining columns are all zeros.

Similarly, let us project the L× 1 eigenvector u = (u[1], · · · , u[L])T onto D orthogonal subspaces, such

that:

u =
D∑
j=1

uj, (25)

where the vector uj holds only m nonzero elements corresponding to the m D-spaced elements of u

with shift j, i.e., {u[(i− 1)D + j]}mi=1, at their respective positions, while the remaining elements are all
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zeros. Thus, the eigenvalue problem can be rewritten as

D∑
j=1

Kj

D∑
j=1

uj = λ

D∑
j=1

uj, (26)

It is clear that ui lies in the nullspace of Kj ∀ i 6= j. Hence, due to orthogonality, the eigenvalue problem

can be split into D eigenvalue problems on the form:

Kjuj = λuj, ∀j ∈ {1, · · · , D} (27)

Since Kj has zero rows and columns corresponding to the zero elements of uj , we can eliminate them

and alternatively solve the reduced m-dimensional eigenvalue problem:

K̃jũj = λũj, ∀j ∈ {1, · · · , D} (28)

We can notice that K̃j = K(α; β; L
D
, 1),∀j ∈ {1, · · · , D}, which is a a tridiagonal Toeplitz matrix

with known closed-form expression for its m eigenvalues. Thus, K(α; β;L,D) has the m eigenvalues of

K(α; β; L
D
, 1), each with multiplicity D. Accordingly, its determinant is that of K(α; β; L

D
, 1) raised to

the Dth power.
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