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ON THE PALAIS-SMALE CONDITION FOR
NONDIFFERENTIABLE FUNCTIONALS

Hong-Kun Xu

Abstract. Two kinds of Palais-Smale condition, (PS)c and (PS)∗c , for
nondifferentiable functionals are studied. It is shown that (PS)c implies
(PS)∗c and that they are equivalent for convex functionals. This points
out a gap in the proof of Costa and Goncalves [5, Proposition 3]. Some
other nonsmooth versions of known smooth results are also obtained.

1. INTRODUCTION

We are concerned in this paper with the Palais-Smale condition for nondif-
ferentiable functionals which was first introduced by Chang [4] in 1981. Later,
in 1990, Costa and Goncalves [6] proposed another kind of Palais-Smale con-
dition for nondifferentiable functionals and they claimed that their condition,
denoted (PS)∗c , is equivalent to Chang’s condition, denoted (PS)c. However,
there is a gap in their proof. (In fact, their proof works only when the involv-
ing functional f satisfies the property that the Clarke differential ∂f(x) is a
singleton for all x, i.e., f is strictly differentiable in the sense of Clarke [5].)
In this note, we first show that Chang’s condition (PS)c implies Costa and
Goncalves’ condition (PS)∗c and that the two conditions coincide for convex
functionals. (It is however not clear yet whether this remains true in general.)
Then we show that for an important and useful class of functionals, Chang’s
condition (PS)c is equivalent to its weak version (PS)c,w. The third result of
the paper states that Chang’s condition (PS) is versus the coercivity for non-
differentiable functionals, which presents a nonsmooth version of the smooth
result due to Li [12] (see also Costa and Silva [7] and Brezis and Nirenberg
[2]).
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2. THE PALAIS-SMALE CONDITION

Let X be a real Banach space with norm ‖ · ‖ and X∗ be its dual. By
〈·, ·〉 we denote the pairing between X and X∗. Let f : X → R be a locally
Lipschitzian functional on X (notation: f ∈ Liploc(X,R)), i.e., for each x ∈ X,
there is a neighbourhood N(x) of x and a constant k depending on N(x) such
that

|f(y)− f(z)| ≤ k‖y − z‖ ∀y, z ∈ N(x).

The generalized directional derivative of f at x ∈ X in the direction v ∈ X is
defined as the number

f◦(x; v) := lim sup
h→0
λ↓0

1
λ

[f(x + h + λv)− f(x + h)].

The Clarke subdifferential of f at x is defined as the set (cf. [5])

∂f(x) := {x∗ ∈ X∗ : f◦(x; v) ≥ 〈v, x∗〉 ∀v ∈ X},
i.e., ∂f(x) is the subdifferential of the convex functional f◦(x; ·) in the sense
of convex analysis. A point x ∈ X is called a critical point of f if 0 ∈ ∂f(x),
i.e., f◦(x; v) ≥ 0 for all v ∈ X. A real number c is said to be a critical value
of f if there exists a critical point x of f for which f(x) = c. For properties of
the generalized derivatives and Clarke’s differentials, the reader is referred to
[5] and [4].

With an f ∈ Liploc(X,R), we associate a function λ on X defined by

λ(x) = min{‖x∗‖ : x∗ ∈ ∂f(x)}.
It is known [4] that λ is lower semicontinuous.

Definition 1 [4]. A functional f ∈ Liploc(X,R) is said to satisfy the
Palais-Smale condition at level c in Chang’s sense, denoted (PS)c, if any
sequence (xn) ⊂ X such that f(xn) → c and λ(xn) → 0 possesses a convergent
subsequence.

Inspired by Ekeland’s Principle [8], Costa and Goncalves [6] proposed an-
other kind of Palais-Smale condition for nondifferentiable functionals.

Definition 2 [6]. A functional f ∈ Liploc(X,R) is said to satisfy the
Palais-Smale condition at level c in the sense of Costa and Goncalves, denoted
(PS)∗c , if it satisfies both (PS)∗c,+ and (PS)∗c,−, where

(PS)∗c,+ : Whenever (xn) ⊂ X, (εn), (δn) ⊂ R+ are sequences with εn → 0,
δn → 0, and such that

f(xn) → c,
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f(xn) ≤ f(x) + εn‖xn − x‖ if ‖xn − x‖ ≤ δn,

then (xn) possesses a convergent subsequence. (PS)∗c,− is similarly defined by
interchanging x and xn in the above inequality.

In their Proposition 3 [6], Costa and Goncalves claimed that in a reflexive
Banach space X, their condition (PS)∗c is equivalent to Chang’s condition
(PS)c for every real number c. Unfortunately, there is a gap in their proof
(see [6, p. 483]). As a matter of fact, their proof works only in case the
functional f ∈ Liploc(X,R) is strictly differentiable on X in the sense of Clarke
[5, Proposition 2.2.4], i.e., ∂f(x) is a singleton for all x ∈ X, which is clearly
not the general case. So, it is unclear if (PS)c is equivalent to (PS)∗c . However,
it is fortunate that all the other results in [6] remain true since all the involving
functionals indeed do satisfy Chang’s condition (PS)c. We now present the
following result.

Theorem 1. Suppose X is a real Banach space and f ∈ Liploc(X,R).
Then for any c ∈ R, (PS)c implies (PS)∗c . If, in addition, f is convex, then
(PS)c and (PS)∗c are equivalent.

Proof. Assume that f satisfies (PS)c and (xn) ⊂ X, (εn), (δn) ⊂ R+ are
sequences such that εn → 0, δn → 0, and

f(xn) → c,(2.1)

f(xn) ≤ f(x) + ε‖xn − x‖ if ‖xn − x‖ ≤ δn.(2.2)

Set

fn(x) = f(x) + εn‖xn − x‖ and Mn = {x ∈ X : ‖xn − x‖ ≤ δn}.
It is easily seen that xn ∈ intMn is a minimum point of fn over Mn. Hence
0 ∈ ∂f(xn) by [5, Proposition 2.3.2], which implies that

0 ∈ ∂f(xn) + εnBX∗(2.3)

for ∂‖xn − ·‖ ⊂ BX∗ , the closed unit ball of X∗. It follows from (2.3) that

λ(xn) = min{‖x∗‖ : x∗ ∈ ∂f(xn)} ≤ εn → 0.(2.4)

Combining (2.1) and (2.4) we get by (PS)c that (xn) admits a convergent sub-
sequence. This verifies that f satisfies (PS)∗c,+. (PS)∗c,− is similarly verified.

To conclude the proof, we now assume, in addition, that f is also convex.
We obviously need only to show the implication: (PS)∗c =⇒ (PS)c. Towards
this end, we let (xn) ⊂ X be given so that

f(xn) → c and λ(xn) → 0.
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Since ∂f(xn) is w∗-compact convex, there is x∗n ∈ ∂f(xn) such that ‖x∗n‖ =
λ(xn). Set

εn =
{ ‖x∗n‖, if ‖x∗n‖ > 0,

1
n , otherwise.

By the subdifferential inequality for a convex function, we obtain that for all
x ∈ X,

f(xn)≤ f(x) + 〈xn − x, x∗n〉
≤ f(x) + ‖xn − x‖ ‖x∗n‖
≤ f(x) + εn‖xn − x‖.

It then follows from the (PS)∗c,+ that (xn) has a convergent subsequence.

Definition 3. A functional f ∈ Liploc(X,R) is said to satisfy [PS]c when-
ever (xn) ⊂ X fulfils the property:

f(xn) → c and λ(xn) → 0,

then c is a critical value of f .

Definition 4 [6]. A functional f ∈ Liploc(X,R) is said to satisfy [PS]∗c
if it satisfies both [PS]∗c,+ and [PS]∗c,−, where

[PS]∗c,+ : Whenever (xn) ⊂ X, (εn), (δn) ⊂ R+ are sequences with εn → 0,
δn → 0, and such that

f(xn) → c,

f(xn) ≤ f(x) + εn‖xn − x‖ if ‖xn − x‖ ≤ δn,

then c is a critical value of f . [PS]∗c,− is defined similarly by interchaning x
and xn in the above inequality.

By the same argument as above, we have the following result.

Theorem 2. For every c ∈ R and f ∈ Liploc(X,R), [PS]c implies [PS]∗c .
If, in addition, f is convex, then [PS]c and [PS]∗c are equivalent.

Remark. If the statement “(xn) has a convergent subsequence” in (PS)c,
(PS)∗c , [PS]c, and [PS]∗c is replaced by the statement “(xn) has a weakly
convergent subsequence”, then we have the corresponding concepts of (PS)c,w,
(PS)∗c,w, [PS]c,w, and [PS]∗c,w, respectively. It is clear that there hold the
implications: (PS)c ⇒ (PS)c,w, [PS]c ⇒ [PS]c,w, (PS)∗c ⇒ (PS)∗c,w, and
[PS]∗c ⇒ [PS]∗c,w. It is also easy to verify the implications: (PS)c,w ⇒ (PS)∗c,w
and [PS]c,w ⇒ [PS]∗c,w and the inverse implications: (PS)∗c,w ⇒ (PS)c,w and
[PS]∗c,w ⇒ [PS]c,w for convex f ∈ Liploc(X,R). We shall show below in
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some important cases which are often met in applications the equivalences:
(PS)c ⇔ (PS)c,w, [PS]c ⇔ [PS]c,w, (PS)∗c,w ⇔ (PS)∗c , and [PS]∗c ⇔ [PS]∗c,w.

Theorem 3. Suppose X is a reflexive Banach space whose norm and
dual norm are Frechet differentiable, Y is a reflexive Banach space such that
X is compactly embedded in Y and is dense in Y (as a subspace of Y ). Suppose
also f is a locally Lipschitzian functional defined on Y and f̂ is the restriction
of f on X, i.e., f̂ = f |X . Let

F (x) =
1
p
‖x‖p

X − f̂(x), x ∈ X,

where 1 < p < ∞ is a constant. Then
(i) F satisfies (PS)c if and only if F satisfies (PS)c,w;
(ii) F satisfies (PS)∗c if and only if F satisfies (PS)∗c,w.

Proof. Denote by Jp(x) the subdifferential of the convex function 1
p‖ · ‖p

at x ∈ X. Since X is Frechet differentiable, Jp : X → X∗ is single-valued and
norm-to-norm continuous. By Theorem 2.2 of Chang [4], we have ∂f̂(x) ⊂
∂f(x) for all x ∈ X. Hence

∂F (x) = Jp(x)− ∂f̂(x) ⊆ Jp(x)− ∂f(x), x ∈ X.

To prove (i), it suffices to demonstrate the implication: (PS)c,w ⇒ (PS)c. So
assume (xn) ⊂ X satisfies the properties: F (xn) → c and λ(xn) = min{‖x∗n‖ :
x∗n ∈ ∂F (xn)} → 0. Suppose x∗n ∈ ∂F (xn) and y∗n ∈ ∂f̂(xn) are chosen so that
‖x∗n‖ = λ(xn) and x∗n = Jp(xn)− y∗n. In view of the (PS)c,w, we may assume
that (xn) converges weakly to some z ∈ X. Noting that X is compactly
embedded in Y , we may further assume that the convergence of (xn) to z is
strong. It follows that (y∗n) is bounded in Y ∗. By reflexivity of Y , we may
assume that (y∗n) converges weakly to a y∗ ∈ Y ∗. The compact embedding of
Y ∗ into X∗ then ensures the strong convergence of (y∗n) to y∗ in X∗. Therefore,
xn = J−1

p (x∗n + y∗n) converges strongly to J−1
p (y∗) ∈ X∗ because J−1

p is the
duality mapping from X∗ to X which is norm-to-norm continuous as X∗ is
Frechet differentiable. (i) is thus verified.

Next we show (PS)∗c,+,w ⇒ (PS)∗c,+. Assume (xn) ⊂ X satisfies the prop-
erties:

F (xn) → c,(2.5)

F (xn) ≤ F (x) + εn‖xn − x‖ if ‖xn − x‖ ≤ δn,(2.6)

where εn ↓ 0 and δn ↓ 0. Applying the (PS)∗c,w, we have a subsequence of (xn)
(denoted (xn) again) weakly converging to some z ∈ X. Now repeating the
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same proof of (i), we conclude that the convergence of (xn) to z is actually in
norm. The implication: (PS)∗c,−,w ⇒ (PS)∗c,− can be proved similarly.

3. (PS) VERSUS COERCIVITY

By using the method of gradient flows, Li [12] (see also [13]) first observed
that the (PS) condition implies the coercivity for C1 functionals bounded from
below. Using Ekeland’s Principle, Caklovic, Li and Willem [3] proved the same
result for a Gateaux differentiable functional which is lower semicontinuous.
While Goeleven [11] extended the result to the case in which the functional
is the sum of a Gateaux differentiable lower semicontinuous function with a
convex proper lower semicontinuous function. The same conclusion was also
proved by Costa and Silva [7] and Brezis and Nirenberg [2] for C1 function-
als by also employing Ekeland’s Principle. In this section we shall show that
this is also valid for nondifferentiable functionals. We begin by restating Eke-
land’s Principle which has been shown to be a powerful tool in solving various
nonlinear problems (cf. [9, 1, 10]).

Ekeland’s Principle ([8]; cf. also [2]). Let (M, d) be a complete metric
space. Let g : M → (−∞, +∞], 6≡ +∞, be a lower semicontinuous function
bounded from below. Then, given ε > 0 and z0 ∈ M , there exists a point
z ∈ M such that

g(z) ≤ g(x) + εd(z, x) ∀x ∈ M,

g(z) ≤ g(z0)− εd(z, z0).

The following is the nonsmooth version of Proposition 1 of Brezis and
Nirenberg [2].

Theorem 4. Suppose f ∈ Liploc(X,R) and

α := lim inf
‖x‖→∞

f(x)

is finite. Then there exists a sequence (xn) ⊂ X such that ‖xn‖ → ∞, f(xn) →
α, and λ(xn) → 0.

Proof. We follow the ideas of [2]. Set

m(r) = inf
‖x‖=r

f(x).

Then m is a nondecreasing function and limr→∞m(r) = α. For 0 < ε < 1/2,
choose first r > 1/ε such that

α− ε2 < m(r) for all r ≥ r,
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and then z0 with ‖z0‖ ≥ 2r such that

f(z0) < m(2r) + ε2 ≤ α + ε2.

Let M = {x ∈ X : ‖x‖ ≥ 2r}. By Ekeland’s Principle, we get a z ∈ M such
that

f(z) ≤ f(x) + ε‖z − x‖ ∀x ∈ M,(3.1)

f(z) ≤ f(z0)− ε‖z − z0‖.(3.2)

Since f(z) ≥ m(2r) > f(z0) − ε2, it follows from (3.2) that ‖z − z0‖ < ε and
‖z‖ > r. Hence z ∈ intM . From (3.1), it is easily seen that the function

g(x) := f(x) + ε‖z − x‖, x ∈ M,

assumes its minimum on M at z ∈ intM ; so 0 ∈ ∂g(z) ⊆ ∂f(z)+εBX∗ , which
implies λ(z) ≤ ε. Letting ε = εn ↓ 0 concludes the proof.

Corollary 1. Suppose f ∈ Liploc(X,R) is bounded from below and satis-
fies Chang’s condition (PS)c for all c ∈ R. Then f is coercive, i.e., f(x) →∞
as ‖x‖ → ∞.

Proof. Suppose the contrary; then α := lim inf‖x‖→∞ f(x) is finite. By
Theorem 4, there exists a sequence (xn) in X such that ‖xn‖ → ∞, f(xn) → α,
and λ(xn) → 0. Then the (PS)α implies that (xn) has a convergent subse-
quence, which clearly leads to a contradiction.

We conclude the paper by presenting the nonsmooth version of Proposition
2 of Brezis and Nirenberg [2].

Theorem 5. Suppose f ∈ Liploc(X,R) is bounded from below and satis-
fies Chang’s condition (PS)c for all c ∈ R. Then every minimizing sequence
of f has a convergent subsequence.

Proof. Suppose (xn) is a minimizing sequence of f . We may assume that
for all integers n ≥ 1,

f(xn) < inf
x∈X

f(x) +
1
n2

.

Using Ekeland’s Principle, there exists vn ∈ X such that

f(vn) ≤ f(v) +
1
n
‖vn − v‖, v ∈ X,
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f(vn) ≤ f(xn)− 1
n
‖vn − xn‖.

It then follows that ‖vn − xn‖ < 1/n and 0 ∈ ∂f(xn) + (1/n)BX∗ . Thus
λ(vn) ≤ 1/n. Now the (PS)c with c = infx∈X f(x) implies that (vn) (and
hence (xn)) has a convergent subsequence.
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