On the pagenumber of k-trees

Jennifer Vandenbussche*, Douglas West ${ }^{\dagger}$, Gexin Yu^{\ddagger}

January 4, 2008

Abstract

A p-page embedding of G is a vertex-ordering π of $V(G)$ (along the "spine" of a book) and an assignment of edges to p half-planes (called "pages") such that no page contains crossing edges. The pagenumber of G is the least p such that G has a p-page embedding. We disprove a conjecture of Ganley and Heath by showing that for all $k \geq 3$, there are k-trees that do not embed in k pages. On the other hand, we present an algorithm that produces k-page embeddings for a special class of k-trees.

1 Introduction

The pagenumber (or book thickness) of a graph G was introduced by Bernhart and Kainen [1]. Given a graph G, a p-page embedding of G is a vertex ordering π of $V(G)$ (along the "spine" of a book) and an assignment of edges to p half-planes (called "pages") such that no page contains crossing edges. Equivalently, each page consists of an outerplanar embedding of a subgraph of G having the vertices ordered according to π on the unbounded face. These subgraphs decompose G. The pagenumber of G, denoted $\operatorname{bt}(G)$, is the minimum p such that G has a p-page embedding. We say that G "embeds in p pages" when $\mathrm{bt}(G) \leq p$.

Note that $\operatorname{bt}(G)=1$ if and only if G is outerplanar. Bernhart and Kainen [1] observed that $\operatorname{bt}(G) \leq 2$ if and only if G is a subgraph of a Hamiltonian planar graph. Pagenumber has been studied on several classes of graphs, including planar graphs [9], graphs with genus $g[5,6]$ and complete bipartite graphs [3, 7]. In this paper, we study pagenumber of k-trees.

Among several equivalent definitions of k-trees, the inductive definition is convenient for our arguments. A k-tree is either the complete graph K_{k} or a graph obtained from a k-tree G by adding one vertex whose neighborhood is a k-clique in G (a k-clique is a set of k pairwise adjacent vertices). The 1-trees are simply the trees, which are outerplanar, and hence they

[^0]have pagenumber 1. Chung, Leighton, and Rosenberg [2] showed that the pagenumber of every 2 -tree is at most 2 . Ganley and Heath [4] exhibited k-trees that require k pages and proved that if G is a k-tree, then $\operatorname{bt}(G) \leq k+1$. They conjectured that every k-tree embeds in k pages; we disprove this conjecture.

Theorem 1. For $k \geq 3$, there is a k-tree that does not embed in k pages.
First, we present an algorithm that embeds many k-trees in k pages, using tree-decompositions of graphs. Let $G[X]$ denote the subgraph of G induced by vertex set X. A treedecomposition of a graph G consists of a host tree T and a family $\left\{X_{i}: i \in V(T)\right\}$ of subsets of $V(G)$ (called bags, perhaps originally by Bruce Reed) such that (1) $G=\bigcup_{i \in V(T)} G\left[X_{i}\right]$ and (2) for each $v \in V(G)$, the set $\left\{i: v \in X_{i}\right\}$ induces a subtree of T. We use (T, \mathbf{X}) to denote a tree-decomposition in which \mathbf{X} is the set of bags.

The width of a tree-decomposition (T, \mathbf{X}) is $\max _{i \in V(T)}\left\{\left|X_{i}\right|-1\right\}$. The treewidth of G is the minimum width among all tree-decompositions of G. (Since every graph has a treedecomposition with all vertices in one bag, treewidth is well-defined.) A tree-decomposition of width k is smooth if the bags for any two adjacent vertices of the host tree have k common elements. By the inductive definition, a k-tree has a smooth tree-decomposition such that every bag is a $(k+1)$-clique.

Togasaki and Yamazaki [8] showed that if G is a k-tree and G has a smooth treedecomposition whose host tree is a path, then $\mathrm{bt}(G) \leq k$. We enlarge the family of k-trees for which the conclusion holds.

Theorem 2. If a k-tree G has a smooth tree-decomposition with width k such that the host tree has maximum degree at most 3 , then $b t(G) \leq k$.

The k-tree we construct in Theorem 1 has a smooth tree-decomposition whose host tree has maximum degree $k+2$. This leaves open the question of finding the maximum D such that every k-tree having a smooth tree-decomposition whose host tree has maximum degree at most D has a book embedding in k pages. We have shown that $3 \leq D<k+2$.

2 Construction of k-Page Embeddings

We provide an algorithm that produces a k-page embedding of a k-tree G from a smooth tree-decomposition $\left(T_{0}, \mathbf{X}_{0}\right)$ of G in which T_{0} has maximum degree at most 3 .

Since the members of \mathbf{X}_{0} correspond bijectively to the vertices of T_{0}, we refer to the bags as vertices of T_{0}. Choose a leaf bag $\left\{a_{1}, \ldots, a_{k+1}\right\}$ of T_{0}; it will be convenient to name this bag A_{k+1}. Note that exactly one vertex of A_{k+1} does not appearing in the neighbor of A_{k+1} in T_{0}; index the elements of A_{k+1} so that this vertex is a_{k+1}.

In T_{0}, each bag X is reached by exactly one path from A_{k+1}. Since $\left(T_{0}, \mathbf{X}_{0}\right)$ is smooth, X contains exactly one vertex that does not appear in any vertex of this path other than X. For each bag X_{i}, we let x_{i} denote this distinguished vertex.

Conversely, since G is connected, every vertex outside A_{k+1} appears in exactly one closest bag to A_{k+1} and is the distinguished vertex for that bag. To have every vertex of G be
the distinguished vertex for some bag, we modify T_{0} by adding a path $\left\langle A_{1}, \ldots, A_{k}\right\rangle$ with $A_{i}=\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}$ and A_{k} adjacent to A_{k+1}. Let T denote the new tree, and let $\mathbf{X}=$ $\mathbf{X}_{0} \cup\left\{A_{1}, \ldots, A_{k}\right\} ;$ now (T, \mathbf{X}) is a tree-decomposition of G.

We refer to vertex A_{1} as the root of T. Viewed from A_{1}, the distinguished vertex for each A_{i} is a_{i}. The new tree-decomposition (T, \mathbf{X}) is not smooth, but the k added bags with their distinguished vertices simplify the presentation of the proof. The vertices of G now correspond bijectively to the bags. For $x \in V(G)$, we refer to the bag whose distinguished vertex is x as \bar{x}; when the context is clear we write X for \bar{x}.

While exploring T from the root, the algorithm uses this bijection from $V(G)$ to $V(T)$ to produce a vertex ordering and a k-edge-coloring of G so that the endpoints of two edges with the same color do not occur alternately in the vertex ordering. Such an ordering and coloring define a k-page embedding. The idea is to use the correspondence between vertices and bags to color the edges of T using $k+1$ colors, and then use the edge-coloring of T to produce the k-edge-coloring of G.

In a graph, a u, v-path is a path from u to v. We say that X is an ancestor of Y and Y is a descendant of X if X lies on the A_{1}, Y-path in T. We will use the following statement about the relationship between G and T to define the edge-coloring of G.

Lemma 3. If $x y \in E(G)$, then X is an ancestor of Y or Y is an ancestor of X in T.
Proof. If $x y \in E(G)$, then x and y must appear in some common bag; since the bags containing a vertex of G induce a subtree of T, every bag in the X, Y-path in T contains x or y. Note also that x does not appear in any bag that is an ancestor of X in the rooted tree T. The claim follows.

We refer to the subtrees of T rooted at the left and right children of X as the (left and right) subtrees of X.

2.1 The algorithm

First we produce the vertex ordering π from T. Initialize π to $\left(a_{1}\right)$. Begin a breadth-first search of T from bag A_{1}. Designate the child(ren) of a bag X in T as its left-child or rightchild, arbitrarily. When searching from bag X, having already assigned vertex x a position in π, place the vertex corresponding to its left child (if it has one) immediately before x in π and the vertex corresponding to its right child (if it has one) immediately after x in π. The vertices for bags in the left subtree of X comprise a consecutive segment immediately before x under π, and those corresponding to the right subtree of X comprise a consecutive segment immediately after x under π.

For a bag $Y \in V(T)-\left\{A_{1}, \ldots, A_{k+1}\right\}$ with parent X, recall that $|X-Y|=1$ and that $\overline{X-Y}$ denotes the bag associated with the vertex of $X-Y$. When Z is an ancestor of Y, we use $Z: Y$ to denote the edge incident to Z on the Z, Y-path in T.

Define a $(k+1)$-coloring f of $E(T)$ as follows. For each edge in T, one endpoint is the parent of the other. When X is the parent of Y in T, let

$$
f(X Y)= \begin{cases}j, & \text { if } X Y=A_{j} A_{j+1} \\ k+1, & \text { if } X \notin\left\{A_{1}, \ldots, A_{k}\right\} \text { and } \overline{X-Y}=X \\ f(\overline{X-Y}: Y), & \text { if } X \notin\left\{A_{1}, \ldots, A_{k}\right\} \text { and } \overline{X-Y} \neq X\end{cases}
$$

We use f to define a $(k+1)$-coloring g of the edges of G. If $x y \in E(G)$, then by Lemma 3 , we may assume by symmetry that X is an ancestor of Y. Define $g(x y)=f(X: Y)$.

2.2 Validity of the algorithm

First we show that g uses only the colors 1 through k.
Lemma 4. No edge in G is assigned color $k+1$ under g.
Proof. The color $g(x y)$ is the color on an edge in T. Since $g(x y)=f(X: Y)$, we have $g(x y)=f(X Z)$, where Z is the child of X on the X, Y-path in T. If $f(X Z)=k+1$, then the definition of f implies that x appears in no bag in the subtree of X that contains Z, and thus x and y could not appear in a bag together and could not form an edge.

For colors other than $k+1$, we think of the color on an edge from X to a child of it in T as the color associated with x in the subtree rooted at that child. For such an edge $X Y$, let w be the unique vertex of $X-Y$. When $f(X Y) \neq k+1$, the value $f(X Y)$ is the color associated with w in the subtree of W that contains $X Y$, by the definition of f.

Lemma 5. If X is an ancestor of Y such that $x \in Y$, then the color j associated with x in the subtree of X that contains Y does not appear on any edge of the X, Y-path in T except the initial edge $X: Y$.

Proof. Consider a bag X closest to A_{1} in T at which the claim fails. We have $j \leq k$, since otherwise $x \notin Y$, as observed in the proof of Lemma 4. Note that $j=f(X: Y)$. If j appears again on the X, Y-path, then let $Z Z^{\prime}$ with parent Z be the edge on which it first reappears. Since j reappears on $Z Z^{\prime}$, the vertex Z cannot be A_{j}. Hence the definition of f yields $f\left(Z Z^{\prime}\right)=f\left(W: Z^{\prime}\right)$, where $\{w\}=Z-Z^{\prime}$. Hence $w \notin Y$; since $x \in Y$, we have $x \neq w$. We conclude that W is an ancestor of X, since $Z Z^{\prime}$ was the first reappearance of j. Now j is the color associated with w in the subtree of W that contains Z, and $w \in Z$. This contradicts the choice of X as the failure closest to A_{1}.

Proof of Theorem 2. By Lemma $4, g$ is a k-edge-coloring of G. It remains to show that g does not give the same color to edges whose endpoints alternate in π. Let $x y$ and $u v$ be such edges. By Lemma 3, we may assume that X is an ancestor of Y and U is an ancestor of V. Since the algorithm is symmetric with respect to left and right, we may also assume that Y is in the right subtree of X, and hence $\pi(x)<\pi(y)$. Recall that $g(x y)=f(X: Y)$.

We show that $g(u v) \neq g(x y)$. Since the right subtree of X is listed immediately after X under π and the edge $u v$ crosses the edge $x y$, the right subtree of X must contain U or V.

Suppose first that U is in the right subtree of X. This implies that V is also in the right subtree of X, since U is an ancestor of V.

If V is in the left subtree of U, then $\pi(x)<\pi(v)<\pi(y)<\pi(u)$. Since the vertices of this subtree appear just before U in the ordering, Y also must be in the left subtree of U. Thus U lies along the X, Y-path in T, and by Lemma 5 the color $g(x y)$ associated with X in its right subtree cannot be the same as the color $g(u v)$ associated with U in its left subtree.

On the other hand, if V is in the right subtree of U, then $\pi(x)<\pi(u)<\pi(y)<\pi(v)$, and we see that Y is also in the right subtree of U. Again, U lies along the X, Y-path in T, and Lemma 5 again yields $g(u v) \neq g(x y)$.

Finally, if U is not in the right subtree of X, then V must be. Since U is an ancestor of V but is not in the right subtree of X, it must be an ancestor of X. Now X lies along the U, V-path in T. By Lemma 5, we conclude that $g(u v) \neq g(x y)$. Therefore, our coloring g together with our ordering π yields a valid book embedding of G in k pages.

Given the smooth tree-decomposition used by the algorithm, the computations by which the algorithm produces the k-page embedding can easily be implemented to run in constant time per edge. Since k is fixed, this is linear in the number of vertices.

3 A k-Tree With No k-Page Embedding

We construct a k-tree G that does not embed in k pages. Given any ordering of $V(G)$, we use pigeonholing arguments to produce an induced subgraph of G that cannot be embedded in k pages under that ordering. This suffices, since a k-page embedding of G contains a k-page embedding of every induced subgraph.

The graph G has a central k-clique X with vertices x_{1}, \ldots, x_{k}. Next we add vertices $y_{1}, \ldots, y_{k N}$, where $N=\left(k^{2}+k+5\right)$, each adjacent to all of X. Finally, we add many vertices, called children, each adjacent to $k-1$ vertices in X and one y_{i}. A child has type (i, j) if it is adjacent to y_{i} and nonadjacent to x_{j}. There are $k^{2} N$ different types of children. We create $3 k(N k+k+N)$ children of each type, so G altogether has $3 k^{3} N(N k+k+N)$ children. We refer to all children adjacent to vertex x_{i} (or y_{i}) as the children of x_{i} (or y_{i}).

Fix a circular ordering π of $V(G)$; we will show that G has no k-page embedding under π. By the Pigeonhole Principle, there are at least N vertices of $\left\{y_{1}, \ldots, y_{k N}\right\}$ between some two vertices of X. Hence we may assume by relabeling that $x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{N}$ appear in that order in π, with their children somehow interspersed. We delete the remaining vertices of $y_{1}, \ldots, y_{k N}$ and all their children to obtain an induced subgraph G_{1}. Let $Y=\left\{y_{1}, \ldots, y_{N}\right\}$, and call $X \cup Y$ the parents. Two vertices u and v are the endpoints of two segments in π. Sometimes one of those segments does not have internal vertices from both X and Y; in this case we refer to those internal vertices as the vertices between u and v.

Lemma 6. Within π, there is a subordering consisting of $X \cup Y$ and $3 k$ children of each type in G_{1}, such that the children of any type appear consecutively.

Proof. We iteratively select $3 k$ children of some type, until we obtain all the types. Starting from a vertex a (say $a=x_{1}$, for example), a step ends when we reach a parent vertex or
obtain $3 k$ children of the same unselected type. In the latter case, select these $3 k$ vertices. In either case, let the last vertex reached be a and continue.

We claim that all types are selected by the time we return to x_{1}. Suppose that a particular type is not selected. In each step, we see at most $3 k-1$ vertices of that type. The number of steps is $r+k+N$, where r is the number of types selected. Since there are $3 k(N k+k+N)$ children of each type, we must have selected children of all $N k$ types.

Let G_{2} be the subgraph of G_{1} induced by the parents and the children selected in Lemma 6. We will show that G_{2} does not embed in k pages under π. As we discard vertices to study smaller subgraphs, we refer to the ordering of the remaining vertices within π when we say that the induced subgraph has no k-page embedding under π.

We say that vertices a_{1}, \ldots, a_{m} form a twist of size m with $b_{1} \ldots, b_{m}$ if $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}$ appear in that order in π and a_{i} and b_{i} are adjacent for $1 \leq i \leq m$. Note that if a vertex ordering contains a twist of size m, then every book embedding using that ordering requires at least m pages, as there are m pairwise intersecting edges induced by the vertices of the twist that require distinct pages.

A set Z of children of the same type have the same neighborhood in G. In a k-page embedding of G_{2}, we say that the vertices of Z have the same edge assignment if for every neighbor v of the vertices in Z, the edges from v to Z lie on the same page. We use $N(v)$ for the set of neighbors of vertex v in G.

Lemma 7. In a k-page embedding of G_{2} under π, the central k children of any one type have the same edge assignment.

Proof. Let z be a child of type (i, j), and let v_{1}, \ldots, v_{k} be the neighbors of z in order of their appearance in π. Group the $3 k$ consecutive children of type (i, j) into three runs A, B, C of size k. For $v_{r} \in N(z)$, we show that all edges from v_{r} to B lie on the same page.

Fix vertices a_{1}, \ldots, a_{r-1} in A and c_{r+1}, \ldots, c_{k} in C. Given $z^{\prime} \in B$, note that the vertices $a_{1}, \ldots, a_{r-1}, z^{\prime}, c_{r+1}, \ldots, c_{k}$ form a twist of size k with v_{1}, \ldots, v_{k}. Since a_{1}, \ldots, a_{r-1} and c_{r+1}, \ldots, c_{k} are fixed, only the edge from v_{r} to a vertex of B varies, and it must avoid the $k-1$ pages of the other edges in the twist. Hence all edges from v_{r} to B lie on the same page. Since this holds for all r, the vertices of B have the same edge assignment.

Let G_{3} be the subgraph of G_{2} induced by the parents and the k central children of each type. In fact, we will further restrict the vertex set by keeping only five vertices of Y and their children, along with X. The next simple observation using twists enables us to select a few special vertices of Y.

Lemma 8. Let $x_{0}=y_{N}$ and $x_{k+1}=y_{1}$. In a k-page embedding of G_{3} under π, for every j with $0 \leq j \leq k$, at most k vertices of Y have children between x_{j} and x_{j+1}.

Proof. Suppose that $\left\{y_{i_{1}}, \ldots, y_{i_{k+1}}\right\}$ have children between x_{j} and x_{j+1}, with $i_{1}<\cdots<i_{k+1}$, and let z be a child of $y_{i_{j+1}}$ between x_{j} and x_{j+1}. Now $y_{i_{1}}, \ldots, y_{i_{k+1}}$ form a twist of size $k+1$ with $x_{1}, x_{2}, \ldots, x_{j}, z, x_{j+1}, \ldots, x_{k}$, preventing G_{3} from embedding in k pages.

In Lemma 7, we proved that in a k-page embedding of G_{3} under π, the children of any one type have the same edge assignment (and appear consecutively). By Lemma 8, at most $k(k+1)$ vertices of Y have children (in G_{3}) along the part of the circle from y_{N} to y_{1} that contains X. Since $N=k^{2}+k+5=k(k+1)+5$, at least five vertices of Y have all their children (all k types) along the part of the circle from y_{1} to y_{N}.

In particular, there are at least three such vertices of Y aside from y_{1} and y_{N}. Let y_{a}, y_{b}, y_{c} be three such vertices, with $a<b<c$. Let $Z_{i, j}$ denote the set of k children of type (i, j) in G_{3}, and let $Z=\bigcup_{(i, j) \in\{a, b, c\} \times[k]} Z_{i, j}$. Let G_{4} be the subgraph of G_{3} induced by $X \cup\left\{y_{1}, y_{a}, y_{b}, y_{c}, y_{N}\right\} \cup Z$. It suffices to show that G_{4} does not embed in k pages under π.

Assume henceforth that we have a k-page embedding of G_{4} under π.
The sets $Z_{i, j}$ for $j \in[k]$ and $i \in\{a, b, c\}$ are located along the part of the circle from y_{1} to y_{N} that avoids X. We say that $Z_{i, r}$ is before $Z_{i, s}$ if it is encountered first when following this part of the circle from y_{1} to y_{N} (similarly define after).

Lemma 9. For $r<s$, if $Z_{i, r}$ and $Z_{i, s}$ are on the same side of y_{i} (both before y_{i} or both after $\left.y_{i}\right)$, then $Z_{i, r}$ is before $Z_{i, s}$.

Proof. We state the proof for when $Z_{i, r}$ and $Z_{i, s}$ are both before y_{i}; the other argument is symmetric. Suppose that $Z_{i, s}$ is before $Z_{i, r}$. Since $s \in[k]$, we may choose $S \subseteq Z_{i, s}$ and $R \subseteq Z_{i, r}$ with $|S|=s$ and $|R|=k+1-s$. Since the vertices of $Z_{i, j}$ are adjacent to all of $X-\left\{x_{j}\right\}$, we have $S \subseteq N\left(x_{r}\right)$ and $R \subseteq N\left(x_{s}\right)$. We conclude that $y_{i}, x_{1}, \ldots, x_{k}$ form a twist of size $k+1$ with the vertices of $S \cup R$.

The earlier children of y_{i} are those before y_{i}; the others are its later children.
Lemma 10. All edges joining y_{i} to its earlier children lie on the same page. Symmetrically, those joining y_{i} to its later children lie on the same page.

Proof. Consider the earlier children of y_{i}. By Lemma 7, the vertices of a set $Z_{i, j}$ have the same edge assignment. Hence it suffices to show that an edge from y_{i} to $Z_{i, r}$ and an edge from y_{i} to $Z_{i, s}$ are on the same page.

We may assume that $Z_{i, r}$ is before $Z_{i, s}$. Choose $w \in Z_{i, r}$, and let z be the first vertex of $Z_{i, s}$. We have picked z so that all edges from X to the rest of $Z_{i, s}$ cross $y_{i} z$ (and also $y_{i} w$). The $k-1$ vertices of $Z_{i, s}-\{z\}$ form a twist with the $k-1$ vertices of $X-\left\{x_{s}\right\}$. Therefore, only one page remains for $y_{i} z$ and $y_{i} w$.

Lemma 11. If x_{1}, \ldots, x_{k} form twists with both v_{1}, \ldots, v_{k} and w_{1}, \ldots, w_{k}, where v_{1}, \ldots, v_{k} come before w_{1}, \ldots, w_{k} except possibly $v_{k}=w_{1}$, then for $1 \leq r \leq k$ the edges incident to x_{r} in the two twists are on the same page.

Proof. Observe that $x_{1}, \ldots, x_{r-1}, x_{r+1}, \ldots, x_{k}$ form a twist with $v_{1}, \ldots, v_{r-1}, w_{r+1}, \ldots, w_{k}$. The edges $x_{r} v_{r}$ and $x_{r} w_{r}$ cross all $k-1$ edges formed by the twist.

Lemma 12. If $Z_{i, 1}$ is before $Z_{i, k}$ for some i in $\{a, b, c\}$, then G_{4} does not embed in k pages under π.

Proof. The vertices of X form twists with both $\left\{y_{1}\right\} \cup Z_{i, 1}$ and $Z_{i, k} \cup\left\{y_{N}\right\}$. By Lemma 11, the edges incident to x_{r} in the two twists are on the same page, which we call page r, for $1 \leq r \leq k$. By Lemma 7, the edges from x_{r} to all of $Z_{i, 1} \cup Z_{i, k}$ are on the same page.

Suppose that some $Z_{i, j}$ lies after $Z_{i, 1}$ and before $Z_{i, k}$. Any edge from x_{r} to $Z_{i, j}$ crosses the edges from x_{1}, \ldots, x_{r-1} to $\left\{y_{1}\right\} \cup Z_{i, 1}$ and from x_{r+1}, \ldots, x_{k} to $Z_{i, k} \cup\left\{y_{N}\right\}$. Therefore, all edges from x_{r} to $Z_{i, j}$ lie on page r.

Since $Z_{i, 1}$ is before $Z_{i, k}$, it follows that $Z_{i, 1}$ is before y_{i} or $Z_{i, k}$ is after y_{i}. If both, then since $k \geq 3$, some $Z_{i, j}$ is after $Z_{i, 1}$ and before $Z_{i, k}$. If $Z_{i, j}$ is before y_{i}, then $Z_{i, 1}$ and $Z_{i, j}$ are before y_{i}; otherwise, $Z_{i, k}$ and $Z_{i, j}$ are after y_{i}. By symmetry, we may assume the former.

Let z be the first vertex of $Z_{i, j}$. Since $y_{i} z$ crosses the edges from $X-\left\{x_{j}\right\}$ to the last vertex of $Z_{i, j}$, edge $y_{i} z$ lies on page j. Let z^{\prime} be the first vertex of $Z_{i, 1}$. Since $y_{i} z^{\prime}$ crosses the edges from $X-\left\{x_{1}\right\}$ to the last vertex of $Z_{i, 1}$, edge $y_{i} z^{\prime}$ lies on page 1 . However, since $j \neq 1$, this contradicts Lemma 10. We conclude that G_{4} does not embed in k pages under π.

Lemma 13. If $Z_{i, k}$ is before $Z_{i, 1}$ for all $i \in\{a, b, c\}$, then G_{4} does not embed in k pages under π.

Proof. For $i \in\{a, b, c\}$, by Lemma $9, y_{i}$ is after $Z_{i, k}$ and before $Z_{i, 1}$. Since $k \geq 3$, we may choose $j \in[k]-\{1, k\}$. Now $Z_{b, j}$ occurs before or after y_{b}; by symmetry, we may assume that $Z_{b, j}$ is before y_{b} (hence also before $Z_{b, k}$, by Lemma 9). Now consider the location of y_{a}.

Case 1: y_{a} is after some child of y_{b} (on the left in Fig. 1). Let $Z_{b, r}$ be the last k children of y_{b} before y_{a}. Note that $r>1$. Now $y_{b}, x_{1}, \ldots, x_{k}$ form a twist of size $k+1$ with r vertices of $Z_{b, r}, y_{a}$, and $k-r$ vertices of $Z_{a, 1}\left(Z_{a, 1}\right.$ is after y_{a} by Lemma 9 ; this contribution is empty if $r=k)$. Hence in this case G_{4} does not embed in k pages under π.

Figure 1: The cases of Lemma 13 (twist of size $k+1$, crossing on a page).
Case 2: y_{a} is before all children of y_{b} (on the right in Fig. 1). Thus y_{a} is before $Z_{b, j}$, and $Z_{a, k}$ is before y_{a}. Since $j<k$, vertices x_{1}, \ldots, x_{k} form a twist with $k-1$ vertices of $Z_{a, k}$ and
the last vertex of $Z_{b, j}$ (call it z). Also recall that x_{1}, \ldots, x_{k} form a twist with $\left\{y_{b}\right\} \cup Z_{b, 1}$. By Lemma 11, $x_{k} z$ and $x_{k} w$ lie on the same page, where w is the last vertex of $Z_{b, 1}$.

Let w^{\prime} be the first vertex of $Z_{b, k}$. Note that x_{1}, \ldots, x_{k} form a twist with $\left(Z_{b, k}-\left\{w^{\prime}\right\}\right) \cup\{w\}$. Since $y_{b} w^{\prime}$ crosses its $k-1$ edges other than $x_{k} w$, edges $y_{b} w^{\prime}$ and $x_{k} w$ lie on the same page.

Finally, by Lemma 10, $y_{b} w^{\prime}$ lies on the same page with $y_{b} z^{\prime}$, where z^{\prime} is the first vertex of $Z_{b, j}$. Now $y_{b} z^{\prime}$ and $x_{k} z$ lie on the same page, but they cross. Hence in this case also G_{4} does not embed in k pages under π.

Lemmas 12 and 13 eliminate all possibilities for k-page embeddings and complete the proof of the theorem.

Finally, we remark that the k-tree G constructed for the proof of Theorem 1 has a smooth tree-decomposition with a host tree of maximum degree $k+2$. Let $X_{i}=X \cup\left\{y_{i}\right\}$ for $1 \leq i \leq k N$. Form a path with vertices $X_{1}, \ldots, X_{k N}$. For each X_{i} and x_{j}, form a path with endpoint X_{i} whose vertices correspond to bags formed by adding to $X_{i}-\left\{x_{j}\right\}$ one child of type (i, j). This is the desired tree-decomposition of G. As mentioned in the introduction, this leaves the question of what is the largest degree of host trees in tree-decompositions of k-trees that guarantees the existence of a k-page embedding.

References

[1] F. Bernhart and P.C. Kainen, The book thickness of a graph. J. Combin. Theory Ser. B 27 (1979), 320-331.
[2] F.R.K. Chung, F.T. Leighton, A.L. Rosenberg, Embedding graphs in books: a layout problem with applications to VLSI design. SIAM J. Algebr. Discr. Meth. 8 (1987), 33-58.
[3] H. Enomoto, T. Nakamigawa, K. Ota, On the pagenumber of complete bipartite graphs. J. Combin. Theory Ser. $B 71$ (1997), 111-120.
[4] J. Ganley and L. Heath, The pagenumber of k-tree is $O(k)$. Discr. Appl. Math. 109 (2001), 215-221.
[5] L.S. Heath, S. Istrail, The pagenumber of genus g graphs is $O(g)$. J. Assoc. Comput. Mach. 39 (1992), 479-501.
[6] S.M. Malitz, Genus g graphs have pagenumber $O(\sqrt{g})$. J. Algorithms 17 (1994), 85-109.
[7] D.J. Muder, M.L. Weaver, D.B. West, Pagenumber of complete bipartite graphs. J. Graph Theory 12 (1988), 469-489.
[8] M. Togasaki and K. Yamazaki, Pagenumber of pathwidth- k graphs and strong pathwidthk graphs. Discr. Math. 259 (2002), 361-368.
[9] M. Yannakakis, Embedding planar graphs in four pages. 18th Annual ACM Symposium on Theory of Computing (Berkeley, CA, 1986) J. Comput. System Sci. 38 (1989), 36-67.

[^0]: *Mathematics Department, University of Illinois, jarobin1@math.uiuc.edu. This work supported in part by the department's 2004 REGS program (Research Experiences for Graduate Students).
 ${ }^{\dagger}$ Mathematics Department, University of Illinois, west@math.uiuc.edu. Supported in part by NSA grant H98230-06-1-0065.
 ${ }^{\ddagger}$ Department of Mathematics, Vanderbilt University, gexinyu@math.uiuc.edu. Supported in part by NSF grant DMS-0652306.

