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�e relative order of growth gives a quantitative assessment of how di	erent functions scale each other and to what extent they are
self-similar in growth. In this paper for any two positive integers p and q, we wish to introduce an alternative de
nition of relative(�, �)th order which improves the earlier de
nition of relative (�, �)th order as introduced by Lahiri and Banerjee (2005). Also
in this paper we discuss some growth rates of entire functions on the basis of the improved de
nition of relative (�, �)th order
with respect to another entire function and extend some earlier concepts as given by Lahiri and Banerjee (2005), providing some
examples of entire functions whose growth rate can accordingly be studied.

1. Introduction

A single valued function of one complex variable which
is analytic in the 
nite complex plane is called an integral
(entire) function. For example, exp, sin, cos, and so forth
are all entire functions. In 1926 Rolf Nevanlinna initiated
the value distribution theory of entire functions which is
a prominent branch of Complex Analysis and is the prime
concern of this paper. Perhaps the Fundamental �eorem of
Classical Algebra which states that “If � is a polynomial of
degree � with real or complex coe�cients, then the equation�(�) = 0 has at least one root” is the most well known
value distribution theorem, and consequently any such given
polynomial can take any given, real or complex, value. In the
value distribution theory one studies how an entire function
assumes some values and, conversely, what is the in�uence in
some speci
c manner of taking certain values on a function.
It also deals with various aspects of the behavior of entire
functions, one of which is the study of their comparative
growth.

For any entire function�, the so-calledmaximummodu-
lus function, denoted by��, is de
ned on each nonnegative
real value � as

�� (�) = max
|�|=�

				� (�)				 . (1)

And given two entire functions � and 
 the ratio��(�)/��(�) as � → ∞ is called the growth of �
with respect to 
 in terms of their maximummoduli.

�e order of an entire function � which is generally used
in computational purpose is de
ned in terms of the growth
of � with respect to the exponential function as

� = lim sup
�→∞

log log �� (�)
log log �exp � (�) = lim sup

�→∞

log log �� (�)
log (�) .

(2)

Bernal [1, 2] introduced the relative order between
two entire functions to avoid comparing growth just with
exp �. Extending the notion of relative order as cited in the
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reference, in this paper we extend some results related to
the growth rates of entire functions on the basis of avoiding
some restriction, introducing a new type of relative order(�, �), and revisiting ideas developed by a number of authors
including Lahiri and Banerjee [3].

2. Notation and Preliminary Remarks

Our notation is standard within the theory of Nevanlinna’s
value distribution of entire functions. For short, given a real
function ℎ and whenever the corresponding domain and
range allow it, we will use the notation

ℎ[0] (�) = �,
ℎ[�] (�) = ℎ (ℎ[�−1] (�)) for � = 1, 2, 3, . . . (3)

omitting the parenthesis when ℎ happens to be the log or
exp function. Taking this into account the order (resp., lower
order) of an entire function � is given by

� = lim sup
�→∞

log[2]�� (�)
log � ,

(resp. �� = lim inf�→∞

log[2]�� (�)
log � ) .

(4)

Let us recall that Juneja et al. [4] de
ned the order (�, �)
and lower order (�, �) of an entire function �, respectively,
as follows:

� (�, �) = lim sup
�→∞

log[	]�� (�)
log[
]� ,

�� (�, �) = lim inf�→∞

log[	]�� (�)
log[
]� ,

(5)

where �, � are any two positive integers with � ≥ �. �ese

de
nitions extended the generalized order [�]� and general-

ized lower order �[�]� of an entire function � considered in [5]

for each integer � ≥ 2 since these correspond to the particular
case [�]� = �(�, 1) and �[�]� = ��(�, 1). Clearly �(2, 1) = �
and ��(2, 1) = ��.

In this connection let us recall that if 0 < �(�, �) < ∞,
then the following properties hold:

� (� − �, �) = ∞, for � < �,
� (�, � − �) = 0, for � < �,

� (� + �, � + �) = 1, for � = 1, 2, . . . .
(6)

Similarly for 0 < ��(�, �) < ∞, one can easily verify that

�� (� − �, �) = ∞, for � < �,
�� (�, � − �) = 0, for � < �,

�� (� + �, � + �) = 1, for � = 1, 2, . . . .
(7)

Recalling that for any pair of integer numbers �, � the
Kronecker function is de
ned by ��, = 1 for � = � and��, = 0 for � ̸= �, the aforementioned properties provide
the following de
nition.

De�nition 1 (see [4]). An entire function � is said to have
index-pair (1, 1) if 0 < �(1, 1) < ∞. Otherwise, � is said
to have index-pair (�, �) ̸= (1, 1), � ≥ � ≥ 1, if �	−
,0 <�(�, �) < ∞ and �(� − 1, � − 1) ∉ R

+.

De�nition 2 (see [4]). An entire function � is said to have
lower index-pair (1, 1) if 0 < ��(1, 1) < ∞. Otherwise, �
is said to have lower index-pair (�, �) ̸= (1, 1), � ≥ � ≥ 1, if�	−
,0 < ��(�, �) < ∞ and ��(� − 1, � − 1) ∉ R

+.

An entire function � of index-pair (�, �) is said to be of
regular (�, �)-growth if its (�, �)th order coincides with its(�, �)th lower order; otherwise � is said to be of irregular(�, �)-growth.

Given a nonconstant entire function � de
ned in the
open complex plane C its maximum modulus function ��
is strictly increasing and continuous. Hence there exists

its inverse function �−1� : (|�(0)|,∞) → (0,∞) with

lim�→∞�−1� (�) = ∞.

�en Bernal [1, 2] introduced the de
nition of relative
order of � with respect to 
, denoted by �(�) as follows:
� (�) = inf { > 0 : �� (�) < �� (��) , ∀� > �0 ( ) > 0}

= lim sup
�→∞

log�−1� �� (�)
log � .

(8)

�is de
nition coincides with the classical one [6] if 
 =
exp �. Similarly one can de
ne the relative lower order of �
with respect to 
 denoted by ��(�) as

�� (�) = lim inf�→∞

log�−1� �� (�)
log � . (9)

Lahiri and Banerjee [7] gave a more generalized concept
of relative order in the following way.

De�nition 3 (see [7]). If � ≥ 1 is a positive integer, then the�th generalized relative order of � with respect to 
, denoted
by ��(
), is de
ned by

�� (�) = inf { > 0 : �� (�) < �� (exp[�−1]��) ,
∀� > �0 ( ) > 0}

= lim sup
�→∞

log[�]�−1� �� (�)
log � .

(10)

Clearly, 1�(�) = �(�) and 1exp �(�) = �.
In the case of relative order, it was then natural for Lahiri

and Banerjee [3] to de
ne the relative (�, �)th order of entire
functions as follows.
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De�nition 4 (see [3]). Let� and � be any two positive integers
with � > �. �e relative (�, �)th order of � with respect to 

is de
ned by

(	,
)� (�) = inf { > 0 : �� (�) < �� (exp[	−1] ( log[
]�)) ,
∀� > �0 ( ) > 0}

= lim sup
�→∞

log[	−1]�−1� �� (�)
log[
]� .

(11)

�en (	,
)exp �(�) = �(�, �) and (�+1,1)� (�) = ��(�) for any � ≥1.
In this paper we give an alternative de
nition of (�, �)th

relative order (	,
)� (�) of an entire function � with respect to

another entire function 
, in the light of index-pair. Our next
de
nition avoids the restriction � > � and gives the more

natural particular case (�,1)� (�) = ��(�).
De�nition 5. Let � and 
 be any two entire functions with
index-pair (�, �) and (�, �), respectively, where �, �, � are
positive integers such that � ≥ max(�, �). �en the (�, �)th
relative order of � with respect to 
 is de
ned as

(	,
)� (�) = lim sup
�→∞

log[	]�−1� �� (�)
log[
]� . (12)

�e (�, �)th relative lower order of � with respect to 
 is
de
ned by

�(	,
)� (�) = lim inf�→∞

log[	]�−1� �� (�)
log[
]� . (13)

�e previous de
nitions are easily generated as particular
cases; for example, if � and 
 have got index-pair (�, 1) and(�, �), respectively, then De
nition 5 reduces to De
nition 3.
If the entire functions � and 
 have the same index-pair(�, 1), where � is any positive integer, we get the de
nition of

relative order introduced by Bernal [1] and if 
 = exp[�−1]�,
then �(�) = [�]� and (	,
)� (�) = �(�, �). And if � is an

entire function with index-pair (2, 1) and 
 = exp �, then
De
nition 5 becomes the classical one given in [6].

3. Some Examples

In this section we present some examples of entire functions
in connection with de
nitions given in the previous section.

Example 6 (order of exp). Given any natural number �, the
exponential function �(�) = exp � has got��(�) = exp �,
and therefore log[2]��(�)/ log � is constantly equal to � and,
consequently,

� = �� = �. (14)

Example 7 (generalized order). Given any natural numbers�, �, the function �(�) = exp[�]� has got��(�) = exp[�]�.
�erefore log[�]��(�)/ log � is constantly equal to � for each
natural � ≥ 2, following that

[�+1]� = �[�+1]� = �. (15)

Note that [�]� = �[�]� = +∞ for 2 ≤ � ≤ � and [�]� = �[�]� = 0 for� > � + 1.
Example 8 (index-pair). Given any four positive integers �,�, �, � with � ≥ �, then function �(�) = exp[�]� generates a
constant quotient log[	]��(�)/log[
]�, and clearly

� (�, �) = �� (�, �) = �, for (�, �) = (� + 1, 1) (16)

but

� (�, �) = �� (�, �)
= {{{{{

1, ∀ (�, �) such that � = � + �, � > 1,∞, ∀ (�, �) such that � < � + �,0, ∀ (�, �) such that � > � + �.
(17)

�us � is a regular function with growth (� + 1, 1).
Example 9 (regular function of growth (1,1)). Given any posi-
tive integer �, and nonnull real number -, the power function�(�) = -� generates a constant quotient log[	]��(�)/log[
]�,
and clearly

� (�, �) = �� (�, �) = �, for (�, �) = (1, 1) (18)

but

� (�, �) = �� (�, �)
= {{{{{

1, ∀ (�, �) such that � = �, � > 1,∞, ∀ (�, �) such that � < �,0, ∀ (�, �) such that � > �.
(19)

�us � is a regular function with growth (1, 1).
Example 10 (relative order between functions). From the
above examples it follows that given the natural numbers �,� the functions

� (�) = exp ��, 
 (�) = exp � (20)

are of regular growth (2, 1). In order to 
nd their relative
order of growth we evaluate

log�−1� �� (�)
log � = log [log [exp ��]]1/

log � , (21)

which happens to be constant. Its upper and lower limits
provide

� (�) = �� (�) = �� . (22)
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Example 11 (relative order (�, �) between functions). Let �,�, � be any three positive integers and let �(�) = exp[�]��
and 
 = exp[�]�. �en � and 
 are regular functions with(� + 1, 1)-growth for which

� (� + 1, 1) = �, � (� + 1, 1) = �. (23)

In order to 
nd out their (1, 1) relative order we evaluate
log�−1� �� (�)

log � = log (1/�) {log[�] (exp[�]��)}1/
log � , (24)

which happens to be constant. By taking limits, we easily get
that

(1,1)� (�) = �(1,1)� (�) = �� . (25)

�e orders obtained in the last two examples will be easy
consequences of the results given in Section 4.

4. Results

In this section we state the main results of the paper. We
include the proof of the 
rst main theorem for the sake of
completeness. �e others are basically omitted since they are
easily proven with the same techniques or with some easy
reasoning.

�eorem 12. Let � and 
 be any two entire functions with
index-pair (�, �) and (�, �), respectively, where �, �, � are
all positive integers such that� ≥ � and� ≥ �. en

�� (�, �)� (�, �) ≤ �(	,
)� (�) ≤ min{�� (�, �)�� (�, �) ,
� (�, �)� (�, �)}

≤ max{�� (�, �)�� (�, �) ,
� (�, �)� (�, �)} ≤ (	,
)� (�)

≤ � (�, �)�� (�, �) .
(26)

Proof. From the de
nitions of �(�, �) and ��(�, �)we have
for all su�ciently large values of � that

�� (�) ≤ exp[�] {(� (�, �) + ;) log[
]�} , (27)

�� (�) ≥ exp[�] {(�� (�, �) − ;) log[
]�} (28)

and also for a sequence of values of � tending to in
nity we
get that

�� (�) ≥ exp[�] {(� (�, �) − ;) log[
]�} , (29)

�� (�) ≤ exp[�] {(�� (�, �) + ;) log[
]�} . (30)

Similarly from the de
nitions of �(�, �) and ��(�, �) it
follows for all su�ciently large values of � that

�� (�) ≤ exp[�] {(� (�, �) + ;) log[	]�}
i.e., � ≤ �−1� [exp[�] {(� (�, �) + ;) log[	]�}]

i.e., �−1� (�) ≥ exp[	] [ log[�]�
(� (�, �) + ;)] ,

(31)

�� (�) ≥ exp[�] {(�� (�, �) − ;) log[	]�}
i.e., �−1� (�) ≤ exp[	] [ log[�]�

(�� (�, �) − ;)]
(32)

and for a sequence of values of � tending to in
nity we obtain
that

�� (�) ≥ exp[�] {(� (�, �) − ;) log[	]�}
i.e., �−1� (�) ≤ exp[	] [ log[�]�

(� (�, �) − ;)] ,
(33)

�� (�) ≤ exp[�] {(�� (�, �) + ;) log[	]�}
i.e., �−1� (�) ≥ exp[	] [ log[�]�

(�� (�, �) + ;)] .
(34)

Now from (29) and in view of (31), for a sequence of values of� tending to in
nity we get that
log[	]�−1� �� (�)

≥ log[	]�−1� [exp[�] {(� (�, �) − ;) log[
]�}]
i.e., log[	]�−1� �� (�)

≥ log[	]exp[	] [ log[�]exp[�] {(� (�, �) − ;) log[
]�}(� (�, �) + ;) ]

= (� (�, �) − ;)(� (�, �) + ;) log
[
]�

i.e., log[	]�−1� �� (�)
log[
]� ≥ (� (�, �) − ;)(� (�, �) + ;) .

(35)

As ;(> 0) is arbitrary, it follows that
(	,
)� (�) ≥ � (�, �)� (�, �) . (36)
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Analogously from (28) and in view of (34) it follows for a
sequence of values of � tending to in
nity that

log[	]�−1� �� (�)
≥ log[	]�−1� [exp[�] {(�� (�, �) − ;) log[
]�}]

i.e., log[	]�−1� �� (�)
≥ log[	]exp[	] [ log[�]exp[�] {(�� (�, �) − ;) log[
]�}(�� (�, �) + ;) ]

= (�� (�, �) − ;)(�� (�, �) + ;) log
[
]�

i.e., log[	]�−1� �� (�)
log[
]� ≥ (�� (�, �) − ;)(�� (�, �) + ;) .

(37)

Since ;(> 0) is arbitrary, we get from above that

(	,
)� (�) ≥ �� (�, �)�� (�, �) . (38)

Again in view of (32) we have from (27) for all su�ciently
large values of � that

log[	]�−1� �� (�)
≤ log[	]�−1� [exp[�] {(� (�, �) + ;) log[
]�}]

i.e., log[	]�−1� �� (�)
≤ log[	]exp[	] [ log[�]exp[�] {(� (�, �) + ;) log[
]�}(�� (�, �) − ;) ]

= (� (�, �) + ;)(�� (�, �) − ;) log
[
]�

i.e., log[	]�−1� �� (�)
log[
]� ≤ (� (�, �) + ;)(�� (�, �) − ;) .

(39)

Since ;(> 0) is arbitrary, we obtain that

(	,
)� (�) ≤ � (�, �)�� (�, �) . (40)

Again from (28) and in view of (31) with the same reasoning
we get that

�(	,
)� (�) ≥ �� (�, �)� (�, �) . (41)

Also in view of (33), we get from (27) for a sequence of values
of � tending to in
nity that

log[	]�−1� �� (�)
≤ log[	]�−1� [exp[�] {(� (�, �) + ;) log[
]�}]

i.e., log[	]�−1� �� (�)
≤ log[	]exp[	] [ log[�]exp[�] {(� (�, �) + ;) log[
]�}(� (�, �) − ;) ]

= (� (�, �) + ;)(� (�, �) − ;) log
[
]�

i.e., log[	]�−1� �� (�)
log[
]� ≤ (� (�, �) + ;)(� (�, �) − ;) .

(42)

Since ;(> 0) is arbitrary, we get from above that

�(	,
)� (�) ≤ � (�, �)� (�, �) . (43)

Similarly from (30) and in view of (32) it follows for a
sequence of values of � tending to in
nity that

log[	]�−1� �� (�)
≤ log[	]�−1� [exp[�] {(�� (�, �) + ;) log[
]�}]

i.e., log[	]�−1� �� (�)
≤ log[	]exp[	] [ log[�]exp[�] {(�� (�, �) + ;) log[
]�}(�� (�, �) − ;) ]

= (�� (�, �) + ;)(�� (�, �) − ;) log
[
]�

i.e., log[	]�−1� �� (�)
log[
]� ≤ (�� (�, �) + ;)(�� (�, �) − ;) .

(44)

As ;(> 0) is arbitrary, from above we obtain that

�(	,
)� (�) ≤ �� (�, �)�� (�, �) . (45)

�e theorem follows from (36), (38), (40), (41), (43), and (45).

Corollary 13. Let � be an entire function with index-pair(�, �) and let 
 be an entire of regular (�, �)-growth, where�, �, � are all positive integers such that � ≥ � and � ≥ �.
en

�(	,
)� (�) = �� (�, �)� (�, �) , (	,
)� (�) = � (�, �)� (�, �) . (46)
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In addition, if �(�, �) = �(�, �), then
(	,
)� (�) = �(
,	)� (
) = 1. (47)

Remark 14. �e 
rst part of Corollary 13 improves [8, �eo-
rem 2.1 and�eorem 2.2].

Corollary 15. Let � and 
 be any two entire functions with
regular (�, �)-growth and regular (�, �)-growth, respectively,
where �, �, � are all positive integers with � ≥ max{�, �}.
en

�(	,
)� (�) = (	,
)� (�) = � (�, �)� (�, �) . (48)

Corollary 16. Let � and 
 be any two entire functions
with regular (�, �)th growth and regular (�, �)th growth,
respectively, where �, �, � are all positive integers with � ≥ �
and� ≥ �. Also suppose that �(�, �) = �(�, �). en

�(	,
)� (�) = (	,
)� (�) = �(
,	)� (
) = (
,	)� (
) = 1. (49)

Corollary 17. Let � and 
 be any two entire functions with
regular growth (�, �) and (�, �), respectively, where �, �, �
are all positive integers such that� ≥ max{�, �}. en

(	,
)� (�) ⋅ (
,	)� (
) = �(	,
)� (�) ⋅ �(
,	)� (
) = 1. (50)

Corollary 18. Let � and 
 be any two entire functions with
index-pair (�, �) and (�, �), respectively, where �, �,� are all
positive integers such that� ≥ � and� ≥ �. If either� is not of
regular (�, �)th growth or 
 is not of regular (�, �)th growth,
then

�(	,
)� (�) ⋅ �(
,	)� (
) < 1 < (	,
)� (�) ⋅ (
,	)� (
) . (51)

Remark 19. Corollaries 17 and 18 can be regarded as an
extension of the Corollaries of [8, �eorems 2.1 and 2.2].

Corollary 20. Let � be an entire function with index-pair(�, �), where �, � are positive integers with � ≥ �. en for
any entire function 
,

(i) �(	,
)� (�) = ∞ when �(�, �) = 0,
(ii) (	,
)� (�) = ∞ when ��(�, �) = 0,
(iii) �(	,
)� (�) = 0 when �(�, �) = ∞,

(iv) (	,
)� (�) = 0 when ��(�, �) = ∞,

where � is any positive integer with� ≥ �.
Remark 21. �e 
rst part of Corollary 20 improves [8, �eo-
rem 2.3].

Corollary 22. Let 
 be an entire function with index-pair(�, �), where �, � are positive integers with � ≥ �. en for
any entire function �,

(i) (	,
)� (�) = 0 when �(�, �) = 0,

(ii) �(	,
)� (�) = 0 when ��(�, �) = 0,
(iii) (	,
)� (�) = ∞ when �(�, �) = ∞,

(iv) �(	,
)� (�) = ∞ when ��(�, �) = ∞,

where � is any positive integer such that� ≥ �.
Example 23 (relative order between polynomials). To sim-
plify let us consider any two given natural numbers � and� and - ∈ R, - ̸= 0, so that

� (�) = ��, 
 (�) = -�. (52)

�en

� (1, 1) = �� (1, 1) = �, � (1, 1) = �� (1, 1) = �.
(53)

Now

(1,1)� (�) = �(1,1)� (�) = � (1, 1)� (1, 1) =
�� . (54)

Example 24 (relative order between exponentials of the same
order). Let � be any natural number and - any positive real
number and consider

� (�) = exp �, 
 (�) = exp (-�). (55)

In this case� and
 are two entire functionswith regular (2, 1)
growth; thus

�(1,1)� (�) = (1,1)� (�) = � (2, 1)� (2, 1) =
�� = 1. (56)

Clearly

(1,1)� (
) = �(1,1)� (
) = 1. (57)

Example 25 (relative order between exponential and power
function). Let�, � be any two natural numbers and consider

� = exp ��, 
 = �. (58)

�en

� = �� = �, � = �� = 0. (59)

Now

(1,1)� (�) = �(1,1)� (�) = ∞,
(1,1)� (
) = �(1,1)� (
) = 0. (60)

When � and 
 are any two entire functions with index-
pair (�, �) and (�, �), respectively, where �, �, �, � are all
positive integers such that � ≥ � and � ≥ �, but � ̸= �, the
next de
nition enables studying their relative order.
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De�nition 26. Let � and 
 be any two entire functions with
index-pair (�, �) and (�, �), respectively, where �, �,�, � are
all positive integers such that� ≥ � and � ≥ �. If� > �, then
the relative (�+�−�, �)th order (resp., relative (�+�−�, �)th
lower) of � with respect to 
 is de
ned as

(i)

(	+�−,
)� (�) = lim sup
�→∞

log[	+�−]�−1� �� (�)
log[
]� ,

(resp. �(	+�−,
)� (�) = lim inf�→∞

log[	+�−]�−1� �� (�)
log[
]� ) .

(61)

If� < �, then the relative (�, �+�−�)th order (resp., relative(�, � + � − �)th lower) of � with respect to 
 is de
ned as
(ii)

(	, 
+−�)� (�) = lim sup
�→∞

log[	]�−1� �� (�)
log[
+−�]� ,

(resp. �(	, 
+−�)� (�) = lim inf�→∞

log[	]�−1� �� (�)
log[
+−�]� ) .

(62)

�e following result is easy to check.

�eorem27. Under the hypothesis of De�nition 26, for� > �:
(i)

(	+�−, 
)� (�) = lim sup
�→∞

log[�]�� (�)
log[
]� ,

�(	+�−, 
)� (�) = lim inf�→∞

log[�]�� (�)
log[
]� ,

(63)

and for� < �:
(ii)

(	, 
+−�)� (�) = lim sup
�→∞

log[	]�
log[]�� (�) ,

�(	, 
+−�)� (�) = lim inf�→∞
log[	]�

log[]�� (�) .
(64)

�e next example will make an alternative use of
�eorem 27.

Example 28 (relative order between exponentials of di	erent
order). Let

� (�) = exp[27]�5, 
 (�) = exp[50]�17. (65)

In this case � and 
 are entire functions of regular growth(�, �) = (28, 1) and (�, �) = (51, 1), respectively, with
� (28, 1) = �� (28, 1) = 5, � (51, 1) = �� (51, 1) = 17.

(66)

Now

log[	]�−1� �� (�)
log[
+−�]� = log [log[50] (exp[27]�5)]1/17

log[24]� (67)

and by taking lim sup and lim inf, we get

(	,
+−�)� (�) = 117 = �(	,
+−�)� (�) . (68)

Obviously, the same limit is achieved if, by using�eorem 27,
we consider the quotient

log[	]�
log[]�� (�) =

log �
log[51]�� (�) . (69)

Reciprocally, in order to evaluate (	+�−,
)� (
) and

�(	+�−,
)� (
), we would take limits in either

log[24]�−1� �� (�)
log �

= log[24][log[27] (exp[50]�17)]1/5
log � or

log[51]�� (�)
log � ,

(70)

obtaining that

(	+�−,
)� (
) = 17 = �(	+�−,
)� (
) . (71)

5. Conclusion

�e main aim of the paper is to extend and modify the
notion of order to relative order of higher dimensions in case
of entire functions as the relative order of growth gives a
quantitative assessment of how di	erent functions scale each
other and to what extent they are self-similar in growth, and
in this connection we have established some theorems. In
fact, some works on relative order of entire functions and
the growth estimates of composite entire functions on the
basis of it have been explored in [8–15]. Actually we are
trying to generalize the growth properties of composite entire
functions on the basis of relative (�, �)th order and relative(�, �)th lower order and, analogously, we may also de
ne
relative (�, �)th order of meromorphic functions in order to
establish related growth properties, improving the results of
[16–18]. For any two positive integers � and �, we are trying
to establish the concepts of relative (�, �)th type and relative(�, �)th weak type of entire and meromorphic functions,
too, in order to determine the relative growth of two entire
or meromorphic functions having the same nonzero 
nite
relative (�, �)th order or relative (�, �)th lower order with
respect to another entire function, respectively.Moreover, the
notion of relative order, relative type, and relative weak type
of higher dimensionsmay also be applied in the 
eld of slowly
changing functions and also in case of entire ormeromorphic
functions of several complex variables.
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�e results of this paper in connection with Nevanlinna’s
value distribution theory of entire functions on the basis
of relative (�, �)th order and relative (�, �)th lower order
may have a wide range of applications in complex dynamics,
factorization theory of entire functions of single complex
variable, the solution of complex di	erential equations, and
so forth. In fact complex dynamics is a thrust area in modern
function theory and it is solely based on the study of 
xed
points of entire functions as well as the normality of them.
For further details in the progress of research in complex
dynamics via Nevanlinna’s value distribution theory one
may see [19–24]. Factorization theory of entire functions
is another branch of applications of Nevanlinna’s theory
which actually deals with how a given entire function can
be factorized into other simpler entire functions in the sense
of composition. Also Nevanlinna’s value distribution theory
has immense applications into the study of the properties of
the solutions of complex di	erential equations and is still an
active area of research.
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