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Abstract

A.parabolic approximation to the reduced wave equation is investigated

for the propagation of periodic surface waves in shoaling water.

The approximation is derived from splitting the wave field into transmitted

and reflected components.

In the case of an area with straight and parallel bottem centourlines,

the asymptotic form of the solutien fer high frequencies is compared

with the geometrical opties appreximation.

Two numerical solution techniques are applied te the prepagatien

of an incident plane wave ever a circular shoal.

---- .. -_---_. ---'-" .. ---, ------_. - _.- -- ---- -------- -. ..- -- --- .- -_- -----_._------- -- ._--- ---_ ..

._~~ ---------._-- .. --_._- -- ..-
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1. Introduction

The propagation of periodie, small amplitude surface gravity waves

over a seabed of mild slope can he described zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby the solution of the

reduced wave equation

c
V'·(cc V'~) + _[ w2 ~ = 0

g c
(1)

with appropriate boundary conditions. Here ~ (x,y) is the complex

two-dimensional potential function, V':: ( ~x ' ~y )

the hozä.zontia.L' gradient operator, w the angular frequency, and c and

,I

I
I
I

Cg are the corresponding local phase and group veloeities of the

wave field. This reduced wave equation accounts for the combined

effects of refraction and diffraction, while the influences of hot tom

friction, current and wind have been neglected.

The wave equation (11 has been derived by several authors, for the

first time by Berkhoff (1972}, and by Schönfeld (1972) in a different

form.

I
I
I

Svendsen (1967).derived the equation for one horizontal dimension, as

is pointed out hy Jonsson and Brink-Kjaer (1973). Smith and Sprinks (1975)

gave a formal derivation of (11. Booij (1978] has proposed a new wave

equation, which includes the effect of a current, and which reduces to

(1} in the current-free case.

The equation (1} is essentially of elliptic type, and therefore defines

a problem which is in general properly posed only when a boundary

I
I

condition along a closed curve is given. In order to obtain a numerical

solution for short waves over a large area in the horizontal plane, a

great amount of computing time and storage is thus needed. However, in

I
many water wave problems involving a gently sloping bottom, wave energy is
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propagated without appreciable reflection into a preferred direction,

and it should be natural to consider methods which make use of this

property. In the classification of Lundgren (19761, such methods can be

distinguished as R-methods (refraction methodsL and P-methods (propagation

methodsL~ both of which represent an approximation to the mild-slope

equation (11.

Refraction methods are based on the geometrical opties approximation,

which. fails to give a reliable solution near caustics and crossing

wave rays, where diffract~on effects become important.

Propagation methods should be able to account for such situations.

Methods of this type have been proposed by Biésel (1972), Lundgren

(lq761 and Radder (1q?7l, but these are lacking, among other things,

in the possibility of making systematic corrections which are needed

if one wants to recover the complete wave field.

In ths present work, a parabolic approximation to the reduced wave

equation (1} is derived from splitting the wave field into transmitted

and reflected components. The result is a pair of coupled equations

for the transmitted and reflected fields. By assuming that the

reflected field is negligible, a parabolic equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis obtained for the

transmitted field. Thîs procedure has been applied to opties by

Corones (1975), and to acoustics by McDaniel (19.751.The derivation

is based on the Helmholtz-equation; therefore, in § 2, a reduction of

the mild-slope equation (11 to the Helmholtz-equation is given, and

in § 3 a parabolic approximation is derived. An asymptotic form of the

solution for high frequencies is presented in § 4, in the case of an

area with straight and parallel bottom contourlines.

Finally, in § 5 and § 6 numerical solutions to the parabolie equation

are obtained in the form of two finite-difference schemes, with application

to plane wave propagation over a circular shoal with parabolic bottom

profile.
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2. Reduetion of the mild-slope eouation to the Helmholtz-equation

Although a parabolie approximation ean he direetly derived from

equation (11, it is useful, to simplify the notation and applieations,

to reduee equation (lL to the Helmholtz-equation, without 10ss of

generality.

A sealing factor is introdueed

(2)

whieh turns (11 into the Helmholtz-equation

I
I
t
I

(3)

Here the effeetive wave number kc is defined by

iJ2 lCc
k2 = k2 _ g

C ICCg
(4)

and the wave number k is the real root of the dispersion relation

I
I
I
I
I
I
I

W2 = g k tanh (kh) (5)

with h the loeal water depth and g the gravitational aeeeleration.

WzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdW
The phase and group veloeities are then given by C = k ' Cg = dk

In shallow water, the difference k 2 -k 2 may become appreeiable:
C

in this case one has

, C ITh I ~
4h

(6)

I
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It follows, that kC may be approximated by k if

(7a)

(7b)

implying a slowly varying depth and a small bottom slope, or high

I
I
I
I
I
I,
I
I
I
I
t
I
I

frequency wave propagation.

Unless stated otherwise, k
c

assuming that {7al and (7bl are satisfied.

will be approximated by k in this paper,

3. Derivation of the parabolic approximation

The Helmholtz-equation (3) can be written in the form

(8)

where x denotes the preferred direction of propagation, and the sub-

script c of the wavenumber k has been dropped (however, for the

derivation of the parabolic approximation the restrictions (7) are

not necessaryl.

+
The wave field ct> should be split into a transmitted field ct> and a

reflected field ct>

ct> =
+

ct> + (9)

This can be achieved by the use of a splitting matrix T which defines

the transmitted and reflected components by

(10)
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The matrix T is formally arbitrary, but some genera 1 physical criteria

limit the choice of T and lead to the governing parabolic equation in

a natural way.

Firstly, equation (9) is valid for arbitrarily chosen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAep+ and ep- only

if T satisfies

a + y = 1
B + 0 = 0

(11)

Using equation (81, it follows that

a<p+ _ [- k2B + ay + aa y aB a2 ] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<p+ +
d.X - ax + --- B-B B ax ay2

[- k2B
a2 aa a aB a2 ] ep (12a)+ - - + ax - î3 ax - B-B ay2

aep
[k2B

y2 + ay y ~ + B~ ] ep+ +ax- = + - -B ax B ax ay2

+ [k2B
ay ay a as a2l

(12b)- ;:;- +.."..- +- .."..-+B- eb
pzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAáX B ex ay2 J .

I
Further, when k is a constant, solutions of the form

I
I
I

n,+ ikx
'I' = e

-ikx= e (13)

should result, and the equations (12a) and (12b).should naturally

decouple in this·case. This can be achieved by choosing

+ o + (14)

I
I
I
I
I

and th.e resulting splitting matrix is (cf. Corones (1975Il

(IS)
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<p+ +zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(.!_
2k (16a)

I
I
I
t
I
I
Î

I

(
" 1 ak i (2)_

-lk- 2kzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx - 2k dy2 <p (16b)

This pair of coupled equations is equ~valent to equation (Sl. By
e

neglecting the reflected field <p-, a parabolic equation for the

transmitted field <p + is obtained

(17)

In a similar way, a parabolie approximation can be directly derived

~+from equation (1), which yields ior the transmitted field ~

[ ik - -=2~k-!-e-g i a al 4>+
+ 2kee ay eeg ay

g .

I
I
I

Using (2t and (71, equation (17} is recovered.

I
I
I
Î

a2By adding to the left hand sides of (14)_ me operator SzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( )

dy2
th 1"· " d " d T ' 1 -i/Aano er sp 1tting matrl.X lS er1ve: A = 2 1 i/A

A =/k 2 + 1, and a closer approx~ation to equation (SL may be
ay2

obtained. Unfortunately, the square root operator A makes the resulting

, where

parabolic equation practically untractable, and a satisfactory approximation

must be found for the operator A, in order to obtain numerical results

(cf. McDaniel (1975)).

In the following, the parabolic equation (17) will be considered, in

I which the preferred direction of propagation x is defined through the
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direction of the incident plane wave.

4. Asymptotic analysis for the one-dimensional case

In order to test the validi ty of the parabolie equa tion (171 as an

approximation to equation (SL solutions to both. equations will be

compared in the case of an area with straight and parallel bottom

contourlines. The problem is equivalent to pláne wave propagation in a

plane stratified medium in opties and acoustics, and the asymptotic

analysis of Seckier and Keiler (19591 will he followed here.

Dropping the + superscript, equation (171 can be written as

2 0k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd<j>
~ onzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdX + (18)

where ko denotes a constant wave number, and n = k/ko the index

of refraction. By introducing a new coordinate system (p,cr)

p = x cosa + y sina (19)

cr = -x sina + y cosa

the bottom is defined through h == h (p),

n == nep); dn = À dn
dy dX À = tana (20)

TI
wnere a is the angle of incidence, with lal< 2 .

It will be assumed that k(P} tends to the constant value ~ (i.e. n(P) -+ 1}

as p tends to - co
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ikoxzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANow suppose a plane wave e

is incident from x = _00 • The field <p can then be written in t.."1e

form

<p = A (p) exp [iko (x - pfndp)] (21)

with P = cosa

sin 2a
A satisfies

Upon inserting (21) into (18). one finds that

(22)

At P = - 00, A ( p L is supposed to behave like

·1
I
I
I
I
I
1
I
I
I
I
I

(23)

where the constant R denotes a complex reflection-coefficient.

At P =+ ·00, A(pl should satisfy aradiation condition, i.e. no

incoming wave from +00 •

The equation (221 is in general not explicitly solvabie, and the

solution must be represented by an approximation, which usually takes

on an asymptotic form for high frequencies, in the limit ko+ 00

A point at which the coefficient of A in (221 vanishes is cal led a

turning point, where the character of the solution changes from

oscillatory to exponential. In the geometrical opties approximation

of tne problem, a caustic line is formed at these turning points.

If tnere is no turning point, and n + 2 À2(n -1» 0,

the asymptotic form has an oscillatory character with R=O,

and can be found by the WKB-method (Cf. Langer (1937}). Let

-~
A = In2 + 2À2n(n -1) I
p

(24)

(2S)
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then ~~e WKB-approximation to ~ is given by

I
I
I
I
I
I

A ikoF
~p = pep (26)

A similar analysis for equation (al results in the geometrical opties

approximation. Let

(27)

(28)

1
I
I
I
I
I
1

then the asymptotic form is given by

A ikoF
~g = g e g (29)

In the special case a. = À = 0, both ~ pand ~gagree (if the sealing

factor~giS taken into account) with the classical shoaling

formula for a progressive wave

ct> :::: _1_ exp [ifx k dx] .
g IC Xo

g

(30)

~p and ~gare compared in table I, for some values of À and n.

I
I
I
I

It is assumed, that the incident wave is starting in deep water,

ko= wJg, and a correction factor cA = -;===n====~~_
/1 + k 0h(n2 -1)

should be applied for the wave amplitudes, according te equation (2).

I
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Table I Comparison of wave amplitudes A, wave numbel's IV'FIzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

and wave directions e (no turning point).

c * A c: *' A lV'Fpl IV'F I e e
A p A g g P g

0.88 0.91 2.01 2 24.4° 24.3°

1.01 1.07 3.03 3, 31.5° 31.4°

0.70 0.74 2.04 2 37.4° 36.9°

0.79 0.85 3.12 3 46.8° 46.1°
-,

cr. À n

45° 1 2.

45° 1 3

63.4° 2 2

- 63.4° 2 3

The'agreement is rather close, even for comparatively large values

of À •

Now suppose there is just one turning point at P=Po , a point where

the coefficient of A( P) in (221 vanishes.

This will occur when n takes on the value n
p

n =
P 1+2.À 2

(31)

In case of equation (8}, the corresponding value is given by n
g

(32)

An analysis of the turning point problem can be found in the article

of Langer (19.371:

for P>Po A(pl takes on an exponentially decreasing form

(33a)
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and for P < Po an oscillatory form

A(p) = 2IQI-~ cos[f~O Q dp - ~ ]

where Q = kop Iln2 + 2À2n(n -1) I
Near the turninq poi.nt, the asymptotic form of the solution can be

(33b)

(34)

represented by Airy functions.

Uponinsertinq (331 into (211 one obtai.ns the asymptotic form 4>p.

Here, only the behaviour of 4>p at - 00 will oe qiven explicitly

(35) .

I

·1.
I
I
I
I
I
1
I
I
.1·

I
I

wi.th. I Rpi = 1, i.e -: a fully reflected plane wave arises, with. wave

numberkp and wave direction a. p qiven by

k =. kozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 + 4· /À 1+
P

, (36)

For the qeometrical opties solution, the correspondinq formulas

are qiven by

4> (_00) = exp[ikox] + R exp[iko(x(À 2-1) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2YÀ)j(I+À 2)]
g g

(37)

k = ko
g

2À
tan a. = ~Àg 1-

For somevalues of À , a comparison is presented in table Ir.
--~--- -------------------------- - - -----_-_- ---

Table 11 Comparison of reflected plane waves at a turning point.

n
p

n
g k /ko

P
k /ko a.

g p

2

1

0.89

0.67

0.89

0.71

1.1

2.2
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When À. approaches zero, the reflected waves in the solutions <l>p andzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<Pg

deviate more and more from each other, as would be expected.

Actually, the parabolic approximation is valid provided À.2 » 1

otherwise the coupling between the transmitted and reflected wave

I
I

fields in equations (161 must be taken into account, if one wants to

recover the complete wave field. For systematic corrections to the

parabolic approximation, see Corones (1975}.

I
I
I

5. Numerical solutions for the general case

The parabolic equation (171-may be solved by using finite-difference

I
,I

techniques. In this section, two alternatives will be dealt with.

Assuming plane wave incidence

ikoxe (38)

I then equation (181 yields for the complex potential function ~

I
I
I

(39)

where f = k~n [2(n_ 1) + i
ko

d~n(n)J
dX (40)

A Crank-Nicholson finite-difference equation is used for the numerical

I
I
I
I
I

solution to equation (39), cf. Richtmyer and Morton (19671:

let a rectangular grid be given with grid spacings ~x and 8y, and

be denoted by ~~ J

J
let the approximation to ~(~~x, j~y)

~,j=O,1,2, .•• The scheme I is then defined by

~~+1 ~+1
+ ~ + ~~ + [-2 + (~y) 2 f~+~] .(~~+1 + ~~+ ~. 1 ~. 1 )+J+1 J- J+ J-1 J J J

+ 4 ik (~ y) 2 ~+~ .(~~+l -~~ ) = 0o ~x n.
J J J

(41)
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where

I
I
I
I
I

i+~n.
J

i+l i= (n. + n. ) /2 ,
J J

i+l
. n.
f in (+ )/Ax]

o n.
J

and with initial condition
(42)

~~ = 1, j = 0,1,2,• ..
J

(43)

and appropriate boundary conditions, to be specified later on.

Another solution technique, which may be preferabIe, is based

on the change of variabIe

I
I

(44)

which turns (391 into

I
I

a2ç aç. 3ç 21'k n 3ç + f = 0
3y2 + 3y 3y + 0 3x

It may be expected that the solution ç is a less rapidly

(45)

I varying function than ~, thus providing a more accurate appraximation

on the same grid.

I
I
I

However, the transformation (44)_ is singular at points where

'1'=0(branch-points, or: àmphidromic points), and a direct

application of a scheme like (41l is not possible. In order to

prevent the non-linear instabilities involved, it appears to

be useful to add to the left hand side of (451 an artificial

I
I

viscosity term of the form

I
I
I

(46)

where S is a dimensionless constant of the order of 1

(There is some resemblance with the Lax-Wendroff treatment of
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shocks, where an analogous dissipative term has been introduced

I
I
I
I

to insure stabiIitYi see Richtmyer and Morton (1967), chapter 12}.

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(47)

then the scheme 11 is defined by

I
I
IzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ R .+l [_ 2 R. + 8 i.k SË1]_2 R .+~] + 2 (R. + rR .. ) +
l;;j' gj 1 0 Sx. nj l;;j+ l "'J-l

(48)

I
I

with initial condition

l;;~ = 0
J

j = 0,1,2, ... (49)

I and appropriate boundary conditions.

I
I
I

Both schemes being implicit, a system of simultaneous linear

equations has to be solved. For systems like (41} or (481 very

efficient methods are available.

The rate of convergence wiII be exemplified in the next section,

where numerical solutions are obtained for the case of a circular

I
I

snoal.

I
I
I
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6. Application to circular shoal

As an example, the propagation of an incident plane wave will

be considered over a circular symmetrie shoal with parabolie

bottom profile. Calculations for this severe test case have been

made by Berkhoff (19761., Bettess and Zienkiewicz (19771,

Flokstra and Berkhoff (19.77)_, and Ito and Tanimoto (19721, who

additionally conducted some laboratory experiments.

The shoal is represented by the ~epth profile

for r<R ,

(50)

where

h = ho

r 2 = (x _ X )2 + (y _
m

eo = -(ho - h )/R 2mand

To be definite, short wave propagation is considered, and the

assumptions (71 should apply, which amount to:

(51)

This implies that the curvature of the bottom is much less

than the wave number, regardless of the value of the minimum depth.

I
I
I
I

The value of the angular frequency w follows from the dispersion

relation (51: w2= g ko tanh (koho) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi denoting the corresponding

wavelength by Lo = 2IT/ka , the problem is then defined through

the parameters hm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIR , ho/R and Lo/R.

In order to specify the boundary conditions, it is useful to

analyse the asymptotic character of the solution for large distanee x

(see appendixl. The governing equation stands for the Schrödinger-

equation of a free partiele, which is represented by a one-dimensional
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1
I
I
I
I
I
I
I
I
I
I
I
I
I

wave packet. The behaviour of this wave packet for large x is a

well known problem in wave mechanics: the spreading of the packet

increases linearly with the distance x, and the magnitude approaches

zero, as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11IX .

It follows, that the required boundary conditions for schemes I

and II, in case of a shoal, can be given by the undisturbed initial

values of the solution, ~=1 and ç=O, provided these boundaries

are taken sufficiently far away from the area of interest.

In this way, the artificial reflections which may occur at the

boundaries, can be avoided.

Some calculations with the numerical schemes have been performed,

for two configurations of the shoal:

- configuration I, defined through:

hm/R = 0.0625 ;ho/R = 0.1875 ;Lo/R = 0.5 )

- configuration II, defined througn:

hm/R = 0.016 ;ho/R = 0.116 jLo/R = 0.288

The parameter eog/w 2 takes on the value 0.01 for configuration I,

and the value 0.005 for configuration II, so the inequality (51]

is valid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin both cases.

The constant 8 in (461 is chosen to be i, and the grid spacings

have been varied according to

~y/~ = ! J ~x/Lo= 1,!,~ and 1/8 .

Configuration I has been studied by Ito and Tanimoto (1972), who

use a finite difference timestep method, and by Flokstra and

Berkhoff (19.771.,who use a finite element elliptic methode Table III

demonstrates the agreement between the various methods for the

maximum relative wave amplitudes, and gives some impression of the
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rate of convergence of ~~e numerical schemes I and II.

A detailed view of the solution is given in figures 1-5, which show

a comparison of wave amplitudes between the mentioned methods,

contourlines of the amplitude and of. the phase, and energy flux

lines (waveorthogonalsl. A grid is used with 281 ~ 449 grid points;

the centre of the shoal is located at xm=33, Y =113(in grid units),m ,

and the radius of the shoal is R=16 ~x.

-
Energy flux lines are defined throuqh the energy streamfunction G:

~====:========================--=-=-=--~=-~=-----=-_----_--=-----=-_-.---
(52)

-----------,.--------

--------------------------------- ._---_. ---- - --- .

Table 111 Comparison of maximum wave amplitudes for

a circu1ar shoa1.

~y/t.x = 1/2

~x/La

1

Scheme I 1/2

1/4-

1/8

1

Scheme 11 1/2

(a= 1) 1/4-

1/8

Ito and Tanimoto (1972)

Flokstra and Berkhoff
(1977)

Bettess and Zienkiewicz
(1977)

Configuration I

Maximum location
A x/La

2.17 8.5

2.08 7.0

2.05 6.8

2.05 6.6

2.10 7.0

2.03 6.5

2.04 6 •.6

2.05 6.6

2.1 6.3

2.04 6.4

Configuration II

Maximum location
A x/La

2.57 9.0

3.18 7.0

3.01 6.0

2.96 5.7

2.85 6.0

2.96 5.8

2.92 5.7

2.97 5.7

3.1 5.7

2.9 5.5
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where amplitude A and phase F are given by ~ = AeiF.

(If the field ~ satisfies the HeLmholtz-equation (8l, it

follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs r . 'ilG=O,i.e. orthogonality of F and G, which

provides another test of validity for the parabolic approximation).

Configuration 11 has been studied by Flokstra and Berkhoff (1977},

and Bettess and Zienkiewicz (1977}, using a finite element elliptic

methode In figures 6 and 7, the relative wave amplitudes on the

line -of symmetry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI y=y m ' are presented.

It appears that the minimum near the rear end of the shoal cannot

be represented properly by the solution of scheme 11. This is

caused by the occurrence of branchpoints, for which A=O.

In the vicinity of such points, the phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a multiple valued

function, and the energy flux lines are closed. So, the application

of scheme II then results in a smoothed so~ution, which has better

convergence properties, and which is preferabie when the accuracy

requirements are not too high.

7. Summary and conclusions

For the propagation of periodic surface waves in shoaling water,

a parabolic wave equation (18) has been derived, based on the splitting

technique of Corones (1975). This method yields a pair of coupled

equations for the transmitted and reflected fields, and the

parabolic equation results from neglecting the reflected field.

In the case of an area with straight and parallel bottom contour-

lines, the asymptotic form of the solution for high frequencies

is compared with the geometrical opties approximation. There is

a close agreement, if there is no caustic line.
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In the presence of a caustic, there is a reasonable agreement

provided the angle of incidence is close enough to 90°.

Otherwise the coupling hetween the transmitted and reflected

wave fields cannot be neglected, and systematic corrections

snould be applied, if one wants to recover the complete wave field.

Finally, two numerical solution techniques are presented in the

form of finite difference schemes, each based on a different

form of the parabolie equation. As an example, wave propagation

over a circular shoal is considered, where the geometrical opties

approximation prediets a cusped caustic line. For two hottom

configurations, .the results are compared with similar calculations

in literature, showing a reasonable agreement. Which solution

technique is preferabie depends upon the required accuracy and

the available computer capacity.

The parabolic equation method may be applied to short wave propa-

gation in large coastal areas of complex bottom topography.
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Appendix Motion and spreading of a wave packet

The asymptotic character of the wave field bebind a shoal

of finite extension, in water of constant depth, is governed

in tlieparabolic approximation by equation (3Ql, with n=l.

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'1' = I + e: Xl = kox y' = koYzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi then the dis-

turbance e: satisfies the Schrödinger-equation (omitting'l:

2 · de: _ 0~ -_
dX

(Al)

Assuming E (and derivativesL sufficiently square integrable,

the following quantities are defined:

- the norm of the wave packet

(A2)

- the norm of the derivative

(A3)

- the mean position of the packet

<y>
I 00

= - f yl E 12 dyN _00
(A4)

- the mean velocity

d
<v> = dxzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<y> (AS)

- the spreading

S = /«y _ <y» 2> = l<y2> ._ <y>2 (A6)

Using (All and integration by parts, it follows that N, M
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and < v> are constants of the motion:

dN = 0zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx- , dM = 0
dx -

d
dx <v> - 0 CA7)

For the spreadinqzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, one f~ds

(AB)

Inteqratinq (Aal twice, one o.bta~s the result, that for large

x, S' increases linearly:

s (x » co) ::: /~ - <V>2 •x (A9)

It follows then from (A21and (A9.L, that the magnj.tude[e I

of the wavepacket approaches zerozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI as 1/IX .
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