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Abstract. Let F be a strongly regular graph with adjacency matrix A. Let I be the identity matrix,
and J the all-1 matrix. Let p be a prime. Our aim is to study the p-rank (that is, the rank over Fp,
the finite field with p elements) of the matrices M = aA + bJ + cI for integral a, b, c. This note is
based on van Eijl [8].

1. The Smith normal form

Let us write M ~ N for integral matrices M and N of order n, if there are
integral matrices P and Q of determinant ±1 such that N = PMQ. Clearly, ~
is an equivalence relation. Given the matrix M, we can find a diagonal matrix
S(M) with S(M) ~ M and S(M) = diag (s1,···,sn) with s1|s2| ···|sn. The
matrix S(M) is uniquely determined up to the signs of the Si (we might require
Si > 0, but that is not always convenient), and is called the (more precisely, a)
Smith normal form of M. (Thus, "S(M) = A" is to be interpreted as stating
that A is a Smith normal form of M.) Clearly, Pisi = det S(M) = ±det M,
and more generally Pk

i=1si is the g.c.d. of all minors of M of order k. The
p-rank rkp(M) of M equals the number of Si not divisible by p, and the Q-rank
rk(M) of M equals the number of nonzero Si. In particular, rkpM < rkM. If
pe||det M, then rkpM > n - e.

SNFO. Let M be an integral matrix of order 2, and g the g.c.d. of its four elements.
Then S(M) = diag (g,(detM)/g).

SNF1. S(Jn + cIn) = diag (1,cn-2,c(c + n)) for c E Z. (We use exponents to
denote multiplicities.) More generally S(bJn + cIn) = diag (g,cn-2,(bn + c)c/g),
where g = gcd(b, c).

SNF2. Let A be the adjacency matrix of the n x n grid graph. Then
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S(A) = diag (12 n - 2 ,2 ( n - 2 ) 2 , (2n - 4)2n-3,2(n - 1)(n - 2)).
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More generally, we have

so that for example S(A + 2I) = diag (12n-2,2n,0 (n-1)2) and S(A - (n - 2)I) =
diag (12n-2,n(n-2)2,02n-2). [For the somewhat boring proof, see van Eijl [8].]

The n x n grid graph (also known as the lattice graph L2(n) or the Hamming
graph H(2, n)) is strongly regular with parameters (v, k, L, u) = (n2,2(n- 1),n-
2,2) and has spectrum (2n - 2)1(n - 2)2n-2(-2)(n-1)2.

For n = 4, the Shrikhande graph has the same parameters and the same Smith
normal form S(A) = diag (16,24,45,12), but here S(A + 2I) = diag (16,21,09)
and S(A-2I) = diag (16,21,42,81,06), while the 4x4 grid graph has S(A + 2I) =
diag (16,81,09) and S(A-2I) = diag (16,44,06).

[Again, a detailed proof is given in van Eijl [8].]

SNF3. Let A be the adjacency matrix of the triangular graph T(n). Then

Using the fact that A + 2I = NN T , where N is the pair-point incidence matrix,
we easily find

The graph T(n) (also known as the Johnson graph J(n,2)) is strongly regular
with parameters (v, k, L, u) = (1

/2n(n - 1),2(n - 2),n - 2,4) and has spectrum
(2n-4)1(n-4)n-1(-2)n(n-3)/2. For n = 8, the three Chang graphs have the same
parameters, but different Smith normal form: instead of diag (16,215,86,241)
each of the Chang graphs has S(A) = diag (18,212,87,241). In particular, T(8)
has 2-rank 6, but the three Chang graphs have 2-rank 8.

In fact it is more natural to consider A+2I and A-4I For T(8) we find S(A+
2I) = diag (16,22,020) and S(A-4I) = diag (16,22,613,07), while the three Chang
graphs have S(A + 2I) = diag (18,020) and S(A-4I) = diag (18,612,241,07).

Remark. If one wants to determine the Smith normal form by computer, very
large entries occur in the intermediate results, so that one needs multiple length

A + (c + 2)I ~ diag (In, (Jn + cIn)
n-2, (n + c)(2Jn + cIn)),
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arithmetic, even in moderately sized cases like the Chang graphs. However,
as Aart Blokhuis remarked, doing all computations modulo some integer m
yields the sequence gcd(s i,m)(1 < i < n). When M is symmetric, with known
integral eigenvalues ti, then we have an equation of the form Mp(M) = hI
for some polynomial p(), where h = Piti, and by Blokhuis and Calderbank [2]
(Lemma 2.2) it follows that each nonzero 8i divides h. In particular, if h = Pip

ei
i

then working modulo m =Pip
ei+1

i we find the actual Smith normal form.

2. Reduction mod p

In this section we want to show that if an integral matrix M is diagonalizable
over C, and also over a field F of characteristic p, then the F-spectrum of M is
obtained from the C-spectrum of M by reduction mod p. In particular, in this
case the p-rank will be equal to the sum of the multiplicities of the eigenvalues
that do not vanish mod p. We have to be a little careful, because the eigenvalues
of M need not be integers.

LEMMA A. Let N be a matrix of order n with distinct eigenvalues ti over a field F.
Equivalent are: (i) N is diagonalizable, (ii) Zi dim ker (N - tiI) = n, and (iii)
P i(N - tiI) = 0. When this is the case, the tj-eigenspace of N is the column space
of Pi=j(N - tiI), and, more generally, the column space of PiEE(N - tiI) is the
direct sum of the tj-eigenspaces of N for j E E. D

[This is standard linear algebra; the referee told us to refer to Hoffman and
Kunze [11], §6.]

More generally, let N have minimal polynomial g over F, with g(x) =
(x - t ) e g 1 ( x ) and g 1 ( t ) = 0. Then the kernel of (N - tI) e is the column space
of g 1 (N) . In particular, if e = 1 then the t-eigenspace of N is the column space
of g 1(N).

If M is a matrix with entries in an integral domain Q with quotient field Q0,
we shall write rkQ(M) for the Q0-rank of M, and mQ(t) for the Q0-dimension
of the t-eigenspace of M.

Let R, S be integral domains, and let h : R —> S be a ring homomorphism
(with h(1) = 1). We shall write r := h(r) for r e R. If M is a matrix with entries
in R, we write M for its entrywise image under h. Clearly, rks(M) < rkR(M).

PROPOSITION. Let_M be a square matrix over R, with pairwise distinct eigenvalues
pi E R Then rkS(M) > Z{mR(Ri)|Ri = 0}.

Proof. This says that the dimension (over S0) of the null-space of M is at most
the multiplicity of 0 as a root of the characteristic polynomial det (xI - M). D
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PROPOSITION. Let M be a matrix of order n over R, and suppose that P i ( M — R i I ) =
0, where the pi are pairwise distinct elements of R Suppose moreover, that M has
minimal polynomial g over S, where g(x) = (x — z ) e g 1 ( x ) and g 1 (z) = 0. Then
dim ker (M — zI)e = Z{mn(p i)|p i = z}. In particular, if a is a simple root of g,
then ms(z) = Z{mR(Ri)|Ri = z}.

Proof. First of all, since the minimal polynomial f of M over R factorizes
completely: f(x) = P(x - Ri) and g(x) divides f(x) = P(x - Ri), also g (x )
factorizes completely: g(x) = P(x - zj)

ej. By the (remark following the) above
lemma, dim ker (M - zI)e = rk s (g 1 (M)) . Since M g 1 ( M ) = zg1(M), and
hence g 0 ( M ) g 1 ( M ) = g 0((z)g 1(M) for any polynomial go, we have r k s (g 1 (M) d ) =
rk s (g 1 (M)) for any integer d > 1. Thus, if we put f 1 ( x ) = PRi=z(x - R i) , then

3. The p-rank of strongly regular graphs

Let M be an integral matrix of order v with integral eigenvalues ti with (ge-
ometric) multiplicities mi(0 < i < t). As we saw in the previous section,
rkpM > Z{mi|ti = 0(mod p)} and rkpM < rkM. Thus, if all eigenvalues ti are
nonzero (mod p) then M has full rank v. If the eigenvalue tj is divisible by p,
then rkpM < v - mj since rkpM = rkp(M - tjI) < rk(M - tjI) = v - mj. Thus,
if precisely one eigenvalue tj is divisible by p, then rkpM = v — mj.

Not let F be a strongly regular graph with adjacency matrix A, and assume
that A has integral eigenvalues k,r,s with multiplicities 1,f,g, respectively. Let
M = A + bJ + cI. Then M has eigenvalues t0 = k + bv + c, t1 = r + c,t2 = s + c,
with multiplicities 1, f, g, respectively. We have to study the case where at least
two of the ti vanish (mod p).

Suppose t0 = t1 = 0 (mod p), t2=0 (mod p). Then we can apply Lemma A
with the two eigenvalues 0 and t2. Since rkp(M - t 2 I ) = v - g, and g <
rkpM < g + 1, it follows that rkpM = g if and only if M(M - t 2 I ) = 0
(mod p). But using (A - rI)(A - sI) = uJ and r + s = L - u, we find
M(M - t 2 I ) = (A + bJ- rI)(A + bJ- sI) = eJ, where
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Thus: if p|e, then rkpM = g, and rkpM = g + 1 otherwise.
Similarly, if t0 = t2 = 0 (mod p), t1 = 0 (mod p), then rkpM = f if p|e, and

rkpM = f + 1 otherwise.
In the particular case 6 = c = 0 we find (using rs = u - k): If k = r = 0

(mod p) and s = 0 (mod p), then rkpA = g. If k = s = 0 (mod p) and r = 0
(mod p), then rkpA = f.

and since both left-hand side and right-hand side sum to n, we must have equality
everywhere. D

EC := u + b2v + 2bk + b(u - L).

dim ker (M - zI)EC = rkS(g1(M)) = rks(f1(M)) < rkR(f1(M)) = ZRi=zmR(Ri),
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Thus, up to now the p-rank of M was easily computable from the parameters
of F. It follows that the only interesting case (where the structure of F plays a
r61e) is that where p divides both t1 and t2, so that p|(r - s). In particular, only
finitely many primes are of interest. In this case we only have the upper bound
rkpM<min(f + 1, g + 1).

Looking at the idempotents sometimes improves this bound by 1: We have
E1 = (r-s) -1(A-sI-(k-s)v -1J) and E2 = (s-r) - 1(A-rI-(k-r)V - 1J). Thus, if
k-s and v are divisible by the same power of p (so that (k-s)/v can be interpreted
in Fp), then rkp(A - sI - (k - s)v-1 J) < rkE1 = f, and, similarly, if k - r and v
are divisible by the same power of p then rkp(A - rI - (k - r ) v - 1 J ) < rkE2 = g.
For M = A + bJ + cI and p|(r + c), p|(s + c) we have ME1 = JE1 = 0, (over Fp)
so that rkp(M, 1} < g + 1, and hence rkpM < g (and similarly rkpM < f) in case
1 E (M).

3.1. Duality; submodules of dimension or codimension 1

Let M be a matrix over some field F. Then we have a nondegenerate pairing
(xTM,My) -> xTMy between the row space and the column space of M. In
particular, when M = MT, then the lattice of submodules of the column space
of M has a natural duality.

Let us denote the column space of M by (M) (or by (M)F if it is desirable
to mention the field F explicitly, or by (M)p in case F = Fp). [We shall also use
notations like (M, u)(= (M) + (u)) for the span of the vector u and the columns
of M.]

Of particular interest are the submodules of dimension or codimension 1.
Let (M)+ be the subspace of (M) generated by the differences of columns of
M, so that it consists of the linear combinations of the columns of M with
coefficients summing to zero. Clearly, either dim (M)+ = dim (M) or dim
(M)+ = dim (M) - 1, where the latter holds if and only if 1 e (MT). Moreover,
(M + bJ)+ = (M) + .

Often one has to decide whether 1 e (M)p. Two easy criteria are as follows:
suppose that M has order v and constant row sums m. If p/m, then 1 e (M).
If p|m and p/v, then 1 E (M), since (M) C 11, and 1 E 11.

If M has nonzero order, and (M)+ = (M), then since any column of M is in
(M)+, the zero column can be written as a linear combination of the columns of
M with coefficients summing to 1, and 1 e (M + bJ) for all b=0. In particular
this holds when (M) is a nontrivial irreducible G-module for some group G.

If 1 E (M) and 1 e (M + bJ) for some b=0, then 1 e {M + bJ) for all b = 0
(mod p). Thus, either rkp(M + bJ) is independent of 6, or there is precisely one
value of b for which this rank is one lower that for all other values. If p/v, we
are in the latter case.

In the special case where M = A-rI + bJ, where A is the adjacency matrix of a
strongly regular graph, we have MJ = (k-r+bv)J and M(A—sI ) = (u+bk-bs)J,
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so certainly 1 e (M) when p / ( k - r + bv) or when p/(u + b(k - s)).
To conclude this section, a few useful lemmas.

LEMMA. The 2-rank of a symmetric integral matrix with zero diagonal is even.

[This is standard linear algebra; a reference is Kaplansky [12], p. 22.]

LEMMA. Let F be a graph, x a nonisolated vertex of F, and A the subgraph of F
induced by the nonneighbours of x. Let F and A have adjacency matrices A and C,
respectively. Then rkp(A) > rkp(C) + 2 for any p, and rkp(A + cI) > rkp(C + cI) + 1
for all p and c.

Proof. We have

(Without condition we can also have rkM = rkB + rkC - 1 or rkM =
rkB + rkC + 1, as can be seen by taking B = C = J or B = C = 0.) This lemma
will be applied for p = 2 to the submatrix of J - A indexed by two adjacent
vertices x, y (with adjacency matrix B = J -I) and all vertices nonadjacent to
both (with adjacency matrix C) to conclude that rk2(J - A) > 2 + rk2(J - C).

3.2. Switching

If F and A are switching equivalent graphs with adjacency matrices A and B,
respectively, then by the definition of switching, the matrices J - 2A + zI and
J - 2B + zI have the same Smith normal form for any integer z. (For a
definition of switching, cf. Brouwer, Cohen and Neumaier [3], p. 15.) For odd
p we may conclude that rkp(A - 1

/2J + cI) = rkp(B - 1
/2 J + cI) for all integers

c. If p = 2, and A is obtained from F by switching with respect to a set with
characteristic vector x, then (A + b1J + cI) + (1,x) = (B + b2J + cI) + (1,x).

LEMMA. Let M = be a symmetric matrix, with square submatrices B

and C (and a rectangular block J of all 1's). If I e (B)+ (or 1 e (C)+), then
rkM = rkB + rkC.

Proof. If 1 e (B)+, then dim (B)+ = dim (B) - 1 by duality, and



(Hence, |rkp(A + b1J + cI) - rkp(B + b2J + cI)| < 2 for all integers b1,b2,c and
all primes p.)

(i) In the special case where p = 2 and A has an isolated vertex 8, we have
X € (A), so that (A) + (1) = (B) + (1,x). Now B contains a zero row, so
1 E (B). Thus, if 1 e (A), then rk2A = rk2B + 2, and rk2A = rk2B otherwise,

(ii) Let A' := A\{d} with adjacency matrix B' of order v-1. Then rkpB = rkpB'
for all p, and rkp(B + cIv) = rkp(B' + cIv-1) + 1 when c = 0 (mod p). It
may happen that rk2(B' + I) = rk2(A + I) - 2 (take for F a path of length
3 and for D an internal vertex). However, if A' is strongly regular, then
|rk2(A + I) - rk2(B' + I)| < 1 since in that case A' has even valency (cf.
Brouwer, Cohen and Neumaier [3], Theorem 1.5.6), so that 1 E (B + I)2.

LEMMA. // A is the adjacency matrix of the collinearity graph of a generalized quad-
rangle GQ(s,t), then 1 E ( A - ( s - 1)I)z. If p|(s + 1) then also 1 e (A + 2I + bJ)p

for all b.

Proof. Add the columns corresponding to a line. D

LEMMA. Let A be the adjacency matrix of the collinearity graph F of a generalized
quadrangle GQ(s, t), and let p|s. Let B be the submatrix (of order s2t) induced by
the rows and columns corresponding to points nonadjacent to a fixed vertex x of F.
Then rkp(J - I - A) = rkp(J - I - B) and 1 E (bJ - I - A)p for all b.

Proof. Adding the columns of J - I - A corresponding to the points of a line
yields 0. This allows us to express the row (column) of J - I - A corresponding
to a point y on a line L in terms of the rows (columns) corresponding to the
remaining points of L. In this way, column x of J - I - A is expressed in terms
of s2 columns corresponding to points nonadjacent to x, and, in particular, 1 is
the sum of s2 columns of J - I - B. D

4. The half case

In the case where F has parameters (v,k, L, u) = (4t + 1,2t,t - l,t) for some
integer t, the eigenvalues need not be integral. The eigenvalues are 2t with
multiplicity 1, and (-1 ± Sv)/2, both with multiplicity (v - l)/2. Entirely
analogously to the above, we find:

(i) If p/t0t1t2, then rkp(A + cI) = v. (Note that t0 = k + c and t1t2 = c2-c-u.)
(ii) If p/t1t2 but p|k + c, then rkp(A + cI) = v-1.

Now suppose that p|c2 - c - u. Solving this for c (mod p), we find several
cases:

If p = 2, then there are no solutions if u is odd, and c = 0, 1 if u is even.
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If p > 2, then p|c2 - c - u is equivalent to (2c - 1)2 = v (mod p), and
there are 0, 1 or 2 solutions, depending on whether v is a nonsquare, zero
or a square (mod p).

(iii) If u = 0 (mod p), then rkpA = (v - 1)/2 and rkp(A + I) = (v + 1)/2.
[Indeed, in this case A(A + I) = 0 (mod p), so that A is diagonalizable

over Fp. The eigenvalues k and r vanish (mod p), and a becomes -1.]
(iv) If v is a (nonzero) square (mod p) and v = 1 (mod p), then rkp(A + cI) =

(v + 1)/2 for the two values of c satisfying (2c -1)2 =v (mod p).
[Indeed, if c1 and c2 are these two values of c, then (A+c1I)(A+c2I) = uJ

(mod p), and k + Ci = 0 (mod p) since v = 0 (mod p), so that A is
diagonalizable over Fp.]

Remains the single case p|v for odd p, where we have no definite value, but
only the upper bound rkp(A + 1/2I) <(v + 1)/2 (since A + 1 / 2 I ) 2 = uJ (mod p)).
It is likely that this last rank depends on the structure of F. In the special case
of Paley graphs, we can compute it.

4.1. Paley graphs

Let q be a prime power, q = 1 (mod 4), and let F be the graph with vertex
set Fq where two vertices are adjacent whenever their difference is a nonzero
square. (Then F is called the Paley graph of order q.) In order to compute the
p-rank of the Paley graphs, we first need a lemma.

LEMMA. Let p(x, y) = Zd-1i=0 Ze-1j=0 cijxiyj be a polynomial with coefficients in a field
F. Let A,B C F, with m := |A| > d and n := |B| > e. Consider the m x n matrix
P = (p(a, b))aeA,beB and the d x e matrix C = (cij). Then r k F ( P ) = rkF(C).

Proof. For any integer s and subset X of F, let Z(s,X) be the |X| x s matrix
(xi)xEX,0<i<s-1. Note that if |X| = s then this is a Vandermonde matrix and
hence invertible. We have P = Z(d, A)CZ(e, B)T, so rkF(P) < rkF(C), but P
contains a submatrix Z(d,A')CZ(e,B') with A' C A,B' C B,|A'| = d,|B'| = e,
and this submatrix has the same rank as C. D

For odd prime powers q = pe, p prime, let Q be the {0, ±1}-matrix Q of
order q with entries Qxy = x(y - x)(x,y e Fq,x the quadratic residue character,
X(0) = 0).

PROPOSITION. rkpQ = ((p + 1)/2)e.

Proof. Applying the above lemma with p(x, y) - x(y - x) = (y - x)(q-1)/2 =
Zi(-1)i((q-1)/2i)xiy(q-1)/2-i, we see that rkpQ equals the number of binomial

BROUWER AND VAN EIJL



coefficients ((q-1)/2
i) with 0 < i < (q - 1)/2 not divisible by p. Now Lucas'

Theorem says that if l = Zi lip
i and k = Zikip

i are the p-ary expansions of l
and k, then (l

k) = Pi(
li

ki) (mod P). Since 1
/2(q-1) = Zi

 1
/ 2 (p -1 )p i , this means that

for each p-ary digit of i there are (p + 1)/2 possibilities and the result follows. Q

[For Lucas' Theorem, cf. MacWilliams and Sloane [15], §13.5, p. 404 (and
references given there). Dickson [7], vol. I, p. 271, gives the reference Lucas [13]
(for binomial coefficients, and refers to himself [p. 273] for the generalization to
multinomial coefficients) but Lucas himself (cf. Lucas [14], p. 417, 503) seems to
refer to Cauchy.]

Note that this proof shows that each submatrix of Q of order at least (q+1)/2
has the same rank as Q.

The relation between Q here and the adjacency matrix A of the Paley graph
is Q = 2A + I - J. From Q2 = qI - J = - J (mod p) and (2A + I)2 =
qI + (q- 1)J = - J (mod p) it follows that both (Q) and (2A + I) contain 1, so
rkp(A + 1

/2I) = rkp(2A + I) = rkp(Q) = ((p + 1)/2)e.

5. Modular characters

Let G be a group of automorphisms of a graph F. Let A be the adjacency
matrix of F, and let Vt be the t-eigenspace of A, a subspace of V := ( I)R .
Each g e G may be represented as a permutation matrix Mg; the fact that it is
an automorphism means that AMg = MgA. It follows that Vt is a R[G]-module
for each eigenvalue 9 of A, If the corresponding character is xt, then we have
P = Zt xt, where P is the permutation character: P (g) is the number of vertices
of F fixed by g e G. Also M := (A + bJ + cI)R is an R[G]-module, a submodule
of V. _

Now, let p be a prime, and consider for F = Fp the F[G]-module V := (I)F and
its submodule M := (A+bJ + c I ) F . Our aim was to find the p-rank of A + bJ + cI,
and in this context it may be expressed as rkp(A + bJ + cI) = dimF M = n(1), if
n is the p-modular character of G on M.

If 9 is an integral eigenvalue of F, then let Zt := Vt N ( I )Z and let Zt be
its image in V under reduction mod p. Then dimF Zt = dim Vt, and, more
generally, the p-modular character of G on Zt is the restriction of the character
of G on Vt to the elements of G of order prime to p. Moreover, for each 0 with
p\t + c, we have M C Z t

L, where ± is taken w.r.t. the natural inner product.
In particular, when F is a strongly regular graph with integral eigenvalues k, r, s

and r + c = s + c = 0 (mod p), then since Zr C Zs and dim (Zr) = f and dim
(Zs

1) = f + 1, we find dim M/(M n Zr) < 1 and similarly dim M/(M n Zs) < 1.
Thus, if we decompose the p-modular characters n, Xr and Xs of G on M, Zr

and Zs into irreducibles: n = ZmcC,X r = ZncC and Xs = Zn'cC we find
that mc < min(nc,n'C) for all p-modular irreducible characters C, except for the
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trivial character 1 of degree 1, where m1 < min(n1,n'1) + 1. Moreover, since
n has values in Fp, the multiplicities mc of algebraically conjugate p-modular
characters C are equal.

In some cases this suffices to determine rkp(A + cI) = n(1) = ZmcC(1), or
to find a short list of possible values for this rank. Examples are given below.

6. Examples

In the table below we give for a few strongly regular graphs for each prime p
dividing r-s the p-rank of A-sI and the unique 60 such that rkp(A-sI-b0J) =
rkp(A - sI - bJ) - 1 for all b = b0, or '-' in case rkp(A - sI - bJ) is independent
of b. (When p/v we are in the former case, and 60 follows from the parameters.
When p\v and p/u, we are in the latter case.) For a description of most of these
graphs, see Brouwer and van Lint [5]. A discussion of these graphs and a few
infinite families follows.

1. The n x n grid graph. Interesting are the primes dividing n. We have
rkp(A + 2I + bJ) = 2n-2 for p\n.

[Indeed, for b = 0 this follows from the Smith normal form given in
Section 1. But 1 is the mod p sum of the n columns corresponding to an
n-clique, so 1 E (A + 2I + bJ) for all b.]

2. The triangular graph T(n). Interesting are the primes dividing n-2. For
p\n - 2, p odd, n > 3 we have rkp(A + 2I + bJ) = n if b = -2, and
rkp(A + 2I - 2J) = n - 1.

[Indeed, for b = 0 this follows from the Smith normal form given in
Section 1, and since v = 1 (mod p) and p|k we have 1 e (A + 2I + bJ) if and
only if b = -2 (mod p).]

For p = 2, n even, n > 2 we have rk2(A) = n-2 and rk2(A + J) = n - 1.
[Indeed, rk2(A) is found from the Smith normal form. From A + 2I =

NNT, where N is the pair-point incidence matrix, and 1 E (N) we find
1 E (A). On the other hand, 1 E (A+ J) as is seen by summing the columns
corresponding to an (n - 1)-clique.]

3. Let F be the symplectic graph Sp2m(q), with as point set the set of 1-
spaces (projective points) of F2m

q provided with a nondegenerate symplectic
form, where orthogonal points are adjacent. Then F is a strongly regular
graph with parameters v = (q2m - 1 ) / ( q - 1), k = (q2m-1 - 1 ) / ( q - 1) - 1,
L + 2 = u. = (q2m-2 - 1 ) / ( q - 1) and spectrum k1(qm-1 - 1)f(-qm-1 - 1)g,
where f = (v - 1 + qm)/2 and g = (v - 1 - qm)/2. Thus, interesting primes
are 2 and p, where q = ph.

Since v = 1 (mod p), and J - I - A has row sums divisible by p, we have
rkp(J - I - A) + 1 = rkp(A + I + bJ) for all b = -1.

If q = 2, we have rk2(A + I) = 2m + 1 and rk2( J -I - A) = 2m.
[Indeed, if q = 2, then the mod 2 sum of any two distinct columns of
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J -I - A is again a column of J -I - A, so that (J -I - A) consists of the
columns of J -I - A together with 0.]

If q is odd and m = 2, then by Bagchi, Brouwer and Wilbrink [1] we have
rk2(A) = rk2(J-A) = 1

/2q(q2+ 1) + 1.
For the p-rank in case of SPn(q) where q = pe, we have rkp(J -I -A) =

(p+n-1
n)

e, since this is just the module spanned by the hyperplane complements
(cf. MacWilliams and Mann [16]). S. Shpectorov remarks that it is easy to
see that (J - I - A) is an irreducible Spn(q) module.

4. Let F be the orthogonal graph O2m+1(q), with as point set the set of
isotropic points of PG(2m, q), provided with a nondegenerate quadratic
form, where distinct points are adjacent when they are orthogonal. Then
F is strongly regular with the same parameters as Sp2m(q) above. If q
is odd and m = 2, then by Bagchi, Brouwer and Wilbrink [1] we have
rk2(A) = rk2( J - A) = q2 + 1.

Concerning the 3-rank in case of O5(3), we find from Atlas and Modular
Atlas: P = x1 + X15b + X24 and X15b = C1 + C14 and X24 = C10 + C14, so
rk3(J - I - A) = 14, and (J - I - A)3 is irreducible for O5(3).

5. Let F be the collinearity graph of any generalized quadrangle GQ(q, q2).
Interesting primes are those dividing q(q + 1). If q is odd, then by Bagchi,
Brouwer and Wilbrink [1] we have rk2(A) = rk2(J - A) = q3 - q2 + q + 1.
Adding the columns corresponding to a line, we find 1 e (A + I + bJ)p for
p\q and b = -1, while clearly 1 E (J - I - A).

Concerning the 3-rank in case of the unique GQ(3,9) (with parameters
(112,30,2,10) and spectrum 301290(-10)21), we have rk3(J- I -A) = 19.

[Since the Gewirtz graph is an induced subgraph, we have rk3(J- I - A) >
19, and since our graph is the first subconstituent of the McLaughlin graph
A with rk3( J - I - AA) = 21 (see below), we have rk3( J - I - A) < 19.]

6. The folded 5-cube is strongly regular with parameters (v, k, L, u) = (16, 5, 0, 2)
and spectrum 51110(-3)5. (Its complement, with parameters (16, 10, 6, 6),
is called the Clebsch graph. It is the halved 5-cube.) We have rk2(A + I) =
rk2( J -I-A) = 6.

[Indeed, its second subconstituent is the Petersen graph, the complement
of T(5), which has rk2(AP) = 5, so 6 < rk2(A + I) < g + 1 = 6. Next,
rk2( J - I - A) differs from this by at most one, but is even, so equals 6 also.]

7. The Schlafli graph is strongly regular with parameters (27, 16, 10, 8) and
spectrum 27146(-2)20. We have rk2(A) = 6,rk2(J - A) = 7, and rk3(A +
2I + bJ) = 7 for all b.

[Indeed, we saw under 2. above that for the triangular graph T(8) we
have 1 E (AT(8)) and rk2(AT(8)) = 6. Since the Schlafli graph is obtained
from T(8) by switching a point isolated, we find rk2(A) = 6. Since v is odd
and k is even, rk2(A + J) = rk2(A) + 1. For the 3-ranks, J - 2A -I has the
same Smith normal form as J - 2AT(8) -I, and hence has 3-rank 7. The
complementary graph is a generalized quadrangle GQ(2,4), and adding the
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Name

folded 5-cube
Schlafli

T(8)

3 Chang graphs

G2(2)

SP4(3)

O5(3)

Hoffmann-Singleton
Gewirtz

M22

sub GQ(3, 9)
Higman-Sims

Hall-Janko

GQ(3,9)

001 ...in S(5,8,24)

SP4(5)

sub McL

edges of Ho-Si

01 ...in S(5,8,24)

switched version
of previous

Cameron

B-vL-S
Delsarte
S(4, 7, 23)

McLaugblin

switched version
of previous plus
isolated point

G2(4)

dodecads mod 1

V

16
27

28

28

36

40

40

50
56

77
81

100

100

112

120

156

162

175

176

176

231

243
243
253

275

276

416

1288

k

5
16

12

12

14

12

12

7
10

16
20
22

36

30

42

30

56

72

70

90

30

22
110
112

112

140

100

792

A

0
10

6

6

4

2

2

0
0

0
1
0

14

2

8

4

10

20

18

38

9

1
37
36

30

58

36

476

u
2
8

4

4

6

4

4

1
2

4
6
6

12

10

18

6

24

36

34

54

3

2
60
60

56

84

20

504

Tf

110

46

47

47

221

224

224

228

235

2*
260

277

636

290

2»

490

2140

2153

2154

2153

955

4132

2220

2230

2252

2252

2065

81035

8g

(-3)5

(-2)20

(-2)20

(-2)2°

(-4)14

(-4)15

(-4)15

(-3)21

(-4)20

(-6)21

(-7)20

(-8)22

(-4)63

(-10)21

(-12)2°

(-6)65

(-16)21

(-18)21

(-18)21

(-18)22

(-3)175

(-5)110

(-25)22
(-26)22

(-28)22

(-28)23

(-4)350

(-36)252

P

2
2
3
2
3
2
3
2
3
2
3
2
3
5
2
3
2
3
2
5
2
5
2
3
2
7
2
5
2
3
2
5
2
5
2
5
2
3
3
3
2
7
2
3
5
2
3
5
2
3
2
11

rkp(A - sI)

6
6
7
6
8
8
8
8
14
16
11
10
15
21
20
20
20
19
22
23
36
23
22
20
20
20
66
36
20
21
20
21
22
22
22
22
55
56
67
22
22
23
22
22
23
24
23
24
38
65
22
230

60
-
0
-
0
2
-
2
-
-
-
1
-
1
-
-
1
0
-
-
-
0
-
-
1
-
5
-
1
0
-
0
-
-
3
-
3
1
1
-
-
0
5
0
1
-
-
2
3
-
1
0
3
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three columns corresponding to a line, we see that 1 e (A + 2I + bJ) for all
b.]

8. G2(2) has a rank 3 representation on 36 points, giving rise to a strongly regular
graph F with parameters (36, 14, 4, 6) and spectrum 141221(-4)14. (For
U3(3), the rank is 4, with suborbits 1 + 7 + 7 + 21.) We have rk2(A + bJ) = 8
and rk3(A -2I + bJ) = 14, for all b.

[The permutation character of U3(3) is the sum of four irreducibles: P =
X1 + X7b + X7c + X21, where the subscript numbers denote the degree, and the
subscript letters indicate the sequence as in the Atlas [6]. Restricting these to
the elements of order prime to 2 and decomposing into 2-modular irreducibles
(using the Atlas and the Modular Atlas [17]) we find X7b = X7c = C1 + C6

and X21
 = C1 + C6 + C14. Thus n = mC1 + C6 with m e {0,1,2}. Now F is

locally bipartite, and summing the 8 columns corresponding to a K1,7 yields
1, showing that 1 e (A + bJ)+, so that m = 2 and rk2(A + bJ) = 8. In fact the
permutation module splits as 1 + 6 + 1 + (6 ® 14)+ 1 + 6 + 1. Similarly, we
can decompose into 3-modular irreducibles, and now find X7b,c = C1 + C6a,b

and X21 = 2C1 + C6a + C6b + C7. Since C6a and C6b are conjugate, it follows
that n = mC1 + C6a + C6b with m e {0,1,2}. Now F is a subgraph of the
Hall-Janko graph, and the u-graphs of the latter graph yield subgraphs M
isomorphic to the 2-coclique extension of C6 (hence regular of valency 6 on
12 points) with the property that each vertex of F outside M is adjacent
to precisely 4 vertices of M. This shows that 1 E (A + I + bJ)+, so that
m = 2 and rk3(A + I + bJ) = 14. In fact the permutation module splits as
1 + 12 + 1+ (1 + 7) + 1 + 12 + 1.]

9. The Hoffman-Singleton graph F is strongly regular with parameters (50, 7,
0, 1) and spectrum 71228(-3)21.

An explicit construction different from the usual ones is as follows: Take
as vertices the 20 ternary vectors of weight 1 and the 30 ternary vectors of
length 10 and weight 4 obtained by taking in the extended ternary Golay
code all vectors of weight six starting with 11... or 12... and deleting the first
two coordinates. Join two weight 1 vectors when they have distance 1; join a
weight 1 and a weight 4 vector when they have distance 3; join two weight 4
vectors when they have distance 8. This yields the Hoffman-Singleton graph
and shows that it has a partition into a subgraph 10k2 and two 15-cocliques.
(In the usual 15 + 35 representation, we find a 15 + 15 + 20 by fixing a
symplectic polarity on PG (3, 2).)

We have rk5(A -2I + bJ) = 21 for all b.
[Indeed, summing the columns corresponding to a Petersen subgraph

we find 1 e (A - 2I + bJ) for all 6. As we saw, the graph F contains
subgraphs 10K2 and no further column of A - 2I is dependent on the 10K2,
so rk5(A-2I) > 21. The permutation character of U3(5) is the sum of three
irreducibles: P = x1 + X21 + X28, where the subscripts denote the degree,
and restricting these to the elements of order prime to 5 and decomposing
into 5-modular irreducibles (using the Atlas [6] and the Modular Atlas [17])
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we find X21 = 2C1 + C19 and X28 = C1 + C8 + C19. We must conclude that
N(1) < 21. In fact the permutation module splits as 1 + 19 + 1 + 8 + 1 +19 +1,
while (A - 2I) splits as 1 + 19 + 1.]

10. The Gewirtz graph F is strongly regular with parameters (56, 10, 0, 2)
and spectrum 101235(-4)20. We have rk2(A + bJ) = 20 for all 6, and
rk3(J - I - A) = 19, rk3(A + I + bJ) = 20 for b = -1.

[Indeed, F contains a subgraph 10K2, and summing the corresponding
columns we find 1 e (A + bJ)2 for all b. This same subgraph shows rk2(A) >
20, and since rk(7A-14I - J) = rk(E2) = 20, we have rk2(A- J) < 20. The
value of rk3(A + I) was determined in Brouwer and Haemers [4].]

11. The 77-point strongly graph F has parameters (77,16,0,4) and spectrum
161255(-6)21. We have rk2(A) = 20 and rk2(J- A) = 21.

[Since F contains the Gewirtz graph as an induced subgraph, we have
20 < rk2(A) = rk2(22I - 11A + 2J) < rk(22I - 11A + 2J) = rk(E2) = 21. But
rk2(A) is even.]

12. The strongly regular graph with parameters (81,20,1,6) has spectrum 201260

(-7)20. We have rk3(A - 2I + bJ) = 19 for all b.
[Since it is the second subconstituent of GQ(3,9), we find rk3(J- I- A) =

19 and 1 e (bJ - I - A) for all b.]
13. The Higman-Sims graph F is strongly regular with parameters (100, 22, 0, 6)

and spectrum 221277(-8)22. We have rk2(A + bJ) = 22 and rk5(A-2I + bJ) =
23 for all 6.

[Since F contains the 77-point strongly regular graph as second subcon-
stituent, we have rk2(A) > 22 and rk5(A - 2I) > 23. This settles rk2(A)
and rk5(A -2I + bJ) since g + 1 = 23 and rk2(A) is even and 5|v,5/u.
Furthermore, rk2(J - A) < rk(A -2I -1

/5J) = rkE2 = 22. Finally, using
Lemma B and the fact that for any two adjacent vertices x, y the subgraph
of F induced by the points nonadjacent to both x and y is isomorphic to the
Gewirtz graph, we find rk2(J - A) > 22.]

14. The Hall-Janko graph F is strongly regular with parameters (100, 36, 14, 12)
and spectrum 361636(-4)63. We have rk2(A) = 36,rk2(A + J) = 37 and
rk5(A - I + bJ) - 23 for all b.

[Using the fact that F2(x) is the distance-2 graph of a generalized hexagon
of order (2, 2), and that the L-graphs are isomorphic to the point-block
incidence graph of the unique biplane 2-(7,4,2), one sees that if {x,y, z}
induces K1 + K2, then {x, y, z}1 = C4. It follows that 0 is the sum of the 9
columns in A indexed by two adjacent vertices y, z and one bipartite half of
the set of their common neighbours. Hence 1 e (A + J)2. Looking at the
2-modular characters for the group HJ we find X36 = C36, and since rk2A
is even, this settles the 2-ranks. In fact the permutation module (for p = 2)
splits as (1 + 36) + 12 + 1 + 1 + 12 + (1 ® 36). Similarly, for p = 5, we find
5-modular characters X36 = C1 + C14 + C21 and X63 = C1 + C21 + C41, so that
N = mC1 + C21 with m E {0,1,2}. But 1 6 (A - I + bJ)+, so m = 2. In fact
the permutation module (for p = 5) splits as 1 + 21 + (1 + 14 + 41) + 21 + 1.]
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15. Let Z = {z1 , • • •, z23} be a set of size 23, and let D = (Z, B) be a Stein-
er system 5(4,7,23) on it. Define a graph F on B by letting B ~ C
whenever |B n C| = 1. For i = 0,1,2, let D(i) = (Z(i), B(i)) be the de-
sign obtained from D by throwing away the i symbols z 1 , · · · , z i and all
blocks containing at least one of these symbols. Let F(i) be the subgraph
of F induced by B(i). Then F(0),F(1), and F(2) are strongly regular, with
parameters (253, 112, 36, 60), (176,70,18,34) and (120,42,8,18) and spec-
tra 11212230(-26)22,7012154(-18)21 and 421299(-12)20, respectively. We have
rk7(2J - 2I + A) = 22, rk5(2J -2I + A(1)) - 21 and rk7(2J -2I + A(2)) = 19.

[Let N(i) be the point-block incidence matrix of D(i). Then (N ( i ))TN ( i ) =
7I + A(i) + 3(J-I- A(i)). We have (N ) 7 = (e23 - ej|1 <j< 22)7 so that
rk7N

TN = rk7(I22 + J22) = 22. Similarly, (N (2))7 = (e21 - ej|1 < j < 20)7 so
that rk7(N

(2))T N(2) = rk7(I20 + J20) = 19. Finally, (N ( 1 ))5 = (ej|1 < j < 22)5
so that rk5(N (1 ))TN (1 ) = rk5(I22) = 22.]

We have rk2A = rk2A
(1) = rk2(A

(1) + J) = 22 and rk2A
(2) = rk2(A

(2) + J) =
20.

[Indeed, rk2A = r k ( 1 ) , since the five rows of A corresponding to the
five blocks containing three fixed symbols sum to zero, so that the 77 rows
and columns indexed by B\B(1) can be expressed in terms of those indexed
by B(1). (More generally, Ax = 0 (mod 2) if NX = c1 (mod 4) for some
c.) Looking at the 2-modular characters we find for M23 (acting rank 3 on
B): X22 = C11a + C11b so n = mC1 + C11a + C11b(m < 1), but rk2A is even, so
m = 0 and rk2A = 22 (and then rk2(A + J) = 23). Next, for M22 (rank 3
on B(1)): x21 = C1 + C10a + C10b so n = mC1 + C10a + C10b(m < 2); it follows
that rk2(A

(1)) + J) = 22 and that 1 E (A(1)) n (A(1) + J).
Finally, for L3(4) (acting rank 4 on B(2)): X20 = 2C1 + C9a + C9b and

X35a + X64 = (C1 + C8a + C8b + C9a + C9b) + C64 SO n = mC1 + C9a + C9b(m < 2).

Using the linear dependence that we found above twice, we see that the
difference of two rows or columns indexed by B(1)\B(2) is a linear combination
of six rows or columns indexed by B(2). Hence rk2(A

(2) + bJ) > rk2(A
(1) +

bJ) - 2 = 20, and therefore m = 2 and we have equality everywhere.]
It is possible to obtain a strongly regular graph A with parameters

(176, 90, 38, 54) by suitably switching F(1). The 5-ranks for A are necessarily
the same as for F(1). We do not know whether the same holds for the
2-ranks, but for at least one choice of switching set the 2-ranks remain
unchanged (as follows by explicit computation).

16. The Hoffman-Singleton graph has 175 edges, and if we join two of these
when they are disjoint and lie together in a pentagon, then we get a strongly
regular graph F with parameters (175, 72, 20, 36). We have rk2(A) = 20 and
rk5(A - 2I) = 21.

[Indeed, F may be obtained from the (176, 70, 18, 34) graph A discussed
above, so that rk5(J - 2A + 4I) = rk5(J - 2B + 4I) = 21, where B is the
adjacency matrix of A. For the same reason rk2(A) e {20,22}, but since v
is odd rk2(A) + 1 = rk2(A + J) < g + 1 = 22.]
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17. The Cameron graph is the strongly regular graph with parameters (231,30,9,
3) constructed from S(3,6,22) by taking the (22

2) pairs of symbols as vertices,
and joining two pairs when they are disjoint and their union is contained in
a block. We have rk2(J - I - A) = 54 and rk3( J - A) = 55, rk3(A) = 56.

[Indeed, these numbers are upper bounds since rkp(A + 3I — 1
/7J) <

rkE1 = 55 for p = 7 (and rk2(J -I - A) is even). M22 has permutation
character P = x1 + X55 + (X21 + X154). Looking at 3-modular characters
we find X21 = C21 and X55 = C55 and X154 = C1 + (C49a + C49b) + C55.
It follows that n = mC1 + C55 with m < 1. Consequently, (J - A)3 is
irreducible and hence rk3(A) = rk3( J - A) + 1. Direct computation yields
rk2( J — I - A) = 54. (Looking at 2-modular characters is not so successful:
we find X21 = C1 + (C10a + C10b),X55 = X21 + C34 and X154 = X55 + C1 + C98.
Thus, n = mC1 + D(C10a + C10b)

 + EC34 with m < 2 and D, e E {0,1}.)]
18. The Berlekamp-van Lint-Seidel graph is the strongly regular graph with

parameters (243,22,1,2) obtained by taking the cosets of the perfect ternary
Golay code and joining them when they differ by a weight 1 vector. Direct
computation shows that rk3(A) = 67. Its dual is the Delsarte graph, with
parameters (243,110,37,60), and can be described as the graph on the
shortened extended ternary Golay code where two vectors are joined when
they have Hamming distance 9. Direct computation shows that rk3(A) = 22.

19. The McLaughlin graph A is strongly regular with parameters (275, 112, 30, 56)
and spectrum 11212252(-28)22. Haemers e.a. [10] show that rk2(A) = 22.
We have rk3(J - I - A) = 21, rk5(A -2I + bJ) = 23 .

[Indeed, A contains a 22-coclique C, so rkp(A + cI) > 22 for c = 0.
But for every vertex x E C, column x of A is the mod 3 sum of the
(7 or 16) columns of A + I indexed by the neighbours of x in C. Thus
rk3(A + I) = 22. The second subconstituent of A is strongly regular, and for
it we have rk5(A" - 2I) = 22, so rk5(A - 2I) > 23, and since g = 22 we have
equality. (And rk2(A) = 22 follows since the first subconstituent of A is the
collinearity graph of GQ(3,9), and we saw above that rk2(A') = 22.)]

The second subconstituent Z of A is strongly regular with parameters
(162, 56, 10, 24). We have rk2(A") = 20,rk2(A" + J) = 21,rk3(A"-2I + bJ) =
21.

[Indeed, Z contains a 21-coclique such that each point outside has 7 or
16 neighbours in it. It follows that 1 e (A" + I)3. Consequently, by the
values found above for A, the values claimed are upper bounds, and in the
case of 3-ranks also lower bounds. Since the (81, 20, 1, 6) strongly regular
graph is a subgraph of Z, rk2(A") > 20. This same subgraph shows that
1 e (A" + J). On the other hand, looking at the 2-modular character of
U4(3) we find X21 = C1 + C20 and X140 = C20 + C140, so that (A") is irreducible
and, in particular, 1 E (A'). Thus rk2(A" + J) = 21.]

20. Goethals and Seidel [9] showed that the switching class of the regular two-
graph on 276 points contains a strongly regular graph F with parameters
(276, 140, 58, 84) possessing a 6-clique C. For such a graph we have
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rk2(A) = rk2(A + J) = 24, rk3(A - 2I + J) = 22, rk5(A - 2I) = 24. As
W. Haemers remarks, such a graph may be obtained from the McLaughlin
graph plus an isolated point, by switching with respect to the disjoint union
of 28 5-cliques, so probably there are many nonisomorphic such graphs. One
particularly nice construction is the following: Take the Delsarte graph as
described above, and add 33 vertices (i,j), 1 < i < 11, j e F3. Join a ternary
vector v to (i,j) when Vi = j. Join (i,j) to (i,k)(j = k). This yields a graph
in the switching class of the regular 2-graph on 276 vertices. Now switch
with respect to the set { ( i , j ) | i = 1} U {v\v1 = v2}. This yields F, and we
have rk3(A - 2I) = rk3(A - 2I - J) = 23.

[Indeed, F is switching equivalent to the graph A* (with adjacency matrix
B) obtained from A by adding an isolated point. Each vertex outside C has
3 neighbours in C, so by adding the six columns of A or A + J corresponding
to the vertices in C, we see that 1 E (A + bJ}2, settling the 2-ranks. Next,
rk5(A - 2I - 1

/2J) = rk5(B - 2I -1
/2J) = 23, settling the 5-ranks. Finally,

rk3(A - 2I -1
/2J) = rk3(B - 2I -1

/2 J) = 22, and the other 3-ranks follow by
direct computation.]

21. G2(4) has a rank 3 representation on the cosets of HJ, giving rise to
a strongly regular graph with parameters (416, 100, 36, 20). According to
CAYLEY, the permutation module for p = 2 splits as 1 + 36 + (1 ® 28) +
12 + 1 + 1 + 12 + (36 ® 196) + 12 + 1 + 1 + 12 + (1 + 28) + 36 + 1, and we
have rk2(A) = rk2(A + J) = 38. The permutation module for p = 3 splits as
(1 + 64) + 286 + (1 © 64), and we have rk3( J - I - A) = 64.

22. If we join the dodecads in the perfect binary Golay code when their distance
is 12, we get a strongly regular graph with parameters (1288, 792, 476, 504).
We have rk2(A) = 22, rk2(A + J) = 23.

[Indeed, let N be the 1288 x 23 dodecad-symbol incidence matrix, then
A = 1

/ 2NNT (mod 2). Since rk2(A) is even, it follows that rk2(A) < 22. Since
22 is the smallest possible dimension of a nontrivial irreducible M23-module,
rk2(A) = 22, and (A)+ = (A). Consequently rk2(A+ J) = 23.]

Moreover, rk11(A - 8I) = 230,rk11(A - 8I - 3J) = 229.
[Indeed, looking at the 11-modular characters of M23 (acting rank 4

on the 1288 dodecads) we find X252 = X22 + X230 = C22 + (C1 + C229) and
X1035 = C229 + C806 so that n = mC1 + C229 with m < 1.]
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