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Abstract

A parabolic approximation to the reduced wave equation is investigated

for the propagation of periodic surface waves in shoaling water.

The approximation is derived from splitting the wave field into transmitted
and reflected components.

In the case of an area with straight and parallel bottom contourlines,

the asymptotic form of the solution for high frequencies is compared

with the gecmetrical optics approximation.

Two numerical solution techniques are applied to the propagation

of an incident plane wave over a circular shoal.




1. Introduction

The propagation of periodic, small amplitude surface gravity waves
over a seabed of mild slope can be described by the solution of the

reduced wave equation
Ve(cc, T9) + £ wre=0 (1)

with appropriate boundary conditions. Here 9 (x,y) is the complex
two-dimensicnal potential function, V= ( %;', %;')

the horizontal gradient operator, w the angula; frequency, and ¢ and
cg are the corresponding local phase and group velocities of the

wave field. This reduced wave equation accounts for the combined
effects of refraction and diffraction, while the influences of bottom
friction, current and wind have been neglected.

The wave equation (1) has been derived by several authors, for the
first time by Berkhoff (1972), and by Schénfeld (1972) in a different

form.

Svendsen (1967) derived the equation for one horizontal dimension, as

is pointed out by Jonsson and Brink-Kjaer (1973). Smith and Sprinks (1975)

gave a formal derivation of (1). Booij (1978) has proposed a new wave
equation, which includes the effect of a current, and which reduces to
(1) in the current-free case.

The equation (1) is essentially of elliptic type, and therefore defines
a problem which is in general properly posed only when a boundary
condition along a closed curve is given. In ofder to obtain a numerical
solution for short waves over a large area in the horizontal plane, a

great amount of computing time and storage is thus needed. However, in

many water wave problems involving a gently sloping bottom, wave energy is



propagated without appreciable reflection into a preferred direction,
and it should be natural to consider methods which make use of this
property. In the classification of Lundgren (1976), such methods can be
distinguished as R-methods (refraction methods) and P-methods (propagation
methods), both of which represent an approximation to the mild-slope
equation (1).

Refraction methods are based on the gecmetrical optics approximation,
which fails to give a reliable solution near caustics and crossing
wave rays, where diffraction effects become important.

Propagation methods should be able to account for such situations.
Methods of this type have been proposed by Biésel (1972), Lundgren
(1276) and Radder (1977), but these are lacking, among other things,

in the possibility of making systematic corrections which are needed
if one wants to recover the complete wave field.

In the present work, a parabolic approximation to the reduced wave
equation (1) is derived from splitting the wave field into transmitted
and reflected components. The result is a pair of coupled equations

for the transmitted and reflected fields. By assuming that the
éeflected field is negligible, a parabolic equation is obtained for the
transmitted field. This procedure has been applied to optics by
Corones (1975), and to acoustics by McDaniel (1975). The derivation

is based on the Helmholtz-equation; therefore, in § 2, a reduction of
the mild-slope equation (1) to the Helmholtz-equation is given, and

in § 3 a parabolic approximation is derived. An asymptotic form of the
solution for high frequencies is presented in § 4, in the case of an
area with straight and parallel bottom contourlines.

Finally, in § 5 and 8§ 6 numerical solutions to the parabolic equation
are obtained in the form of two finite-difference schemes, with application
to plane wave propagation over a circular shoal with parabolic bottom

profile.



2. Reduction of the mild-slope equation to the Helmholtz-equation

Although a parabolic approximation can be directly derived from
equation (1), it is useful, to simplify the notation and applications,
to reduce equation (1} to the Helmholtz-equation, without loss of
generality.

A scaling factor is introduced

¢ =9 VEE; (2)
which turns (1) into the Helmholtz-equation

Vi + ké 6 =0 (3)

Here the effective wave number kc is defined by

, g V2 vee
kc=k —ﬁﬁ' (4)

and the wave number k is the real root of the dispersion relation
w? = g k tanh (kh) (5)

with h the local water depth and g the gravitational acceleration.

W

T R )
kg )

In shallow water, the difference ki -x? may become appreciable:

The phase and group velocities are then given by c¢

in this case one has

2 2 2
kzz c=2cC :@F,kzzw_-v_;:-pt'%}'? (6)

w?
gh ’ g ¢ gh 72



It follows, that kc may be approximated by k if
|v2h| << 2uw?/g (7a)

|Vh|2 << 4w?h/g (7b)

implying a slowly varying depth and a small bottom slope, or high
frequency wave propagation.
Unless stated otherwise, kc will be approximated by k in this paper,

assuming that (7a] and (7b) are satisfied.

3. Derivation of the parabolic approximation

The Helmholtz-equation (3) can be written in the form

2 -]
36 .. k225 (8)
3x? oy?

where x denotes the preferred direction of propagation, and the sub-
script ¢ of the wavenumber k has been dropped (however, for the
derivation of the parabolic approximation the restrictions (7) are
not necessary).

The wave field ¢ should be split into a transmitted field ¢+ and a

reflected field ¢~

b= 90 + ¢ (9)

This can be achieved by the use of a splitting matrix T which defines

the transmitted and reflected components by

¢ |- qf® \z [o B ® (10)

$ 3¢ Yy § 30
9x I



The matrix T is formally arbitrary, but some general physical criteria
limit the choice of T and lead to the governing parabolic equation in

a natural way.

4+ =
Firstly, equation (9) is valid for arbitrarily chosen ¢ and 9 only

if T satisfies

a+y

1 (11)
B+§ ‘

0

Using equation (8}, it follows that

+ _ 2
S 3 s NI E
i y
r 2 2 -
o |-k - .22 -%3—2—83—-] ¢ (12a)
| ay*
" _[reg oY .8 _y3s, o232],+
w TP TE T cEm TR
- 2 -
. kzs-§1+§—1+%%+s-‘"’—] ® (12b)
- ay

+ ikx - -ikx

b = e , & = e (13)

should result, and the equations (12a) and (12b) should naturally

decouple in this' case. This can be achieved by choosing

2 2
kZB + Cé_ = 0 s kzs - g;— =0 (14)

and the resulting splitting matrix is (cf. Corones (1975])

. (1 -i/k



- s = = s o am = am O s e W .y e am

while (12) reduces to

34" : 1 9k i 9%\ .+ ( 1 9k i 32 .
=ik = =— — + =—= —— ¢ » e, R W e ¢ (163')
ax ( 2 X 2 Byz ) 2k X 2k 8y2
- : . 2 )
3" _ [l 3k _i_ 3% .+ six- L 8k i 3%} .-
3% el I R ey ciab)

This pair of coupled equations is equivalent to equation (8). By
neglecting the reflected field ¢ , a parabolic equation for the

transmitted field ¢ is obtained

+ 5 2
% . (ik-%—-—a—i—- +LL) & (17)

In a similar way, a parabolic approximation can be directly derived

from equation (1), which yields for the transmitted field "

+ d(kee )
00 _ [ik _ 1 g

i S - 3| ot
2kccg 9x 2kccg oy

CCg 5-)7

Using (2) and (7)., equation (17) is recovered.

2
By adding to the left hand sides of (14) the operator B o ’

. 3y?
another splitting matrix is derived:TA = 3 ( 1 ;}QA) , where
2
a=Vk?+ —E;-, and a closer approximation to equation (8] may be
dy

obtained. Unfortunately, the square root operator A makes the resulting
parabolic equation practically untractable, and a satisfactory approximation
must be found for the operator A, in order to obtain numerical results

(cf£. McDaniel (1975)).

In the following, the parabolic equation (17) will be considered, in

which the preferred direction of propagation x is defined through the



direction of the incident plane wave.

4. Asymptotic analysis for the one-dimensional case

In order to test the validity of the parabcoclic equation (17] as an
approximation to equation (8), solutions to both equations will be
compared in the case of an area with straight and parallel bottom
contourlines. The problem is equivalent to plane wave propagation in a
plane stratified medium in optics and acoustics, and the asymptotic
analysis of Seckler and Keller (1959) will be followed here.

Dropping the + superscript, equation (17) can be written as

an

2
8 i’ + 2ikon % ¢ | 2R n2+ ik 2R = 0 (18)
ay

where ko denotes a constant wave number, and n = k/ko the index

of refraction. By introducing a new coordinate system (p,0)

X cosa + y sina (19)

o
]

Q
I

= -x sina + y cosa

the bottom is defined through h = h (p),
on an
E - = — = 20
n = n(p); 3y A T A = tano (20)
: . i
where 0 is the angle of incidence, with |CL|< 3 °
It will be assumed that k(P) tends to the constant value k3 (i.e. n(P) > 1)

as P tends to =-.



iknx
Now suppose a plane wave e
is incident from x = -« ., The field ¢ can then be written in the
form
¢ = A (p) exp [iko (x - p/ndp)] (21)
cosa
with p = Upon inserting (21) into (18) one finds that
sina
A satisfies
Ko kip?[n2+ 2% n(n -1)] A = 0 (22)

At P = - », A(pl is supposed to behave like

A (p) = eikupp+ Re-ikopp (23)

where the constant R denotes a complex reflection-coefficient.

At P =+ o, A(pl should satisfy a radiation condition, i.e. no
incoming wave from +o .

The equation (22} is in general not explicitly solvable, and the
solution must be represented by an approximation, which usually takes
on an asymptotic form for high frequencies, in the limit ko> «

A point at which the coefficient of A in (22) vanishes is called a
turning point, where the character of the solution changes from
oscillatory to exponential. In the geometrical optics approximation
of the problem, a caustic line is formed at these turning points.
If there is no turning point, and n + 2 A%(n -1)> 0,

the asymptotic form has an oscillatory character with R=Q,

and can be found by the WKB-method (Cf. Langer (1937])). Let

A
P

|n2 + 2A%n(n —1}|'& (24)

T
1]

X + l; Iim [V|n* + 2X*n(n -1)| -n]dx (25)
A
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then the WKB-approximation to ¢ is given by

¢ i K elkan

p - p (26)

A similar analysis for equation (8} results in the geometrical optics

approximation. Let

n2 + A2 (n? - 1| 7 @27

b
]

F = X + 1
g 1+A2

X, In? + A% (% - 1)| -1] dx (28)
then the asymptotic form is given by

g o g sioE,

g g (29)

In the special case & =A=0, bothﬂbpand ¢gagree (if the scaling
factor’ccgis taken into account) with the classical shoaling

formula for a progressive wave

I SR
Qg s - exp [lfmk dx] . (30)
g

¢P and ¢gare compared in table I, for some values of A and n.

It is assumed, that the incident wave is starting in deep water,
n

/1 + koh(n®-1)
should be applied for the wave amplitudes, according to equation (2).

ko= wfg, and a correction factor €, =

10.
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Table I Comparison of wave amplitudes A, wave numbers |VF|
and wave directions § (no turning point).

= = VF 8 8
a A n Ca Ap c\t A |VFp| | g| : "
45° 1 2 0.88 0.91 2.01 2 24.4° 24.3°
45° 1. 3 1.01 1.07 3.03 3 31.5° 31.4°
63.4° 2 2 0.70  0.74 2.04 2 37.4° 36.9°
63.4" 2 3 0.79 0.85 3.12 3 46.8° 46.1°

The agreement is rather close, even for comparatively large values
of A .

Now suppose there is just one turning point at p=p, , a point where
the coefficient of A(P) in (22) vanishes.

This will occur when n takes on the value np

2
B (31)
L 0%k
In case of equation (8), the corresponding wvalue is given by ng
n o= A (32)

N

An analysis of the turning point problem can be found in the article
of Langer (1937]:

for p>po ' A(p)l takes on an exponentially decreasing form

AP = o] ™ exp (-9 |alde] (33a)



and for R < Po ~ an oscillatory form
d I "
AGp) = 2]q| ™ cos[/5° Qdo -3 (33b)
where q = kop v|n? + 2A\%n(n -1)| (34)

Near the turning point, the asymptotic form of the solution can be
represented by Airy functions.
Upon inserting (33] into (21) one obtains the asymptotic form ¢p-

Here, only the behaviour of ¢p at -® will be given explicitly
¢, (=) = exp[ikox] + R, exp[iko (x(A%-2) - 2yA)/A%] (35) .

with I RP| =1, i.e. a fully reflected plane wave arises, with wave

number kp and wave direction © P given by
y, (e ————— 2\
kp'kq 1 +4 /) s tandp=w (36)

For the gecmetrical optics solution, the correspeonding formulas

are given by

¢g (-=) = exp[ikox] + Ry exp[iko (x(A%-1) - 2yA)/(1+A%)]

(37)
2\
R|=1, k_=ko , tanc_ =37
IRg| g g 1-X
For some values of A , a comparison is presented in table II.
Table II Comparison of reflected plane waves at a turning point.

a A n n k /k k /k a
P g p/ke  Kglke %p g

63.4° 2 0.89 0.89 1.1 1 -63.4°  -53.1°

45° 1 0.67 0.71 2.2 1 -117°  -90°




When A approaches zero, the reflected waves in the solutions ¢p and ¢g
deviate more and more from each other, as would be expected.

Actually, the parabolic approximation is valid provided A2 >> 1 ’
otherwise the coupling between the transmitted and reflected wave
fields in equations (16) must be taken into account, if one wants to
recover the complete wave field. For systematic corrections to the

parabolic approximation, see Corones (1975).

5. Numerical solutions for the general case

The parabolic equation (17) may be solved by using finite-difference
techniques. In this section, two alternatives will be dealt with.

Assuming plane wave incidence

ik
¢ =y &% (38)
then equation (18} yields for the complex potential function Y
Y v 2 ik D e £¥ -0 5
>y on (39)
< 1.2 i ain(n
where f =ktn [2(n - 1) + F}___ﬁi__l] (40)

A Crank-Nicholson finite-difference equation is used for the numerical
solution to equation (39), cf. Richtmyer and Morton (1967]:

let a rectangular grid be given with grid spacings Ax and Ay, and

let the approximation to y(gAx, jAy) be denoted by T?

2

2,3=0,1,2,... The scheme I is then defined by

L+1 L+1 2 L 2 A+ L+1 2
¥j+1 + Tj_l + Wj+1 + wj_l + [-2 + (&y) fj ],(wj + wj )t
(41)
o (A y)? A+ RS O
+ 4 ik, i nj .(?j Wj ) =0
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where
n£+l
e, (np.“+1 .- ) /2, £ k3 n**s [2(n%+5 -1)+ = n(—— )/Ax]
j j j J J j kot &
]
(42)
and with initial condition
Y; =1, j=0,1,2,... (43)
and appropriate boundary conditions, to be specified later on.
Another solution technique, which may be preferable, is based
on the change of variable
Y = e° (44)
which turns (39) into
Rz  Br . B e BB . ¥
- 3 - 2ikon 72 £f=0 (45)

It may be expected that the solution T is a less rapidly

varying function than ¥, thus providing a more accurate approximation
on the same grid.

However, the transformation (44) is singular at points where

Y=0 (branch-points, or: amphidromic points), and a direct
application of a scheme like (41) is not possible. In order to
prevent the non-linear instabilities involved, it appears to

be useful to add to the left hand side of (45] an artificial

viscosity term of the form

3%z
3y?

2
TR
4

92r

(46)
3y?

where B is a dimensionless constant of the order of 1

(There is some resemblance with the Lax-Wendroff treatment of

-



shocks, where an analogous dissipative term has been introduced
to insure stability; see Richtmyer and Morton (1967), chapter 12}.

Let

2 2 L |

2 - -27 + 7 47
g5 = iB. | CJ+1 > Ty (47)
then the scheme II is defined by
2+1 2+1 A 2 2
J+1 [ + (CJ"'X )]+; [gJ '(Cj+1-Cj_1J] ¥
+1 2 o (Ay)? R+l 2 %
o + - + +
. [ 2 gj 8 1k0 AX nj ] 2 (Cj+1 Cj-l)
2 ey EA ) 2+H 2 A+l
+z. . [- 4 - 8 ik T 4 (A of =0 48
+AN ikoget 0y 7 1% 4 ()2 (48)
with initial condition
C; =0 , j = 0;1;2;.40 (49)

and appropriate boundary conditions.

Both schemes being implicit, a system of simultanecus linear
equations has to be solved. For systems like (41) or (48) very
efficient methods are available.

The rate of convergence will be exemplified in the next section,
where numerical solutions are obtained for the case of a circular

shoal.

15
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6. Application to circular shoal

As an example, the propagation of an incident plane wave will
be considered over a circular symmetric shoal with parabolic
bottom profile. Calculations for this severe test case have been
made by Berkhoff (1976], Bettess and Zienkiewicz (1977},
Flokstra and Berkhoff (1977), and Ito and Tanimoto (1972}, who
additionally conducted some laboratory experiments.

The shoal is represented by the depth profile

h = h_+ egr? for r<R ,
m
(50)
h = hy for r2R ,
2
where T> = (X - xm)z L Ll R
and eg = -(ho - hm)/Rz
To be definite, short wave propagation is considered, and the
assumptions (7] should apply, which amount to:
eo << w?/g (51)

This implies that the curvature of the bottom is much less

than the wave number, regardless of the value of the minimum depth.
The value of the angular frequency w follows from the dispersion
relation (5): w?= g ko tanh (koho) ; denoting the corresponding
wavelength by Lo = 21/ko . the problem is then defined through

the parameters h /R, ho/R and Lo/R.

In order to specify the boundary conditions, it is useful to

analyse the asymptotic character of the solution for large distance x
(see appendix). The governing equation stands for the Schrddinger-

equation of a free particle, which is represented by a one-dimensicnal
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wave packet. The behaviour of this wave packet for large x is a
well known problem in wave mechanics: the spreading of the packet
increases linearly with the distance x, and the magnitude approaches
zero, as 1/v% .

It follows, that the required boundary conditions for schemes T

and II, in case of a shocal, can be given by the undisturbed initial

values of the solution, ¥=1 and =0, provided these boundaries

are taken sufficiently far away from the area of interest.

In this way, the artificial reflections which may occur at the
boundaries, can be avoided.
Some calculations with the numerical schemes have been performed,
for two configurations of the shoal:
- configuration I, defined through:

hm/R = 0.0625 ;ho/R = 0.1875 ;Lo/R = 0.5 ;
- configuration II, defined through:

thR = 0.016 ;ho/R = 0.116 ;Lo/R = 0.288
The parameter eug/wz takes on the value 0.01 for configuration I,
and the value 0.005 for configuration II, so the inequality (51]
is valid in both cases.
The constant B in (46) is chosen to be 1, and the grid spacings
have been varied according to

Ay/Ax = 3 ; Ax/Le= 1,%,% and 1/8
Configuration I has been studied by Ito and Tanimoto (1972), who
use a finite difference timestep method, and by Flokstra and
Berkhoff (1977), who use a finite element elliptic method. Table III

demonstrates the agreement between the various methods for the

maximum relative wave amplitudes, and gives some impression of the
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rate of convergence of the numerical schemes I and II.

A detailed view of the solution is given in figures 1-5, which show
a comparison of wave amplitudes between the mentioned methods,
contourlines of the amplitude and of the phase, and energy flux
lines (wave orthogonals). A grid is used with 281 = 449 grid points;
the centre of the shoal is located at X;= 33, ¥y =113(in grid units),
and the radius of the shoal is R=16 Ax.

Bnérgy flux lines are defined through the energy streamfunction G:

1

G=kgy-f§Azg—§-dx , (52)
Table III Comparison of maximum wave amplitudes for
a circular shoal.
Configuration I Configuration II
Ay/Ax = 1/2
Maximum location Maximum location
Ax/Lg A x/Lg A x/Lo
1 . M by 8.5 2.57 9.0
Scheme I 1/2 2.08 7.0 3.18 7.0
1/4 2.05 6.8 3.01 6.0
1/8 2.05 6.6 2.96 5.7
1 ©2.10 7.0 2.85 6.0
Scheme II 1/2 2.03 6.5 2.96 5.8
(B= 1) 1/4 2.04 6.6 2.92 5.7
1/8 2.05 6.6 2.97 .
Ito and Tanimoto (1972) 2:1 6.3 - -
Flokstra and Berkhoff 2.04 6.4 3.1 S.7
(1977)
Bettess and Zienkiewicz - - 2.9 5.5
(1977)
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where amplitude A and phase F are given by ¢ = AeiF.

(If the field ¢ satisfies the Helmholtz-equation (8), it

follows that VF. VG=0, i.e. orthogonality of F and G, which
provides another test of validity for the parabolic approximation).
Configuration II has been studied by Flokstra and Berkhoff (1977),
and Bettess and Zienkiewicz (1977), using a finite element elliptic
method. In figures 6 and 7, the relative wave amplitudes on the
line of symmetry, Y=Y, . are presented.

It appears that the minimum near the-rear end of the shoal cannot
be represented properly by the solution of scheme II. This is |
caused by the occurrence of branchpoints, for which A=0.

In the vicinity of such points, the phase is a multiple wvalued
function, and the energy flux lines are closed. So, the application
of scheme II then results in a smoothed solution, which has better
convergence properties, and which is preferable when the accuracy

requirements are not too high.

7. Summary and conclusions

For the propagation of periodic surface waves in shoaling water,

a parabolic wave equation (18) has been derived, based on the splitting
technique of Corones (1975). This methed yields a pair of coupled
equations for the transmitted and reflected fields, and the

parabolic equation results from neglecting the reflected field.

In the case of an area with straight and parallel bottom contour-
lines, the asymptotic form of the solution for high frequencies

is compared with the gecmetrical optics approximation. There is

a close agreement, if there is no caustic line.



In the presence of a caustic, there is a reasonable agreement
provided the angle of incidence is close enough to 900.

Otherwise the coupling between the transmitted and reflected

wave fields cannot be neglected, and systematic corrections

sliould be applied, if one wants to recover the complete wave field.
Finally, two numerical solution techniques are presented in the
form of finite difference schemes, each based on a different

form of the parabolic equation. As an example, wave propagation
over a circular shoal is considered, where the gecmetrical optics
appro;imation predicts a cusped caustic line. For two bottom
configurations, the results are compared with similar calculations
in literature, showing a reasonable agreement. Which solution
techinique is preferable depends upon the required accuracy and

the available computer capacity.

The parabolic equation method may be applied to short wave propa-

gation in large coastal areas of complex bottom topography.
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Appendix Motion and spreading of a wave packet

The asymptotic character of the wave field behind a shoal
of finite extension, in water of constant depth, is governed
in the parabolic approximation by equation (39}, with n=1.
Let ¥ =1+€ , x'=Kkox , y'= koy ; then the dis-

turbance € satisfies the Schrddinger-equation (omitting'}:

2
9E .21 a0

Assuming £ (and derivatives) sufficiently square integrable,
the following quantities are defined:

- the norm of the wave packet

N =/ |e|? dy

the norm of the derivative

o o€
M=I-’°°|Tylzdy

the mean position of the packet

I 2
<y> =g/ _yle|* dy

the mean velocity

<y> =

- the spreading

S = /((y - <y>) > = ¢<y2> ‘- <y)2

Using (Al) and integration by parts, it follows that N, M

Z1.

(A1)

(A2)

(A3)

(A4)

(AS)

(A6)
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and <v > are constants of the motion:

d -
0 , F =0 (A7)

i
1]

N - a
dx ? dx

For the spreading S, one finds

2
4 s2. 2[%-- <v>?) (A8)

dxz
Integrating (A8) twice, one obtains the result, that for large

X, S increases linearly:

S(x+®) = /A« (A9)

N

It follows then from (A2) and (AQ), that the magnitude |€|

of the wave packet approaches zero, as 1/vX .
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Fig. 1

Comparison of relative wave amplitudes for bottom
configuration I, between results of the schemes I and II
(continuous curves, 8x/Lo=1/8 ) and results of Ito and
Tanimoto (1972) and of Flokstra and Berkhoff (1977]

(circles]).
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Fig. 2 Contourlines of the amplitude for configuration I,

according to scheme I (4x/Lo = 1/8).



220
219
200
180
180

170 —=

15C
10
_ 140
130
120
110
100
0
80
70
1)
So
40
30
20
10

o
To

(=] ...."?u. 3

T T T T e T T e e T . T T e T T T T I T T T e e e

| ] | il l ]

10 20 30 40 SO 60 70 80 SEIDGI10128130140150160170180l902002102202302402502502?0230

Contourlines of the amplitude for configuraticn I,

according to scheme rr. (4x/Lo = 1/8).




10 20 30 40 S0 60 70 80 350100110120130140150160170180180200210220230240250260270280
! 'L | ) P o1t L)y !

ey e TR T e ) B B o e e o g 0 o I T B P G A L P e k. 20 43Ty =

220 8 - 220
210 -§ . 210
200 -2 200
190 -5 190
180 180
' 170, -5 170
180 -2 . 180
150 - 150
140 -2 ' : 140
© 130 -3 .
120 -3 . : *S 120
110 3 “&. 110
= ‘ - 100
: 0

73
&0
S0
40
30
20
10

Fig. 4 Energy flux lines for configuration I, according to

scheme I_(M/Le = 1/8).
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Fig. 6 Compariscon of relative wave amplitudes for configuration II,
on the line of symmetry, between results of scheme I
(continuous curves} and results of Flokstra and Berkhoff

(1977). (circles)
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