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1 Dipartimento di Matematica 2 Dipartimento di Informatica
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Abstract

In the non cooperative version of the classical Min-
imum Bin Packing problem, an item is charged a cost
according to the percentage of the used bin space it re-
quires. We study the game induced by the selfish behav-
ior of the items which are interested in being packed in
one of the bins so as to minimize their cost. We prove
that such a game always converges to a pure Nash equi-
librium starting from any initial packing of the items,
estimate the number of steps needed to reach one such
equilibrium, prove the hardness of computing good equi-
libria and give an upper and a lower bound for the price
of anarchy of the game. Then, we consider a multidi-
mensional extension of the problem in which each item
can require to be packed in more than just one bin.
Unfortunately, we show that in such a case the induced
game may not admit a pure Nash equilibrium even un-
der particular restrictions. The study of these games
finds applications in the analysis of the bandwidth cost
sharing problem in non cooperative networks.

1. Introduction

The intriguing reality surrounding all the re-
searchers working on the field of algorithms and compu-
tational complexity is that of continuously coping with
the scarceness of resources while attempting to give
a proper solution to practical or theoretical problems.
All the results achieved during the years have led to the
flourishing of many theories and models now standing
as worldwide recognized landmarks in the field. In one
of his talks, Papadimitriou [19] called these approaches
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as compromises. The first compromise was due to the
scarceness of computational time, thus giving life to
the theory of approximation algorithms. The second
one came from the scarceness of information on the
problem which is asked to be solved (online problems)
which led to the definition of competitive analysis.

Recently, a third compromise has arisen, thus giv-
ing life to a new challenging and intriguing research
direction, due to the introduction of classical aspects
of Economics and Game Theory such as selfishness and
rational behavior of the agents handling the variables
characterizing a given problem. Differently from the
past, in fact, some of the variables of the problem may
not be willing to implement the (optimal, approximate
or competitive) solution computed with the classical
techniques, for several reasons. This means that now
we have to cope with the total lack (not only scarce-
ness) of cooperation among the entities involved in our
problems. The reasons justifying this new approach
come from the affirmation of huge unregulated net-
works (as, for instance, the Internet) whose users are
not interested in the optimization of some global or so-
cial function, but only in satisfying their requirements
at the minimum cost. Under these assumptions, clas-
sical network optimization problems are to be modeled
as non cooperative strategic games and their Nash equi-
libria are analyzed and compared with respect to the
social optimum.

The problem we consider in this paper is the classi-
cal Minimum Bin Packing problem with the constraint
that the items to be packed are handled by selfish
agents. All the bins have the same fixed cost and the
cost of a bin is shared among all the items it contains
according to the normalized fraction of the bin they
use. More formally, if we denote the height of item i
as ai, the j-th bin as Bj and the sum of the heights of
the items packed into Bj as Hj , we have that the cost
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paid by i for using Bj is cost(i, j) = ai

Hj
. Suppose that

item i is packed into Bj . Since i wants to minimize its
cost, it will migrate from Bj each time it will detect
another bin Bj′ such that cost(i, j′) < cost(i, j). This
inequality holds for any j′ such that Hj′ + ai > Hj ,
thus an item will migrate each time it will detect a bin
in which it fits better with respect to the unused space.
The social cost that we want to minimize is the number
of used bins.

The bin packing problem has been one of the first
optimization problems being considered under both the
first and the second compromise. Thus it seems to be a
very appropriate case study for appreciating the loss in
optimality of the solutions that can be achieved when
new compromises need to be considered.

Moreover, although this is a state-of-the-art prob-
lem and for such a reason its study under these new
assumptions is clearly self-motivated, this problem has
direct practical implications and can be used to model
the following interesting scenario. Consider two nodes,
a source and a destination, connected by a potentially
infinite number of links and a set of users wishing to
establish a connection between the two nodes having
a certain bandwidth. All the links can carry the same
fixed bandwidth at the same fixed cost. The cost of
each link is shared among its users according to the
same protocol described above for the selfish bin pack-
ing problem, that is according to the normalized level
of usage. For such a reason, users, which are assumed
to be selfish, want to route their traffic on the most
exploited link. If we suppose that the establishment of
a new link causes some inefficiencies or extra-costs in
the whole system, we have that the best performances
are achieved when the overall number of used links is
minimized. Extending the underlying model from a
set of parallel links between two nodes to a generic
multigraph clearly gives rise to a multidimensional bin
packing game, where an item may require to be packed
in more than one bin.

The main algorithmic issues coming from the study
of non cooperative games are the following: (1) Prov-
ing the existence of pure equilibria [4]1; (2) Proving
the convergence to a Nash equilibrium starting from
any initial combination of the agents’ choices and es-
timating the convergence time; (3) Finding a generic
Nash equilibrium or an equilibrium having particular
properties (for instance, the one minimizing the global
cost); (4) Measuring the price of anarchy, that is the
ratio between the worst Nash equilibrium and the so-
cial optimum, that is the optimal solution that could
be achieved if all players cooperated.

1The existence of randomized or mixed equilibria is stated by
Nash’s Theorem [18].

The price of anarchy [13], in particular, is the no-
tion that captures the fundamental aspects of the third
compromise as a new loss in terms of distance from the
optimal solution because of the lack of coordination
among the users.

During the last six years, there have been lots of
results in the study of games induced by selfish routing
in non cooperative networks.

The first model (the task allocation model), intro-
duced by Koutsoupias and Papadimitriou in [13], eval-
uates the link congestion in a network consisting of two
nodes connected by a set of parallel links. This model
essentially reduces to the problem of allocating selfish
tasks to parallel machines, i.e., the classical Minimum
Multiprocessor Scheduling problem analyzed under the
third compromise. The analysis of the price of anarchy
for this model has been improved in [17] and defini-
tively characterized in [12, 2]. As to pure Nash equilib-
ria, Mehlhorn proved the existence of at least one such
equilibrium (Theorem 1 in [6]). In the same paper, it
is also shown that computing the best and the worst
pure equilibrium is NP-hard, while a polynomial-time
algorithm determining a pure equilibrium is given. The
latter result has been improved in [5], where an efficient
algorithm is presented computing a pure equilibrium
starting from any allocation of tasks without increasing
its social cost. As a consequence, by applying this algo-
rithm to the solution returned by the PTAS for the cen-
tralized problem due to Hochbaum and Shmoys [11], it
is possible to obtain pure equilibria whose social cost is
arbitrarily close to the social optimum. Finally, in [3] it
is shown that the non cooperative game induced by the
selfish behavior of the tasks is always able to converge
to a pure equilibrium2 and the number of steps needed
for convergence in several different environments are
determined. Other results on this model can be found
in [10, 16, 7].

Another well-studied model (the flow routing model)
has been introduced by Roughgarden and Tardos
in [25] where the cost of using a link is not only a func-
tion of the load, but it is a latency function. In this
model we are given a graph and a set of communica-
tion requests between different nodes and it is assumed
that each user controls a negligible amount of traffic so
that it can be modeled as a flow. The authors prove
existence and uniqueness3 of pure equilibria and bound
the price of anarchy for linear and non linear latency
functions. Other interesting results on this model can
be found in [21, 22, 23, 24].

The most important difference between these two
models is that the connection requests issued by the

2Note that this result improves on Mehlhorn’s Theorem.
3With respect to the social cost.



agents are unsplittable in the task allocation model,
while they are splittable in the routing flow model,
(see [1] for a very good survey on selfish routing). The
latter property often induces “easier” games. In fact,
every game induced by splittable requests is equivalent
to a congestion game, a well-known class of games al-
ways possessing pure equilibria [20], while in the case
of unsplittable requests in [14] it has been shown that
no pure equilibria may exist even under monotonic-
ity of the delay function. Finally, some recent results
have been achieved by analyzing the resulting model
obtained by combining some of the aspects of the above
two ones in [9, 8, 15].

We study the non cooperative Minimum Bin Pack-
ing problem and the properties of its pure Nash equi-
libria. We assume that each item represents an un-
splittable request for connection. Our results are om-
nicomprehensive in the sense that they cover the ma-
jority of the algorithmic aspects listed before. In par-
ticular, we show that the game always converges to a
pure Nash equilibrium, estimate the number of steps
needed to converge, prove the hardness of computing
the best pure Nash equilibrium and provide an upper
and a lower bound on the price of anarchy of the game.
We also consider a multidimensional extension of the
problem in which an item can require to be packed in
more than just one bin. Unfortunately, we show that
in such a case the induced game may not admit a pure
Nash equilibrium even when there are only two differ-
ent types of items or all the items require the same
number of bins.

2. Existence Proof and Convergence
Time

In this section we provide the proof of existence of
at least one pure Nash equilibrium for the Minimum
Bin Packing game and estimate the number of steps
needed to converge starting from any initial packing.
We denote as σ the input sequence of items, as n = |σ|
the number of items, as aMIN the minimum height of
an item and as A the sum of the heights of all the items
belonging to σ, that is A =

∑n
i=1 ai.

Theorem 2.1 The bin packing game always converges
to a pure Nash equilibrium.

Proof. It is quite easy to show the convergence of
the game by reasoning on the effects caused by an
improving migration performed by an item on the
whole system. In fact, let C be a generic configuration
of bins obtained by listing them in non increasing
order starting from the most filled bin to the most

empty one. If C is not an equilibrium, then there exist
two bins Bj and Bj′ and an item i packed into Bj such
that i fits into Bj′ and cost(i, j′) < cost(i, j). Let us
denote by C ′ the new configuration obtained by letting
i migrate from Bj to Bj′ and then reordering the bins.
Since the new choice performed by i only affects Hj

and Hj′ , it results that C ′ is lexicographically strictly
greater than C. The sequence of possible configura-
tions that can be generated is clearly upper-bounded
by the configuration C∗ = {1, . . . 1︸ ︷︷ ︸

�A�

, A − �A�}, hence

the sequence of improvements always converges to
a local maximum after a finite number of migrations. ♦

It is worth noting here that such a proof holds for
any possible cost sharing function charging an item i a
cost depending only on ai and on the amount of occu-
pied space in the bin chosen by i even if we relax the
assumption that all the bins have the same cost. In
such a general case our bin packing game can be seen as
a particular variant of the task allocation model whose
underlying environment is given by at most n unre-
lated machines. Thus, it is possible to use some of the
results in [3] on the convergence time to a pure Nash
equilibrium for unrelated machines.

Since we assume that all the bins have the same cost,
our model is similar to the task allocation model per-
formed on identical machines. However, the particular
nature of our cost sharing function makes our game
significantly more complicated, thus it seems hard to
obtain similar results to those achieved in [3].

In order to bound the convergence time in our
model, we define a suitable potential function which
proves to be useful in the case in which all the heights
ai are rational numbers, i.e., ai = numi

deni
, where numi

and deni are integers for any 1 ≤ i ≤ n. Let M be
the minimum common multiplier of the values deni,
1 ≤ i ≤ n.

Theorem 2.2 The bin packing game converges to a
pure Nash equilibrium in at most Mn

2aMIN
improving

steps in the case in which all items have rational
heights.

Proof. Given any configuration of the bins
Ct = {B1, . . . , Bk(t)} at step t, we define the

following potential function Φ(t) = 2
∑k(t)

j=1
H2

j .
If at step t item i performs an improving
step by migrating from Bj to Bj′ , we have
that Φ(t+1)

Φ(t) = 2(Hj−ai)
2+(Hj′+ai)

2−H2
j −H2

j′ =

22ai(Hj′+ai−Hj) ≥ 22ai/M ≥ 22aMIN /M . The potential
function of the system is lower-bounded by 1 and
upper-bounded by 2n. Since at each improving step



the potential increases by a multiplicative factor of at
least 22aMIN /M , we have that it will reach its maximum
in at most log22aMIN /M 2n = log 2n

log 22aMIN /M = Mn
2aMIN

. ♦

By exploiting the same potential function, we can
also derive a bound on the number steps needed to
reach an approximate pure Nash equilibrium, defined
as follows.

Definition 2.3 A configuration of bins C is an ε-pure
Nash equilibrium, with 0 < ε ≤ 1, if for any pair of
bins Bj , Bj′ ∈ C and any item ai packed into Bj it
holds cost(i, j′) ≥ cost(i, j) · ε.

Clearly, it follows from the definition that a 1-pure
Nash equilibrium is a pure Nash equilibrium. Strictly
speaking, an ε-pure Nash equilibrium is a configura-
tion of bins in which no item possesses an ε-improving
step, where an ε-improving step performed by item i
is a migration from Bj to Bj′ such that cost(i, j′) <
cost(i, j) · ε. According to our particular cost sharing
function, item i can perform an ε-improving step, mi-
grating from Bj to Bj′ , if (Hj′ + ai)ε > Hj .

Theorem 2.4 The bin packing game converges to an
ε-pure Nash equilibrium in at most n

2(1−ε)a2
MIN

ε-
improving steps for any 0 < ε < 1.

Proof. If at step t item i performs an ε-
improving step by migrating from Bj to Bj′ , we
have that Φ(t+1)

Φ(t) = 2(Hj−ai)
2+(Hj′+ai)

2−H2
j −H2

j′ =

22ai(Hj′+ai−Hj) = 22ai[(1−ε)(Hj′+ai)+ε(Hj′+ai)−Hj ] >
22ai(1−ε)(Hj′+ai) ≥ 22(1−ε)a2

i ≥ 22(1−ε)a2
MIN . By using

the same arguments as in the previous theorem the
claim follows. ♦

Finally, it is worth noting that the number of used
bins in any sequence of migrations is always non in-
creasing, since no item can achieve an improvement by
migrating to an empty bin. This means that there al-
ways exists a solution, among the optimal ones, which
is a pure Nash equilibrium and moreover, if a central
authority would be able to enforce an initial solution
having an approximation ratio equal to c, then the so-
cial cost of the resulting pure Nash equilibrium would
be at most c times the social optimum. The above
discussion proves the following result.

Theorem 2.5 It is NP-hard to compute the best pure
Nash equilibrium for the bin packing game.

3. Bounding the Price of Anarchy

We now prove an upper bound on the price of an-
archy of our game and also provide a very close lower

bound.

Theorem 3.1 Any pure Nash equilibrium for the bin
packing game uses at most � 5

3Opt	+1 bins, where Opt
is the number of bins used by an optimal centralized
solution.

Proof. Let C be the configuration of bins yielded by a
generic pure Nash equilibrium obtained by listing the
bins in non increasing order. We first remark that all
the bins are filled for more than a half, except for at
most one bin, otherwise an improving step would triv-
ially exist.

Suppose that the average occupation on the first
Opt bins in C is at least 3/4. This means that the
“wasted” space in the first Opt bins in C with re-
spect to the optimal solution is at most 1

4Opt. This
quantity is spread among all the additional bins used
by C. Since they are filled for at least more than
one half of their height (except for at most one bin),
at most � 1

2Opt	 bins are needed to pack such left-
over items, thus the number of bins in C is at most
Opt + � 1

2Opt	 = � 3
2Opt	 < � 5

3Opt	 + 1.
Now suppose that the average occupation on the ad-

ditional bins in C without considering the least loaded
one is at least 5/8. This implies that the “wasted”
space in the first Opt bins in C is at most 3

8Opt and is
spread among additional bins having an average occu-
pation of at least 5/8. It follows that the number of bins
in C is at most Opt+� 8

5
3
8Opt	 = � 8

5Opt	 < � 5
3Opt	+1.

It is left to consider the case in which the average
occupation on the first Opt bins in C is less than 3/4
and the one on the additional bins without considering
the least loaded one is less than 5/8. Let us denote by
F the set of all the first Opt bins in C which are filled
for less than 3/4. If |F | = 1, using the same argument
as in the first case we obtain that the “wasted” space
in the first Opt bins in C with respect to the optimal
solution is at most 1

4 (Opt − 1) + 1
2 = 1

4Opt + 1
4 ,

thus the number of bins in C becomes at most
Opt + � 1

2Opt + 1
2	 ≤ � 3

2Opt� + 1 < � 5
3Opt	 + 1. If

|F | > 1, then any of the |F | − 1 least filled bins in F
cannot contain an item i such that ai ≤ 1/4 because
otherwise i could perform an improving step by
migrating to the most filled bin in F . Moreover, they
cannot contain an item i such that 1/4 ≤ ai ≤ 3/8
because otherwise i could migrate to the second least
loaded additional bin. Such a bin, in fact, must have
an available space of at least 3/8 and of at most
1/2 by hypothesis. As a consequence, all the bins
in F except for one must contain a single item. Let
f = |F | and g be the number of additional bins,
i.e., the difference between the number of bins used
by C and Opt. Using a similar argument it is not



difficult to see that all the g additional bins cannot
contain an item i such that 0 < ai ≤ 3/8, thus we
have identified f + g − 1 items of height greater than
1/2 which is clearly a lower bound on the value of
the optimal solution, that is f + g − 1 ≤ Opt. This
means that the number of bins which are filled for
more than 3/4 are Opt − f ≥ g − 1. Thus the overall
occupation in the first Opt bins in C is at least
3
4 (g−1)+ Opt−g+1

2 = g+2·Opt−1
4 , which means that the

“wasted” space in the first Opt bins in C is at most
Opt− g+2·Opt−1

4 . It follows that the number of bins in
C is at most Opt+2(Opt− g+2·Opt−1

4 ) = 2Opt− (g−1)
2 .

Since such a number is also upper-bounded by the
value Opt + g, we have that the number of bins in C
is at most � 5

3Opt	 + 1 when g = 2Opt+1
3 . ♦

Theorem 3.2 The price of anarchy for the bin pack-
ing game cannot be better than 8/5 even when the social
optimum goes to infinity.

Proof. Consider the set of items listed in Figure 1a.
The configuration of the 8 bins represented in Fig-
ure 1b is a pure Nash equilibrium since no item can
perform an improving migration. In fact, no item
in the last 5 bins can migrate elsewhere because
there is not enough space to pack it. The items in
B3 are in an almost entirely filled bin and it can be
easily seen that they cannot lower their cost. Finally,
each of the items in the first two bins can migrate
only in one of the last 5 bins, but none of them
would achieve an improvement. The optimal solution,
showed in Figure 1c, uses only 5 bins, hence, since this
configuration can be replicated an arbitrarily number
of times and still remains an equilibrium, the thesis
follows. ♦

4. A Multidimensional Extension

In this section we consider the natural extension of
our game to the case in which the bins are divided into
different classes and each item requires to be packed in
a set of bins each belonging to a different class. More
formally, let B, with |B| = m, be the set of different
classes of bins, each item i ∈ σ has a set of possible
requirements R(i), defined by a function R : σ → 2P ,
where P ⊆ 2B. All the bins belonging to the same
class have the same height and the same cost and we
want to pack each item by choosing one of its possi-
ble requirements so as to minimize the number of used
bins.

In practice, this problem models a network G =
(V,E, c), with c : E → IR+, in which different pairs

Figure 1. a) The set of items σ. b) The worst
pure Nash equilibrium. c) The social opti-
mum.

of nodes {x, y} want to communicate by using one of
the possible paths between x and y. By modeling each
edge of G with a class of bins, that is setting B = E,
and each request of communication with an item i ∈ σ,
we have that R(i = {x, y}) becomes a set of paths con-
necting x to y. Again, in this setting, each item is
charged a cost which is equal to the sum of the cost
of the used bins according to the level of their usage.
We prove that this extended model gives rise to games
which may not admit a pure equilibrium even under
special restrictions.

Theorem 4.1 The extended bin packing game may
not admit a pure Nash equilibrium even for the case
in which all bins have the same cost and there are only
two different types of items.

Proof. Consider the game induced by the graph de-
picted in Figure 2, in which each depicted edge repre-
sents a chain of k real edges, where k is the number
associated with each depicted edge and set σ = {a1 =
a2 = 1

4 , a3 = a4 = 1
2}. The set of paths Πi that can be

chosen from item i, thus representing i’s set of strate-
gies, is defined as follows:

Π1 = {p1
1 = e(1,2)e(2,3), p

2
1 = e(1,7)e(7,8)e(8,3)},

Π2 = {p1
2 = e(1,2)e(2,3), p

2
2 = e(1,3)},

Π3 = {p1
3 = e(1,2)e(2,6), p

2
3 = e(1,5)e(5,6)},

Π4 = {p1
4 = e(1,3)e(3,4), p

2
4 = e(1,5)e(5,7)e(7,8)e(8,4)}.

Since there are 4 items each of which has 2 strategies,
we have to consider 16 different combinations of
choices. We show in Figure 4 that none of them



Figure 2. A communication graph inducing a
game not admitting a pure Nash equilibrium
even when there are only two types of items.

represents a Nash equilibrium. ♦

Clearly, the case in which there is only one type of
item can be easily reduced to a congestion game thus
always admitting a pure Nash equilibrium. Hence the
previous theorem states that any non trivial instance
of the extended bin packing game may not converge to
a pure Nash equilibrium. Other special instances of the
game can be obtained by allowing particular topologies
for the underlying communication graph G from which
the game generates. We prove in the following theorem
the non existence of a pure Nash equilibrium even when
all the paths that can be chosen by all the items have
the same number of edges.

Theorem 4.2 The extended bin packing game may
not admit a pure Nash equilibrium even for the case in
which all bins have the same cost and all the allowed
paths in the underlying graph are of the same length.

Proof. We use the underlying communication graph
depicted in Figure 3 and set σ = {a1 = a2 = 1

4 , a3 =
a4 = 1

2 , a5 = a6 = 1
10 , a7 = 1

9 , a8 = 0.207}. The set of
paths Πi that can be chosen from item i are defined as
follows:

Π1 = {p1
1 = e(1,2)e(2,9)e(9,16)e(16,3), p

2
1 =

e(1,7)e(7,8)e(8,3)},
Π2 = {p1

2 = e(1,2)e(2,9)e(9,16)e(16,4), p
2
2 = e(1,11)e(11,4)},

Π3 = {p1
3 = e(1,2)e(2,6), p

2
3 = e(1,5)e(5,10)e(10,6)},

Π4 = {p1
4 = e(1,11)e(11,4), p

2
4 = e(1,5)e(5,7)e(7,8)e(8,4)},

Π5 = {e(1,12)e(12,5)e(5,10)},
Π6 = {e(1,14)e(14,11)e(11,4)},

Π7 = {e(1,13)e(13,2)e(2,9)},
Π8 = {e(1,7)e(7,15)e(15,8)e(8,3)}.

Notice that items 5, 6, 7 and 8 have no choice possi-
bilities. Thus, there are 4 items each of which has 2
strategies for 16 different combinations of choices. We
show in Figure 5 that none of them represents a Nash
equilibrium. ♦

It may be pointed out here that these negative re-
sults should suggest us to turn our attention towards
the use of mixed Nash equilibria in order to character-
ize our game in its extended version. This can clearly
be a possible research direction, however we must stress
that the notion of randomized choices cannot be intro-
duced as easily as one may think. In fact, if from one
side one can use randomization in order to chose one of
its available connection paths on the underlying graph,
on the other side it is not so natural which rule to ap-
ply in order to choose the particular bin where to pack
its request.

5. Open Problems

Two natural open problems are the determination
of a lower bound on the number of steps needed to
converge to an equilibrium and the bridging of the gap
between upper and lower bound on the price of anarchy.

As an extension, we have also considered the case in
which an item may require to be simultaneously packed
in more than just one bin and provided results of non
existence of pure equilibria even under special restric-
tions on the input instances. It would be good to im-
prove these results by allowing each item to choose any
possible path in the underlying communication graph.

Acknowledgements: the author thanks Michele
Flammini for many helpful comments and discussions.
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p1 p2 p3 p4 i cost(i, pi) cost(i, p′i)

p1
1 p1

2 p1
3 p1

4 2 193
4 + 128

2 = 112.25 322
3 = 107.333...

p1
1 p1

2 p1
3 p2

4 4 354 322·2
3 + 30 = 244.666...

p1
1 p1

2 p2
3 p1

4 2 321
2 = 160.5 322

3 = 107.333...

p1
1 p1

2 p2
3 p2

4 3 190
2 + 130 = 225 193

2 + 128 = 224.5

p1
1 p2

2 p1
3 p1

4 1 193
3 + 128 = 192.333... 190

p1
1 p2

2 p1
3 p2

4 2 322 193
4 + 128

2 = 112.25

p1
1 p2

2 p2
3 p1

4 1 321 190

p1
1 p2

2 p2
3 p2

4 1 321 44
3 + 146 = 160.666...

p2
1 p1

2 p1
3 p1

4 1 190 193
4 + 128

2 = 112.25

p2
1 p1

2 p1
3 p2

4 1 44
3 + 146 = 160.666... 193

4 + 128
2 = 112.25

p2
1 p1

2 p2
3 p1

4 1 190 321
2 = 160.5

p2
1 p1

2 p2
3 p2

4 1 44
3 + 146 = 160.666... 321

2 = 160.5

p2
1 p2

2 p1
3 p1

4 3 321 320

p2
1 p2

2 p1
3 p2

4 3 321 190
2 + 130 = 225

p2
1 p2

2 p2
3 p1

4 4 322·2
3 + 30 = 244.666... 190

2 + 44·2
3 + 120 = 244.333...

p2
1 p2

2 p2
3 p2

4 2 322 321

Figure 4. The first four columns of the table contain the path chosen by each item thus representing
the configuration of choices. The fifth column contains an item i which has an improving migration.
Finally, in the two last columns it is reported, respectively, the current cost cost(i, pi) charged to item
i and the new cost cost′(i, p′i) charged to i after migrating to p′i.



p1 p2 p3 p4 i cost(i, pi) cost(i, p′i)

p1
1 p1

2 p1
3 p1

4 2 224
4 + 9

22 + 126
2 + 1 = 120.409... 351

3 + 5
17 = 117.294...

p1
1 p1

2 p1
3 p2

4 4 352 351 + 10
17 = 351.588...

p1
1 p1

2 p2
3 p1

4 2 224
2 + 9

22 + 126
2 + 1 = 176.409... 351

3 + 5
17 = 117.294...

p1
1 p1

2 p2
3 p2

4 3 221
2 + 5

6 + 130 = 241.333... 224
2 + 128 = 240

p1
1 p2

2 p1
3 p1

4 1 224
3 + 9

13 + 127 = 202.358... 331·0.25
0.457 + 21 = 202.072...

p1
1 p2

2 p1
3 p2

4 2 351 + 5
7 = 351.714... 224

4 + 9
22 + 126

2 + 1 = 120.409...

p1
1 p2

2 p2
3 p1

4 1 351 + 9
13 = 351.692... 331·0.25

0.457 + 21 = 202.072...

p1
1 p2

2 p2
3 p2

4 1 351 + 9
13 = 351.692... 331·0.25

0.457 + 21
3 = 188.072...

p2
1 p1

2 p1
3 p1

4 1 331·0.25
0.457 + 21 = 202.072... 224

4 + 9
22 + 126

2 + 1 = 120.409...

p2
1 p1

2 p1
3 p2

4 1 331·0.25
0.457 + 21

3 = 188.072... 224
4 + 9

22 + 126
2 + 1 = 120.409...

p2
1 p1

2 p2
3 p1

4 3 351 + 5
6 = 351.833... 224·2

3 + 128 = 277.333...

p2
1 p1

2 p2
3 p2

4 1 331·0.25
0.457 + 21

3 = 188.072... 1 + 350
2 + 9

22 = 176.409...

p2
1 p2

2 p1
3 p1

4 3 352 351 + 5
6 = 351.833...

p2
1 p2

2 p1
3 p2

4 3 352 221
2 + 5

6 + 130 = 241.333...

p2
1 p2

2 p2
3 p1

4 4 351·2
3 + 10

17 = 234.588... 221
2 + 21·2

3 + 110 = 234.5

p2
1 p2

2 p2
3 p2

4 2 351 + 5
7 = 351.714 351 + 9

13 = 351.692

Figure 5. The first four columns of the table contain the path chosen by each item thus representing
the configuration of choices. The fifth column contains an item i which has an improving migration.
Finally, in the two last columns it is reported, respectively, the current cost cost(i, pi) charged to item
i and the new cost cost′(i, p′i) charged to i after migrating to p′i.


