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w 0. Introduction 

In this paper ,  we will s tudy parabol ic  equations of  the type 

( A - q ( x ,  t ) - ~ ) u ( x ,  t ) = O  (0.1) 

on a general Riemannian manifold. The function q(x, t) is assumed to be C 2 in the first 

variable and C 1 in the second variable. In  classical situations [20], a Harnack  inequality 

for positive solutions was establ ished locally. However,  the geometr ic  dependency  of  

the es t imates  is compl ica ted  and somet imes  unclear.  Our  goal is to prove a Harnack  

inequality for pos i t ive  solutions of  (0.1) (w 2) by  utilizing a gradient es t imate  derived in 

w 1. The method of  p roo f  is originated in [26] and [8], where  they have studied the 

elliptic case,  i.e. the solution is t ime independent .  In some situations (Theorems 2.2 and 

(1) Research partially supported by a Sloan fellowship and an NSF grant. 

11-868283 Acta Mathematica 156. Imprim6 le 15 mai 1986 
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2.3), the Harnack inequality is valid globally, which enables us to relate the global 

geometry with the analysis. 

In w 3, we apply the Harnack inequality to obtain upper estimates for the funda- 

mental solution of the equation 

(A-q (x ) -~ t t )  u(x, t)=0, (0.2) 

where q is a function on M alone. We shall point out that for the heat equation (q=0), 

upper estimates for the heat kernel were obtained in [7] and [5]. However the estimate 

which we obtain is so far the sharpest, especially for large time. When the Ricci 

curvature is nonnegative the sharpness is apparent, since a comparable lower bound is 

also obtained in w 4. A lower bound for the fundamental solution of (0.2) is also derived 

for some special situations. 

Applications of these estimates for the heat kernel are discussed in w 5. A general- 

ization of Widder's [25] uniqueness theorem for positive solutions of the heat equation 

is proved (2) (Theorem 5.1). In fact, the condition on the curvature is best possible due 

to the counter-example of Azencott [2]. We also point out that generalizations of 

Widder's theorem to general elliptic operators in R n were derived in [21], [1 l] and [l]. 

When M has nonnegative Ricci curvature, sharp upper and lower bounds of 

Green's function are derived. This can also be viewed as a necessary and sufficient 

condition for the existence of Green's function which was studied in [23]. In fact, in 

[24], our estimates on Green's function were proved for nonnegatively Ricci curved 

manifolds with pole and with nonnegative radial sectional curvatures. In [13], Gromov 

proved lower bounds for all the eigenvalues of the Laplacian on a compact nonnegati- 

vely Ricci curved manifold without boundary. We generalized these estimates to allow 

the manifold to have convex boundaries with either Dirichlet or Neumann boundary 

conditions. These lower bounds can also be viewed as a generalization of the lower 

bound for the first eigenvalue obtained in [16]. 

Another application is to derive an upper bound of the first Betti number, bi, on a 

compact manifold in terms of its dimension, a lower bound of the Ricci curvature, and 

an upper bound of the diameter. The manifold is allowed to have convex boundaries, in 

which case bl can be taken to be the dimension of either HI(M) of HI(M, aM). It was 

proved in [14] that if M has no boundary, then bk can be estimated from above by the 

(2) During the preparation of this paper, H. Donnelly has independently found a different proof of the 
uniqueness theorem when the Ricci curvature of M is bounded from below. 
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dimension, k, a lower bound of the sectional curvature, and an upper bound of the 

diameter.(3) On bk, for k> l ,  we derived a weaker estimate than that in [14] assuming 

both upper bound of the sectional curvature and lower bound of the Ricci curvature. 

However, in this case, the manifold is also allowed to have nonempty convex bound- 

aries. Some of our estimates on the Betti numbers overlap with results in [17], [18], and 

[19]. 

Finally, in w 6, we study the asymptotic behaviour for the fundamental solution 

of the operator A-22q(x)-a/at  as ;t---,oo. This formula was needed in [22] for the 

understanding of multiple-welled potentials. In fact, the results in [22] can be carded 

over to any complete manifold after applying the formula in Theorem 6.1. 

w 1. Gradient estimates 

Throughout this section, M is assumed to be an n-dimensional complete Riemannian 

manifold with (possibly empty) boundary, aM. Let O/av be the outward pointing unit 

normal vector to aM, and denote the second fundamental form of aM with respect to 

a/av by II. 

Our goal is to derive estimates on the derivates of positive solutions u(x, t) on 

Mx (0, 0o) of the equation 

(A -q (x ,  t ) - ~ ) u ( x ,  t )=0 .  (1.1) 

In general, these estimates are of interior nature. However, in some cases, they can be 

extended to be global estimates which hold up to the boundary. First, we will prove the 

following lemma which is essential in the derivation of our gradient estimates. 

LEMMA 1.1. Let f(x, t) be a smooth function defined on Mx[0,  oo) satisfying 

( A - ~ t t ) f  = - - I V f l 2 + q ,  (1.2) 

where q is a C2 function defined on Mx(0,  oo). For any gioen a>-l, the function 

F = t(IVfl2-aft-aCl) (1.3) 

(3) H. Wu informed the authors that the b~ estimate for compact manifolds without boundary was 

proved by M. Gromov and S. Gallot in "Structures M~triques pour les Varirtrs Riemanniennes" (1981) and 

C. R. Acad. Sci. Paris, 296 (1981), 333-336 and 365-368, respectively. 
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satisfies the inequality 

( A - O )  F> ' -2 (V f '  V F ) - I  

+ 2t ( lV f l2 - f t -q )2-a tAq-2(a-  1) t(Vf, Vg), 
n 

(1.4) 

where -K(x), with K(x)~O, is a lower bound of  the Ricci curvature tensor of M at the 

point x E M, and the subscript t denotes partial differentiation with respect to the t- 
variable. 

Proof. Let e~, e2 ..... e, be a local orthonormal frame field on M. We adopt the 

notation that subscripts in i, j ,  and k, with l<~i, j, k<.n, mean covariant differentiations 

in the e;, ej and e, directions respectively. 

Differentiating (1.3) in the direction of e;, we have 

Fi = t(2fj fji-afti-aqi), 

where the summation convention is adopted on repeated indices. Differentiating once 

more in the e; direction and summing over i= l, 2 .....  n, we obtain 

AF = t(2fj~ + 2fjfjii-aftii-aqii) 

>~ t [ 2  (Af)2+2( Vf, VAf) -2K[Vf lZ-a(Af ) t -aAq] ,  

where we have used the inequalities 

and 

Applying the formula 

i,j n 

fJ~. = f~fi~j+ReL f j~  (Vf, VAf)-KlVf l  2. 

A f =  --IVfl2 +q +f, = -- 1 F - ( a -  1) (q +ft), 
t 

we conclude, 

A F ~  2t(Ivf[2-f t-q)Z-2(Vf,  V F ) - 2 ( a - 1 ) t ( V f ,  V(ft) ) 
n 

- 2 ( a -  1) t(Vf, Vq) -2KtlVfl2+aFt-a(lVf[Z-aft-aq) 
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+ a ( a -  l) t f t t+a(a-  1) t q t - a t A  q 

= 2 t  (iVfl2_ft_ q) 2_2 ( Vf, VF) +F,-(IVfl 2-  af t -aq)  
n 

- -  2Kt]Vfl2, atA q - 2 ( a -  l) t ( Vf, Vq). 

This proves the lemma. 

THEOREM 1.1. Let M be a compact manifold with nonnegative Ricci curvature. 

Suppose the boundary o f  M is convex, i.e. II~>0, whenever OM~:~). Let u(x, t) be a 

nonnegative solution o f  the heat equation 

. /, - o  

on Mx(O, ~), with Neumann boundary condition 

Ou 
- - = 0  
Ov 

on OMx(O, ~). Then u satisfies the estimate 

u 2 u 2t 

on Mx(0,  oo). 

Proof. By set t ingf=log (u+e) for e>0, one verifies that f satisfies 

Applying Lemma 1.1 t o f b y  setting a = l ,  q=0, and K=0, we have 

,1 , ,  

The theorem claims that F is at most n/2. If not, at the maximum point (Xo, to) of F on 

Mx [0, T] for some T>0, 

F(x~ to) > 2 > O. 

Clearly, to>0, because F(x, 0)=0. If Xo is an interior point of M, then by the fact that 

(Xo, to) is a maximum point of F in Mx[0,  T], we have 
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AF(xo, to) ~< O, 

and 

VF(xo, to) = O, 

Ft(xo, to) >~ O. 

Combining with (1.5), this implies 

0 ~  > 2 F(xo, to)(F(xo, t o ) - 2 ) ,  
n t  o 

which is a contradiction. Hence Xo must be on aM. 

In this case, since F satisfies (1.5), the strong maximum principle yields 

However 

~vOF (x0, toO > 0. (1.6) 

n- I  

aF = 2 f i f  _ f~ = 2 E L  fa,, 
OV a=l 

since fv=uJ(u+e)=O on aM, and we are assuming that e.=a/av. Computing fay in 

terms of the second fundamental form II=(ho, a), we conclude that 

n- I  
aF  

- 2 E h~ fa f~ = - 2II(Vf, Vf). av 
a,/]=l 

Inequality (1.6) and the convexity assumption on aM yield a contradiction. Hence 

n 
F~<-~ -, 

and the theorem follows by letting e---~0. 

THEOREM 1.2. Let M be a complete manifold with boundary, aM. Assume p s  

and let Bp(2R) to be a geodesic ball o f  radius 2R around p which does not intersect aM. 

We denote -K(2R),  with K(2R)>~O, to be a lower bound o f  the Ricci curvature on 

Bp(2R). Let  q(x, t) be a function defined on M• [0, T] which is C 2 in the x-variable and 

C ~ in the t-variable. Assume that 

Aq <~ 0(2R) 

and 

IVql ~< r,(2R) 
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o n  Bp(2R)• [0, T] for some constants O(2R) and y(2R). I f  u(x, t) is a positive solution of  

the equation 

A-q-  u(x,t)=O 

on Mx(O, T], then for any a > l  and eE(O, I), u(x, t) satisfies the estimate 

IVU]2u 2 - T  C3a2R_2(l+ev~+cx2(a_l)_l)+2a2t_l 

[ C4(~4(ct_ _2 _ ] !/2 + 1)2a4e-t)ta+2(l-e)-la'(a-1)-2K2+2a'O j 

on Bp(R), where C3 and C4 are constants depending only on n. 

Proof. As in the proof of Theorem 1. l ,  we define the function 

F(x, t) = t([Vfl2-aft-aq) 

where 

f =  log u. 

Let ~(r) be a C 2 function defined on [0, oo) such that 

q~(r) = { 10 if rE[0, 1] 
if rE [2, oo), 

with 

and 

-c  
~31/2(r) I, 

~"(r) ~ - C 2 ,  

for some constants C~, C2>0. If r(x) denotes the distance beween p and x, we set 

We consider the function ~0F, with support in Bp(2R)x [0, 0o), which is in general, only 

Lipschitz since r(x) is only Lipschitz on the cut locus of p. However, an argument of 

Calabi, which was also used in [8], allows us to assume without loss of generality that 

ffF is smooth when applying the maximum principle. 
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Let (Xo, to) be a point in M x  [0, T] at which 9 F  achieves its maximum. Clearly, we 

may assume 9 F  is positive at (Xo, to), or else the theorem follows trivially. At (Xo, to), 

we have 

and 

V(gF) = O, 

a(gF) t> O, 
at 

A(grO <- 0. 

By a comparison theorem in Riemannian geometry, 

Aq~ = q3'Ar + ~"[Vr[ 2 
R R 2 

C2 
>>'-- Cl (n-1) M/-K R 2" 

Applying Lemma 1 to the equation 

A(tpF) = (Ag) F +  2 (V 9, VF) + 9(AF), 

and using the above inequality, we arrive at 

A(gF) I> - F(C I R - l(n - 1 ) ~ coth (R X/K ") + C 2 R -2) 

+2(V9,  V(gF)) 9 -1+9  lFt-2 (Vf, VF) 

+ 2 t([Vf] 2_ft_ q)2_ t - t F -  2Kt[Vf[ 2 
r /  

- a t A q - 2 ( a -  1) t(Vf, Vq) ] -2/~V~129 -1. 

Evaluating at (Xo, to) yields 

0 >I - F ( C  1R-l(n - 1) X/-K coth (R X/K)+ C2 R -2) 

+2F(Vf, Vq~) + 2 to cp(fV f I 2 - f  t -q )2 -g t - I  F 

-2Kto  lVfl:-a t0 A q - E ( a -  l) t o 9 ( Vf, Vq). 

Multiplying through by 9to and using the assumptions on Aq and IVql with the estimate 

on IV~I, this becomes 
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f f  w e  l e t  

and 

0 ~ t o q)F['C, R-'(n- l) V~" coth (R V ~ ' ) -  C 2 R-2-2C~ R-2-to l] 

- 2to cpF1Vfl C, R-'q~'/2 + 2 ~ ~o2[(ivfl2 _f,_ q)2_ nKIVfl2] 
n 

-a~  O-2(a- 1) to 2 rC/21vf  I. 

y = r ~ 

z = q~(ft+q), 

and observe that 

C 1R -1 ( n -  l) V K  coth (R V'-K) + C 2 R-2+2C~ R -2 ~< C 3 R-2(1 +R V ~ ) ,  

for some constant C3 depending only on n, (1.7) takes the form 

0 >>- q)F[-t o C 3 R-2(1 +R V ~ ) -  l] + 2 t 2 

• [(y-z)2-nC! R-lyl/2(y--az)--nKy--n(a- 1) yyU2] _ ~ aO. 

On the other hand, we observe that 

(y-z)E-nCl R-lyU2(y-az)-nKy-n(a- 1) yyU2 

= (1 - e - b )  y2-(2-ea) yz+z2+(ey-nC1 R-ly u2) (y-az)+6y2+nKy-n(a - l) yyV2 

=(a- '-2)(y-ctz)2+(1--e- t~-a- '+2)Y2+(1-a+2a2)zZ 

+(ey- nC 1R-lyU2) (y_az) +6y z-nKy-n(a-  1)),yl/2. 

Setting 6 = ( a - 1 - 1 )  2 and e=2-2a-l-2(a-~-l) 2, we check that 

l_e_6_a- l+_._e  = 0 
2 

and 

1 - - a + ~ - - C t  2 = 0 .  

Hence, (1.9) becomes 

(y-z)2-nCl R-lyV2(y-az)-nKy-n(a - 1) yyV2 

>t a-2(y-az)2-C3 a2(a_ 1)-l R-2(y-az)+ a-2(a- 1)2y2-nKy-n(a -  1) yyV2, 

(1.7) 

(1.8) 

(1.9) 

(1.1o) 
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where we have used the fact that 

2a-e(a-- 1) y-- nC 1 R-lylr2 >~ _ ~ C~ a2(a- 1)- I R ~2 

>I - C  3 a 2 ( a  - I ) - I R  -2.  

We will estimate the last three terms of (1.10) as follows, 

a-2(a - 1)2y2-nKy-n(a - 1) ~V 1/2 

n 2 
a-e(a - 1)2y2-(1 - e )  a-2 ( a -  1)2y 2---~ (1 - e ) - Iae (a -  1)-2K 2 - n ( a -  1) 7,y !/2 

n 2 
~> ea-2(a - 1)2y2- n(a-- 1) 7'y !/2--~- (1 --e) -la2(a - l)-2K 2 

n 2 
- -  C4(~4(~ - l ) 2 a 2 E -  !) 1/3~ ~ -  ( l - - e )  -I a2(a - I ) - 2 K  2 

for any e E (0, 1). 

Combining this with (1.8) and (1.10), we conclude that 

0>t q~F[-to C3R-2(l + R V ~ ) -  l ] 

+ 2 [a_2(q~F)2_ C3 a2(a - 1)_lR_2q~Fto] 
n 

----- 2 ( / _ 2 ( ~ 0 F ) 2  [ C  3 foR_2( 1 + R V ~ ) + a 2 ( a _  i)_i)+ 1 ] (q~F) 
n 

This implies that at the maximum point (Xo, to)EMx[0, T], 

f F  ~ C 3 a2to R -2(1 + R ~ / K +  a2(a - 1)- i) + 2 a2 

I" 2 _ "] 1/2 
4 2 4 !1/3 n I 4 2 2 u 3 ( a - l )  a : )  a K 0J . 

In particular, on Mx {T}, F satisfies the estimate as claimed in the theorem for a > l  

and 0 < e < l ,  since to<~T. 

THEOREM 1.3. Let M be a complete manifold without boundary. Suppose u(x, t) is 

a positive solution on Mx(0,  T] o f  the equation 
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( a) a - q - - ~  u(x, t) = O. 

Assume the Ricci curvature o f  M is bounded from below by - K ,  for some constant 

K>~O. We also assume that there exists a point p E M, a constant O, and a function 

F(r, t) such that 

IVql (x, t) ~< ~,(r(x), t) 

and 

Aq<.O 

on Mx(O, T], where r(x) denotes the distance from p to x. Then the following estimates 

hold: 

then 

(i) I f  K=O and 

lim y(r, t) ~< r(t), 
r---~ oo r 

- - - ~ - - t - l + q + C s ~ : a s ( t ) +  0 
u 2 u 2 

on M x  (0, T]. 

(ii) I f  y(r, t)<~,o(t ) for  some function yo(t), then 

iVul 2_ au,< ctq+nct2t_l+C6[Y oa(t)+(a_l)_lK+01/2] 
u 2 u 2 

on Mx(0 ,  T]for  all a E ( l , 2 ) .  

Proof. To prove (i), we simply set a- l=R-2r - l /2 ( t )  in Theorem 1.2, and let 

R-- -~ .  As of  (ii), we jus t  let R--->~ without  any substitution. 

THEOREM 1.4. Let M be a compact manifold with Ricci curvature bounded from 

below by - K ,  for  some constant K>~O. We assume that the boundary o f  M is convex, 

i.e. II~>0. I f  u(x, t) is a positive solution on Mx(0 ,  oo) of  the heat equation 

with Neumann boundary condition 

au 
= 0  

Ov 
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on aMx [0, o0), then u(x, t) satisfies 

IVul au,  n 
- -  ~< 

U 2 U 

on Mx(0, ~), for all a > l .  

PETER LI AND SHING TUNG YAU 

Ct2(Ct-- 1)-lK+ 2 Ct2t-I 

IVql = o(r(x)), 

where r(x) is the distance from x to some fixed point p E M. I f inf  q<O, then the equation 

(A-q)  u(x) = 0 

does not admit a positive solution on M. In particular, 

infq = inf {Spec (A-q)},  

where Spec (A-q)  denotes the spectrum of  the operator A - q .  

Proof. Let u(x) be a positive solution of (A-q)  u=0. Applying Theorem 1.3 (i) to 

this time independent solution, we arrive at the estimate 

IVul n 
u 2 ~-+q" 

Letting t---~, and evaluating at a point where q<0, we have a contradiction, unless 

infq~>0. 

To prove the second half of the corollary, one observes that the quadratic form 

associated to A - q  is given by 

f u.fqu  

and 

Proof. This follows by combining the arguments in the proofs of Theorem 1.1 and 

Theorem 1.3. 

COROLLARY 1.1. Let M be a complete manifold without boundary. Suppose the 

Ricci curvature o f  M is nonnegative, and suppose q is a C2 function defined on M with 

Aq~<0 
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which is clearly bounded from below by infq. Hence 

inf {Spec (A-q)}  I> infq. 

On the other hand, we know that for e>0, the equation 

[ A - ( q - i n f  q-e)] u = 0 

has no positive solution, which implies 

inf {Spec (A-q)} ~< infq+e 

(see [10]). However, e is arbitrary, which yields the desired equality. 

COROLLARY 1.2. Let M be a complete manifold without boundary. Suppose the 

Ricci curvature o f  M is bounded from below by - K ,  for some constant K>-O. Assume 

that q is a C 2 function on M with 

Aq<~O 

and 

IVql (x) ~ r(rQg, x)), 

for some constant O, and some function y depending only on the distance, r(p, x), to 

some fixed point p E M. Then 

infq ~< inf {Spec (A-q)} 

and 

inf {Spec (a -q)}  < Q, 

where Q is finite and is defined in the following cases: 

(i) I f  K=O, and limr_,~ r-ly(r)<~v for some constant r, then 

"3 [ n \1/2 
Q = i n f q + C s ~  + ~ y O )  . 

(ii) I f  ~(r)~yofor some constant Yo, then 

Q = a infq+C6[y~o3+(a - 1)-IK+O 1/2] 

for a E(1,2). 



166 PETER LI AND SHING TUNG YAU 

Proof. Following the proof of Corollary 1.1, we apply Theorem 1.3 to any positive 

solution q0 of the equation 

(A-q)  q0 = -gcp 

for 2>Q. 

w 2. Harnack inequalities 

We will utilize the gradient estimate in w 1 to obtain Harnack inequalities for positive 

solutions of (1.1). 

THEOREM 2.1. Let M be a complete manifold with boundary, aM. Assume p E M 

and let Bp(2R) be a geodesic ball o f  radius 2R centered at p which does not intersect 

aM. We denote -K(2R),  with K(2R)~>0, to be a lower bound o f  the Ricci curvature on 

Bp(2R). Let q(x, t) be a function defined on M x  [0, T] which is C 2 in the x-variable and 

C l in the t-variable. Assume that 

and 

Aq ~< 0(2R) 

[Vql ~< y(2R) 

on Bp(2R)• [0, T] for  some constants 0(2R) and y(2R). I f  u(x, t) is a positive solution o f  

the equation 

A - q - ~  u(x, t )=O 

on Mx(0,  T], then for  any a > l ,  O<h<t2<-T, and x, y EBp(R), we have the inequality 

exp (A(t2-tO+Oam(x, y, t2-tO), u(x, t,) <~ u(y, t 2) \ tl / 

where 

and 

A = C7[aR -1V~-+a3(a - 1)-lR-2+y2/3(a - 1)l/3a-l/3+(aO)l/2+a(a - 1)-lK] 

( fo fo ) ~a,R(x,y, t2-tt) = inf ~ 1~12ds+(t2-tl) q(y(s), ( l - s )  t2+st Ods 
ye r~R) 4(t 2-  t l) 

with inf taken over all paths in Bp(R) parametrized by [0, 1] joining y to x. 
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Proof. Let 7 be any curve given by 7: [0, 1]-->Bp(R), with 7(0)=y and 7(1)=x. We 

define r/: [0, 1]--~Bp(R)x[h, t2] by 

rl(s) = (~'(s), (1 -s)  t2+Stl). 

Clearly r/(0)=(y, t2) and r/(1)=(x, t0. Integrating (d/ds)(logu) along r/, we get 

logu(x, tt)-logu(y, t2)=fol(-~slogu)ds 

= { (~,, V(log u)) - ( t2- t  I) (log u)t} ds. 

Applying Theorem 1.2 to -(log u)t, this yields 

l~ fo' u(y, t z) / 

(2.1) 

Viewing IV log u[ as a variable and the integrand as a quadratic in IV log u[, we observe 

that it can be dominated from above by 

al~[2 +(t2-t,) IA+2at -~  +q]. 
4(tE-tl) 

Since t=(1-s) t2+Stl, (2. l) gives 

(u(x,t,)~ ' n a  t2 
log \ u - ~ ,  t2)/~< f0 [.~ 4(t2_alTltl ) +(t2- t 1) q(y(s),(1-s)t2+stl)}ds+---2--log(-~l)+a(t2-tl). 

The theorem follows by taking exponentials of the above inequality. 

Obviously, applying Theorems 1.3 and 1.4 instead, the above method yields: 

THEOREM 2.2. Let M be a complete manifold without boundary. Suppose u(x, t) is 
a positive solution on Mx(0, T] of the equation 

(A-q -~ t t )  u(x, t) = O. 

Assume the Ricci curvature of M is bounded from below by -K,  for some constant 
K>~O. We also assume that there exists a point p E M, a constant O, and a function 

),(r, t), such that 
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IVql (x, t) <~ y(r(x), t) 

and 

Aq<.O 

on M x  (0, T], where r(x) denotes the distance from p to x. Then for  any points x, y E M, 

and O<tl<tE<~T, th e following estimates are valid: 

(i) / f K = 0  and 

lim y(r, t) ~< r 
r---~ oo r 

for  all t E [0, T], then 

where 

/ t \ n/2 

u(x, t l ) ~  u(y, t 2 ) / ~ l )  exp(Cs(r2/3+ 01/2) (t2-tl)+Q(x, y, t2- t l )) ,  

O,xyt t, inf{' fo fo ! rer  4(t2-t1) li'12ds+(t2-tl) q(~'(s)'(1-s)t2+Stl)dS' 

with inf taken over all paths in M parametrized by [0, 1] joining y to x. 

(ii) I f  y(r, t)<~yofor some constant Yo in Mx[0 ,  T], then 

/ t \ nod2 
U(X, tl)<~u(y, t 2 ) / ~ l )  exp(C6(t2-tl)(y2/3+ol/2+(~-l)-lg)+Qa( x, Y, t2- t l ) )  

for all a E (1,2), where 

{ fo fo } Q~(x, y, t2 - t  I) = inf �9 ~ 1~,[2ds+(t2-tl) q(y(s), ( l - s )  t2+st 1) ds . 
yer 4(t2--t 1) 

THEOREM 2.3. Let  M be a compact manifold with Ricci curvature bounded from 

below by - K ,  for  some constant K~O. We assume that the boundary o f  M is convex, 

i.e. 111>0. Let u(x, t) be a positive solution on Mx(0 ,  oo) of  the heat equation 

with Neumann boundary condition 

au  
m =  0 
Ov 
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on OMx[0, oo). Then for any a > l ,  x, yEM,  and 0<tl<t2,  we have 

/ t \ hal2 

u(x,t,)<~u(y, t2)t-~ ) exp(-~22 (a - l ' - 'K( t2 - t , ' d  ar2(x'Y)] 

where r(x, y) is the distance between x and y. 

A mean value type inequality can be easily derived by averaging the function over 

any set in either the x-variable or the y-variable. In fact, this will be the form which we 

utilize most in the latter sections. For example, a corresponding mean value inequality 

of Theorem 2.3 will read 

<~ / - ~ )  e x p ( ~ 2 2  ( a - l ) t K ( t 2 " t ' ) 4  4(t2-t,)] 

We also remark that from the definitions of O's, they clearly satisfy the following 

relations: 

Pa, | y, t2-ti) = Oa(x, Y, t2-tl),  (2.2) 

QI, ~(x, y, t2-t  1) = Ol(X, y, t2-t  0 = e(x, Y, t2-tl), (2.3) 

and 

Qa(x, Y, t2-t~) = ar2(x, y) 
4(tz_t3) (2.4) 

if q--0. 

COROLLARY 2.1. Let M be a compact manifold with non-negative Ricci curva- 

ture. I f  8 M ~ ,  we assume that it must be convex. The Neumann heat kernel on M 

must satisfy 

H(x, y, t) >i (4zrt) -n/2 exp ( -r2(x' y) ~. 
\ 4t / 

In particular, the Neumann eigenvalues /ti of  M satisfy 

~ e-~,  ~' I> (4~t ) -n l2V(M).  

i=0 

Proof. Apply Theorem 2.3 to the function 

u(y, t) = H(x, y, t) 

12-868283 Acta Mathematica 156. lmprim6 le 15 mai 1986 
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gives 

Since 
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H(x,x, tO<.H(x,y, t2) exp \ ~ ] .  

H(x, x, tl) ~ (4~tl) -n/2 

as t~---)O the estimate of H(x, y, t) follows. To prove the estimate of the theta function, 

we simply integrate H(x, x, t) over M. 

w 3. Upper bounds of fundamental solutions 

In this section, we will derive upper estimates of any positive L 2 fundamental solution 

of the equation 

A-q-~ u(x,O=O, 

where we will assume the potential function q is C 2 and is a function on M alone. We 

recall again the definitions of O's, since q is time-independent, they can be written as 

Oa, R(x, y, t) = inf ~ a  l#12ds+t q(y(s)) ds (3.1) 
r ~ r(R) [ 4t 

where F(R) = {~,: [0, 1 ] ~ B p ( R )  I ~,(0) =y, y(1) =x}. Moreover 

where F(oo)=M, and 

qa, | y, t) = qa(x, y, t), 

01. | y, t) = el(x, Y, t) = q(x, Y, t). 

(3.2) 

We remark that when q~>0, Q is a metric on M, though 0 might not be a distance 

function. Abusing this term, we will refer to 0 as "the metric" even when q is 

sometimes not assumed to be nonnegative. The following discussion of  0 is classical, 

especially among physicists, hence details of proofs will be omitted. 

If ~, is a minimizing curve for O(x, y, t), considering a compact perturbation of y, 

one computes that the geodesic equation of 0 is given by 

V~, = 2t2 Vq. (3.4) 

(3.3) 
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Taking the inner product with ~,, (3.4) gives 

d 
ds (1~'12) = 2(V~,~,, ~,) = 4tZ(Vq, ~,). 

Integrating along y from 0 to s, we have 

li,12(s)-1#12(0) = 4t2(q(?(s))-qO,(O))). 

Hence 

[$'12(s)-4tZq(y(s)) = {1;'12(O)-4t2q(y(O)), (3.5) 

for all s E [0, 1]. Ifx is not a "cut-point" of y, we can find a 1-parameter family of curves 

y,, joining o(r) to y, where o: ( -e ,  e)---,M such that o(O)=x. We compute 

1 d I d? 
drd OIt= ~ 2t = 

= l<#(1 ) ' -~ - r  (1'> ~=o-~'t ['/V~'~" d}'~' +t ['<Vq,-~-r> ,:=o 
Jo \ dr/I ,=o Jo 

1 / . (1) ,  dT(1) \ 
=yi\r  / r=o' 

after using (3.4). We conclude that 

and 

Vx O(x, y, t) = l ~ ( 1 )  

IVx OI2(x, y, t) = ~ ]~'lz(1). 

Similarly, we compute 

Ot (x, y, t) = ~ li,12+t q(y) 

1 i l 
4t2 fo l~'12+1 ' d 1 

_if,[,  4t2 I~'12+ q(~,), 

(3.6) 

where we have used (3.4), and the assumption that ?t(O)=y, and FAD=x, for all t. 
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However, by (3.5), we derive 

aO (x ,y , t )= I 1~,12(1)+q(x). 
at - -~--  

Together with (3.6), we have proved the following: 

LEMMA 3.1. 

IVx el2(x, y, t)+ ~ (x, y, t) = q(x) 
~t 

and 

IV~ol2(x, y, t)+-~t (x, y, t) = q(y). 

We remark that it is also well known that the function g is Lipschitz on M (see 

Appendix). In particular, the above lemma is valid in the weak sense on M. 

Let us define the function 

g(x, y, t) = -20(x, y, (1+26) T- t )  (3.7) 

for x, y E M and 0~<t~<(1 +26) T, where 6>0. Lemma 3.1 implies that g satisfies 

�89 IVy gl2+gt-Eq(y) = 0 (3.8) 

weakly. 

When q - 0 ,  we may assume aM=t=~ but convex. Since in this case g(x, y, t) is just a 

multiple of the square of the distance function r(x, y), (3.8) is still valid due to the 

assumption on aM being convex. 

LEMMA 3.2. Let M be a complete manifold which can be either compact or 

noncompact. Suppose H(x, y, t) is the fundamental solution of(1. i) on M x M x  [0, oo)./f  

q--O, we may assume aM~(~ but convex, and H(x, y, t) satisfies either the Dirichlet or 

the Neumann boundary condition on aM. Let 

f H(y, z, t) H(x, z, T) dz (3.9) F(y, t) 
dS I 

for xEM,  SI~_M, and 0<---t~<r<(l+26) T. Then for any subset S2~_M, we have 

fs F2(z, r)dz<'-- fs H2(x ,z ,T)dxsupexp(-2Q(x,z ,  (l +26) T)) 
2 l zESI  

xsup exp (20(x, z, (1+26) T-r)).  
zE S 2 
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In particular, when q=-O, and S2=B,,(R), we have 

f~ / -:(x, s,) ~ R 2 
x(R) J S t 

Proof. Since F satisfies (1.1), we consider 

0 = 2  r Ay- -q(y) F(y,t), 

where q0(y)=q~(r(x, y)) is a cut-off function of the distance to x alone such that 

(3.10) 

10 on Bx(k) 
q~(Y) = outside Bx(2k), 

and IVq0[~<3/k. Integrating the right hand side of (3.10) by parts and using the boundary 

condition on H, we get 

O=-4fffq~egF(VcP, VF)-2fo~fcp2egF(Vg, VF) 

-2fo'f  e',Ve, +fo'f,, 2e'F2g, (3.11) 

-fMq J2e~F2 ,=+fM~2e~F 2 ,=o-2fotfcp2egF2q �9 

By the Schwarz inequality, 

-2fo'f  e'F<Vg, 
Combining this with (3.8) and (3.10), we deduce that 

O<~-4fffcPegF(Vq~,VF)-fMqflegF2 +~ ~ 2 e g F 2  . 
/=l" . IM t=O 

Letting k--+oo, since [Vq01~<3/k, the first term on the right hand side of the above 

inequality vanishes by virtue of the fact that its integrand is L 2. Hence, 

f exp(g(x,Y,r))F2(y,r)dy<~fMexp(g(x,y,O))F2(y,O)dy. 

Observing that 
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fH(x, y, T) if y E S l 
F(y, 0) = ~0 if y r S~, 

and (3.7), 

f exp(g(x,y,O))F2(y,O)dy<~supexp(-20(x,z,(l+26)T))fsH2(x,z,T)dz. 
zESI 1 

On the other hand, 

fuexp  (g(x, r)) F2(y, r) dy y, 

/ exp (g(x, y, r)) F2(y, r) dy >>. 

J S  2 

~> inf exp (-20(x, z, (1 +26) T-r)) [ F2(y, r) dy. 
z E 82 JS2 

This proves the lemma. 

It is now convenient for us to introduce the following notations: We define 

O~(x, S, t) = sup O~(x' z, t) 
zES 

and 

_Qa(x, S, t) = inf Oa(x, z, t) 
zES 

for any subset S~_M. 

THEOREM 3.1. Let M be a complete manifold without boundary. Assume the Ricci 

curvature of M is bounded from below by -K ,  for some constant K>>.O. We also 

assume that there exists a point p E M, a constant 0, and a function y(r), such that 

and 

[Vq[ (x) ~< ?(r(p, x)) 

Aq<~O 

on M. Then for x, y E M and t E (0, oo), the following estimates are valid: 

(i) l f  K=O, and 

lim ~,(r) = r, 
r-,| r 
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H(x, y, t) <~ (I +6)nv-I/2(SI) V-In(S2)exp (C5(g213+0 112) 6(I+6) t) 

xexp (20(x, S 2, 6(1 +6) t)) exp (0(Y, Si, 60) 

• (-Q(x, $1, (I+26)(1+6) t)) 

for any 6>0, and any subsets Sl, S2~_M whose volumes V(SO and V(S2) are.finite. 

(ii) I f  F(r)<~yo, for some constant Fo, then 

H(x, y, t) <<. (1 +6)nav-I/2(SI) V-II2(s2 ) e x p  [C6(Y02/3 + 01/2 + ( a  - 1)-tK) 6(2+6) t 

+~a(x, S 2, 6(I +6) t)+0~(Y. S t, 6t)+O(x, S 2, 6(1 +6) t) 

-_~(x, S~, (1 +26) (1 +6) t)], 

for any a E (1,2), 6>0, and any subsets $1, S2c_M with finite volumes. 

Proof. We will only prove (i), while the proof of (ii) follows similarly by using 

Corollary 2.3 instead of Corollary 2.2. 

To prove (i), we apply Theorem 2.2 to the function F(y, t) of Lemma 3.2. This 

yields 

( fs  H2(x, z, T)dz)  2= F2(x, T) 

~-< (I +6) n exp [2C5(t~ + 0 I/2) 6T+20(x, S 2, 6T) 

+ 20(x, S 2, 6T)-2Q(x, S i(1 +26) T)] ~s~ H2(x' z, T) dz V-~($2), 

by setting r=(1+6)T in Lemma 3.2. Applying Theorem 2.2 to the function H(x, z, T) 

and setting T=(I+6)t,  we obtain 

H2(x, y, t) <<. (1 +6) 2n exp [2C5(rv3 + 0 v2) 6(2+6) t 

+40(x, S 2, 6(1+6) t)+ 20(x, Sm, 6t) 

- 2~__ (x, $1, (1 +26) (1 +6) t)] V-l(Sl) V-l(S2). 

The theorem follows by taking square root of both sides. 

COROLLARY 3.1. Let M be a complete manifoM without boundary. I f  the Ricci 

curvature of M is bounded from below by -K ,  for some constant K>.O, then for l<a<2  
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and 0<e<l ,  the heat kernel satisfies 

[- 
r~(x, Y) ] H(x, y, t) <~ C(e)~V-l/2(Bx("v/--f-)) V-l~(By(V-i-)) exp/C7 e(a-  1)-lKt 

L 

The constant C 7 depends only on n, while C(e) depends on e with C(e)--->oo as e--->O. 

When K=0, the above estimate, after letting a->l, can be written as 

H(x, y, t) <- C(e) V-l(Bx(Vr--i-)) exp [-r2(x'(4+e) y)t ]" 

Proof. Setting y0=0=0, S 1 =By(X/T), and S2=Bx(~/'-i-) in the estimate of Theorem 

3.1 (ii), we have 

H(x, y, t) <~ (I +6)"aV-I/2(Bx(V~-)) V-I/2(Br(V~-)) 

xexp [C6(a- 1)-1K6(2+6) t+2Oa(x, Bx(V~-), 6(2+6) t) 

+0a(Y, By(~/-7-), 6t)-_Q(x, Br(~-/-), (1 +26) (1 +6) t)]. 

Since q~0. 

2Oa(x, B~(V'7), 6(2+6) t) = ar~(x, z)  _ a 
sup 

zeBx(x/7- ) 26(2+6) t 26(2+6) (3.12) 

Similarly 

a 

do(y, B,(V-Y), 60  - 46 (3.13) 

and 

O(x, Br(V'-i-), (1 +26) (1 + 6) t) = inf rZ(x, z) 
- zeSt(x/7- ) 4(1 +26) (1 +6) t" 

If x E By(V-'T), then 

O(x, By(V-f-),(l+26)(l+6)t)=O>.. r2(x,y) 1 
- 4 t  4 

(3.14) 

(3. ! 5) 

On the other hand, i f  x r  i .e. r(x, y)>X/--/-, we have 

p(x, By(V~-'), (1 + 26) (1 + ~) t) = (r(x, y )"  V-T) 2 
- 4(1+26) (1+6) t" 

(3.16) 
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Applying the inequality 

(r(x, y ) -V"T)  2 ~> rz(x' y) t 
1+8 8 '  

and setting 4(1+28) (1 +8)2=4+e,  (3.16) becomes 

e(x, By(V'-t--), ( 1 + 28) (1 + 8) t) I> rz(x' y) 
- ( 4 + e )  t 

I+6 

4e6 " 

In any case, this together with (3.12), (3.13), and (3.15), proves the first estimate as 

claimed, To show the second estimate, we apply a volume comparison theorem (see 

[5]), which states that if O<RI<R2<R3, then 

V(Bx(R2)) V(K, R 2) 
~< (3.17) V(Bx(RI)) V(K, RI) 

and 

V(Bx(R3)-Bx(R2)) V(K, R3) - V(K, R z) <~ 
V(Bx(R1)) V(K, Rl) ' 

where V(K, R) is the volume of the geodesic ball of radius R in the constant -K/(n- I) 

sectional curvature space form. 

To estimate V(Bx(V:--i-)) by V(By(~:-i-)), we consider the following cases: 

(a) If V-T>2r(x, y), then 

V(Bx(V'--i-)) V(nx(VS--r(x, y))) V(O, v-i-) 
V(O, ~/"-i--r(x, y)) 

<~ V(By(V'--i-)) : ~ ]n 
\ ~ -  r(x, y) / 

<~ 2"/zV(By(V--f-)). 

(b) If V'-/-<~2r(x, y), then 

V(BI(V--t-)) <~ V(Bx(V,--i-/4)) V(O, v--i-) 
v(o, V-Y/4) 

<~ V(By(r(x, y) +V:"/-/4)) (4 n) 

<~ 4nV(By(V--i-/4)) V(0, r(x, y)+V-7-/4) 
V(O, k/--]-/4) 

<< 4nV(By(V,--i-)) : 4r(x, y)+ V'--f-.~". 
\ v-i- / 
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Hence 

:4 r(x, y) + / -r2(x, y) '~ 
H(x'y't)<~ C(e)V-I(Bx(V'-i-))\ ~ l )nexpk  (4+e)t ] 

/ -r2(x, y) 
exp 

by readjusting the constant C(e). Now setting 4+2e to be 4+e, we also derive our 

estimate as claimed. 

It is by now clear that the following theorems follow in exactly the same manner as 

Theorem 3.1 and Corollary 3. I. Of course, in each case, one uses Theorems 2.3 or 2.1 

instead. 

THEOREM 3.2. Let M be a compact manifold with Ricci curvature bounded from 

below by - K ,  for some constant K>~O. We assume that the boundary o f  M is convex, 

i.e. 111>0. Then the fundamental solution H(x,y, t) o f  the heat equation 

with Neumann boundary condition 

must satisfy 

On 
= 0 ,  

Ov 

r ?(x, Y) ] H(x, y, t) <~ C(e)aV-l/2(Bx(V'--i-)) V- J/2(By('V"~')) exp [C 7 e(a-  1)-lKt 

for all l < a < 2  and 0 < e < l ,  where the constant C(e)---)oo as e---)O. When K=O, after 

letting a->l, this estimate can be written as 

/ - r2(x, y) 
H(x,y,  t) <~ C(e) V-I(Bx(V"7")) exp k (-T~e) t ]" 

THEOREM 3.3. Let M be a complete manifold without boundary. Assume p E M 

and let Bp(2R) be the geodesic ball o f  radius 2R centered at p. We denote -K(2R), with 

K(2R)>>-O, by a lower bound o f  the Ricci curvature on Bp(2R). We also assume that q is 

a C 2 function on M with 

Aq ~< 0(2R) 

and 
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IVql ~< ~,(2R) 

on Bp(2R). Then for  any ct>l,  x, yEBp(R), $1 and $2 any subsets 

fundamental solution H(x, y, t) o f  the equation 

( A - q - ~ t t )  u(x, t) = O 

must satisfy 

where 

H(x, y, t) <~ (1 +6)"V--IrZ(Si) V-lrZ(S2) exp (A6(2+6) t) 

x exp [0a,~(x, $2,6(1+6) t)+Oa,R(y, Si, 6t) 

-0(x,  S 1 , (1+26) (1+6) t)+O(x, S 2, 6(1+6) t)] 
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of  Bp(R), a 

A = CT[aR -1X/K+a3(a - l)-IR-2+yZ3(ct - 1)v3a-v3+(aO)V2+a(a - 1)-lK]. 

The estimate given by Theorem 3.1 can be written in a more comprehensible form 

when the potential is nonnegative. In fact in this case, we see that 

O(x, y, t) ~ r2(x' y) 
4t 

This ensures that Q(x, y, t) is a proper function in the y-variable. 

COROLLARY 3.2. Let  M and q satisfy the hypothesis o f  Theorem 3.1. We also 

assume that q is nonnegatioe. The following estimates hold: 

if(i) of  Theorem 3.1 is valid, then for  all a>0,  

H(x, y, t) <~ ca(e) V-v2(Sa(x , t)) V-IrZ(Sa(Y, t)) 

Xexp [C s e(r2/s+ 0 v2) t - (1 +e)-lO(x, y, t)], 

for  all 0<e<�89 

/ f  (ii) o f  Theorem 3.1 is valid, then 

H(x, y, t)<~ C(e)~ t)) v-ll2(Sa(Y, t)) 

x exp [ C 6 ( ~ o 3 + 0 1 ~ + ( a  - 1)-~K) t-(1 +e)-~0(x, y, t)], 

for  all 0<e<�89 and 1 <~a<~2. 
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In both cases, C(e) is a constant depending on n and e with C(e)---~ as e--*O, and 

Sa(x, t )={zE mlQ(x, z, t)<.a}. 

Proof. We will only give the proof of (ii), while (i) follows identically. By the 

nonnegativity of q, we observe that if q<~tz, then 

f0 f0) O~(x,y, t,) = inf~ ---q-a [~,12+tl q 
y [ 4tin 

= i n f ~  tit2 (~t2 fo I [~,12+t 2 fo I q ) - f a t ~ - t  ~ l f  } 
t t, \ t, ' J  3o q 

(3.18) 

= i n f ~ a t 2 ( ~ t 2  fol f0' ) }  y t t, 1~'12+t2 q 

ctt 2 
= O(x, y, t2), 

tl 

for all a~>l. By Theorem 3.1 (ii), if we set Sl=Sa(Y, t) and S2~-Sa(x, t), we only need to 

estimate the following: 

Oa(x, S a(x, t), 6(1+6) t) ~< 
6(I+6) 

O(x, Sa(X, t), t) <<- - -  
( t a  

6(1+6)' 

and similarly 

Oa(Y, Sa(Y, t), 60 ~< aa 
6 '  

and 

Finally 

~(X, Sa(x , t), 6(1 +6) t) ~< 
6(1+6) " 

I 
_O(x, Sa(y, t), ( 1 + 26) ( 1 + 6) t) ~> (1 + 26) (1 + 6) '-0(x' Sa(Y' t), t). 

If x E Sa(y, t), then we observe that 

_O(x, Sa(Y, t), t) ~ 0 >- O(x, Y, t ) -  1. 

On the other hand, if x ~ Sa(Y, t), then for any z E Sa(Y, t), we claim that 

0(x, z, t) ~> • y, (1 +e) t)-O(y, z, et). (3.19) 
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y(s) = f ~ )'l((1 
+e) $),  

L)'2(( l+e)e-ls-e-~) ,  

Indeed, if )'! and )'2 are the minimizing curves for O(z, x,  t) and 0(Y, z, t) respectively, we 

reparametrize )'1 U)'2=)' defined by 

1 
if 0_.< s < - - . - -  

l+e  

if-l--1 ..< s ...< 1. 
l+e  

Clearly y(0)=x and y(1)=y, hence 

Y0 O(x,Y, ( l+e) t) ~ < 4(1 +e)-----~ l~12+(l+e) t qO'(s)) 

- l+e  fo' (l+e)t fo' 4( l+e) t  I~d2~ l+e  q()'O 

(l+e) e- '  f0' fo' 4 4( l+e) t  ]~212.F ( l+e ) t  
( 1 + e) e - 1 q() '2)  

= O(x, z, t)+Q(y, z, et). 

Therefore (3.19) is valid. To conclude the proof, we simply apply (3.18) again and 

deduce that 

p(x, z, t) I> (1 +e)-lO(x, y, t)--e-lQ(y, Z, t) 

/> (1 +e)-lQ(x, y, t)--e-la, 

for all z E Sa(Y  , t ) .  

w 4. Lower bounds of fundamental solutions 

The goal of this section is to derive lower estimates on positive fundamental solutions 

of the equation 

where q is a C 2 function on M. 

When q--0, Cheeger-Yau [6] proved a lower estimate of the heat kernel in terms of 

the kernel of a model. In particular, they showed that if the Ricci curvature of M is 

bounded from below by - K  with K~0,  then the heat kernel of M is bounded from 

below by the heat kernel of the constant curvature simply connected space form with 
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sectional curvature identically - ( n - 1 ) - l K .  In Theorem 4.1 below, we will prove an 

estimate which is different from that of Cheeger-Yau. When K=0, this estimate which 

we will derive is sharp in order, especially for large t. However, when K>0, our 

estimate does not seem sharper than that in [6]. In view of this, we will only prove the 

theorem for K=0.  

THEOREM 4.1. Let M be a complete manifold without boundary. Suppose the 

Ricci curvature of  M is nonnegative, Then the fundamental solution of  the heat 

equation satisfies 

[ - r2(x, y) 
H(x,y, t) >>- C-'(e) V-'(B~(V~/-)) exp k (-4~-e)t J 

where C(e) depends on e>0 and n with C(e)--+oo as e--+O. Symmetrizing the above 

estimate, we also have 

/ -:(~, y) 
H(x, y, t) >~ C-'(e) V-'~(Bx(V-F)) v-'~(/~,(VT-)) exp ~, ~ ]. 

Proof. By Theorem 2.2, we have 

/, (:) (mH(z,Y,(1-d)t)~V(Bx(R))H(x,y, t)(1-d)-"/2exp - ~  . (4.1) 

We will estimate the left hand side of (4.1). Let the function ~(z) be defined as 

rp(z)=q~(r(x, z)) which is a function of r(x, z) with 

{~ on Bx(X/]=-~R) 

~(r(x, z)) = outside B~(R), 

0~<tp~<l, and Ocp/ar<O. If we let 

F(y, t) = fM q~(r(x, Z)) H(Z, y, t) 

be the solution of the heat equation with tp(r(x, y)) as initial condition, then 

fs  H(z, y, t) F(y, t). >I 
x(R) 

TO estimate Fly, t) from below, we apply the method of Cheeger and Yau in [6]. 

We will simply outline the argument as follows: 
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Let/~(r, t) be the solution of the heat equation in R" with initial data 

t~(r, 0)  = ~o(r), 

where r is the distance to the origin. Since tp is a function of the distance alone, one 

verifies that F must also be a function of r for any fixed time. Hence, the notation/~(r, t) 

is valid. By the argument in [6], we conclude that 

F(r(x, y), t) ~< F(y, t), (4.2) 

provided we can justify the assumption 

~r( r, t)<~O 

on R"x[0, oo). However, by rotational symmetry of F', we see that 

for all t. Also 

and 

OP 
(0, t) -- 0 (4.3) 

Or 

aP _ am 0--7 (r, o) - ~ ~< o, (4.4) 

aP 
lira ~ r ( r ,  t )=  0. (4.5) 

for all t, since ~p' has compact support. Moreover OF~Or satisfies the differential 

equation 

[--~ +(n-1)r-i~-(n-l)r-2-~l<~r o'_1 ~aP = O. 

Applying the maximum principle for parabolic equations on [0, oo)x [0, oo), and in view 

of the boundary conditions (4.3), (4.4), and (4.5), we conclude that 

aP 
<~0. 

Or 

Therefore, (4.2) is valid. Hence 

F(y,t)>~(4~tt)-~fRcP(l~l)exp(--i47~12)dL 
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with ffl=r(x, y). Combining with (4.1) and setting R=X/--i-, we have 

H(x,y,t)~C(~)V(Bx(~Cr-i-))t-n/2f~ exp ( -lY-Zl2 ) d~ 
i~<Vg-~t 4(1 -t~) t 

~ C(6) V(Bx(V~i-))eXp ( g(llff__~2) t ) �9 

Writing 4-e- -4(1-6) ,  the theorem follows. 

THEOREM 4.2. Let M be a compact manifold with boundary, OM. Suppose the 
Ricci curvature of M is nonnegative, and if OM~=(~, we assume that OM is convex, i.e. 
II~>0. Then the fundamental solution of the heat equation with Neumann boundary 
condition satisfies 

H(x,y,t)~C-I(e)V-l(Bx(~/--[-))exp(-rE(x'y) ) 
( 4 -  e) t 

for some constant C(e) depending on e>O and n such that C(e)--->oo as e-->O. Moreover, 
by symmetrizing, 

H(x, y, t)>1 C-l(e) V-1;Z(Bx(V'-T)) V-1/2(By(V~-))exp ( -tg(x' y) ). 
(4-  e) t 

Proof. We can apply Theorem 2.3 to obtain (4.1). Following the notation as in 

Theorem 4. l, we only need to show that 

Their difference, 

satisfies the inequality 

F(y, t) >t l~(r(x, y), t). 

G(y, t) = F(y, t)-l~(r(x, y), t), 

(A-~) G(y, t)~<0, 

in the sense of distributions. We now claim that 

G (y, t) I> 0 (4.6) 

weakly on aM for a dense subset o fx  E M. Clearly, to prove the estimate of H(x, y, t), it 
suffices to prove it on a dense subset of x E M. The general case will follow by passing 

to the limit. 
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Assume (4.6) holds for a particular x EM. To show that G(y, t)~0, we simply 

consider the function 

G(y, t), if G(y, t)~<0 
G_(y,t)= O, if G(y, t) ~ 0. 

G_(y, t) is a Lipschitz function on M and it is nonpositive. Hence 

s 1 6 3  (4.7) 

The left hand side of (4.7) can be written as 

G_(y, t )---~tt-(Y, t ) dy dt = - ~ -~ G2 (y, t ) dy dt 

f,G -(y,r)ay-l f,,, = T --f G~ (Y, O ) ay 

=• fM T)dy. 
The last equality follows from the fact that G(y, 0)=0. On the other hand, the right hand 

side of (4.7) can be calculated as follows: 

s G_(Y, t)AG(y, t)dydt = - (VG_(y, t),VG(y, t)) dyde 

+ s fMG-(y, t)~-v (y, t) dy dt 

<-----s 

Hence, we have 

-s  

Therefore G(y, T)~>0, and since T is arbitrary, this proves the required inequality. The 

estimate for such a point x will follow from the rest of the argument in Theorem 4.1. 

To prove the claim that for a dense subset of x E M, (4.6) holds weakly, we observe 

that since/? is a decreasing function of r(x, y), it suffices to show that 

8r(x, y) >>. 0 (4.8) 
8v 

13-868283 Acta Mathematica 156. Imprim6 le 15 mai 1986 
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weakly for a dense set of x E M. With this flexibility of slight perturbation of x, we may 

assume that the cut-locus of x intersects OM along a set with (n-1)-measure zero. We 

denote this set by 5e=_OM. For any yEOM-~,  there exists a unique geodesic y(s) 

joining x to y with ~(O)=x and ~(r(x, y))=y. This geodesic is the distance realizing curve 

because OM is convex. Clearly 

Or(x, y) = OrO'(s), y) 
Ov av ' 

for all s E [0, r(x, y)]. On the other hand, by the convexity of OM, 

ar(y(s), y) I> o 
av 

for s sufficiently close to r(x, y). Hence inequality (4.8) is established for y ~ 5 D which 

was claimed. 

We will now prove a lower bound for the fundamental solution of the equation 

Similar to the upper bound obtained in w 3, we have to assume that M has Ricci 

curvature bounded from below by 0 and Aq is bounded from above. 

THEOREM 4.3. Let M be complete manifold without boundary. Assume that the 

Ricci curvature of  M is nonnegative. Suppose q is a C 2 function on M with 

Aq<~O 

and 

exp (-O(x, y, t)) E Le(M). 

Then the fundamental solution, H(x, y, t), of  the equation 

A - q - ~  ufx, t)=O, 

must satisfy 

H(x, y, t) >~(4~tt)-'a2 exp ( - (  n-~-~ ) l/2t-Q(x, y, t)). 

Proof. We will first study the "geodesics" corresponding to the metric O(x, y, t). 

To do this, we assume that x is not a cut point of y, that is, for any point z in a 
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neighborhood of x, there exists a unique distance minimizing curve y which gives 

p(x, z, t) = l fo' [~'[2 +t fo' q(y(s)). 

All the theories which we will derive for the metric O(x, y, t) are parallel to the 

Riemannian situation (q=0). Hence, we will only outline the proofs, and the reader can 

consult [3] for a more detailed line by line explanation. 

We recall that by the first variation formula for geodesics, we have the geodesic 

equation given by (3.4), i.e. 

and 

Ve~ = 2t2Vq (4.9) 

V~ O(x, y ,  t)  = 1 . ~-~7(1). (4.10) 

The second variation formula for geodesics is given by 

020[v~O~--'-~IfoI(VvVTV'T)-~foI(VTV'VTV))"~-I(fo~U 2 , 

Using (4.9) with T--~, and the fact that (Vv(Vq), V)=Hessq(V, V), we have 

{~01 l i fo  I } fO 1 ~176 2 ~o-- ~1 (R,~ r, v)+ (v~ v, r) tVTVl ~ ~ + +t  Hessq (V, V). 

Moreover, by differentiating (4.9), we see that the Jacobi equation is given by 

VvVTT= 2t2Vv(Vq). 

But 

~(Vq, vv v)+ fo j (vv(Vq), v)} 

(4.11) 

Vv VT T = VT Vv T+RvT T, 
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whence we can write the Jacobi equation as 

VrVv T= Rrv T+2t2 Vv(Vq). (4.12) 

If we fix the point y and compute the second derivative of Q as a function of x, then the 

variational vector field can be taken to satisfy 

V(O) = 0 

and 

Then 

Vv v ( 1 )  -- O. 

wo: {fo V V2)+tfo HOSs  V a v  2 

--1(tl, v) ,  

which is the index form along 7 joining y to x. One checks that the basic index form 

lemma is still valid (see Lemma 1.21 in [3]). In fact, if 7 has no conjugate points, i.e. if 

there are no Jacobi fields vanishing at 7(0) and 7(s) for all s E (0, 1], and if V is a Jacobi 

field along y, then for any arbitrary vector field W along 7 with W(0)= V(0)=0 and 

WO)=V(1), 

I(V, V)<<.I(W, W). 

Up to this point, the function q is completely arbitrary. From now on, we will 

assume that q satisfies 

Aq<~O 

on M. Moreover, we also assume that M has nonnegative Ricci curvature. 

In this case, we consider el . . . . .  en, n parallel orthonormal vector fields along y. 

We define W,~s)=saei with [Wil (1)=1. By the second variation formula and the index 

form lemma, 

n 

Vyp(x,y, t) <~ E I(Wi, Wi) 
i=l 

Wi)"~ tV~W,I 2 +t E Hessq(Wi' Wi) 
i=l 

lifo' f' I t '  = - -  - S2~Ric(T, T)+ naES 2~-2 +t S2~Aq 
2t 3o j JO 
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net 2 Ot 
2t(2a--1) 2 a + l  

~< n [ a z 20t 2 ] 

"~2-] [ 2 a Z l  + n(2a-1)  " 

Choosing l<a<oo to minimize the right hand side by setting 

we have 

)] 
,,,I,+1 + , .  

~ L ~  T ~/ -n-- J 
n +(nO~ 1/2 =-~ ~ - / .  

(4.13) 

This inequality, as it stands, is only valid when y is not a cut point of x. However, 

following an argument of [5] and [27], and using the fact that (4.10) implies that the 

gradient of 0 points into the cut locus, inequality (4.13) holds on M in the sense of 

distributions. 

To complete the proof of the theorem, we simply compute 

(A-q--~)(4ztt)-n/2exp(,(n-~)'/2t-O(x,y,t)) 

~ (4stt ) -~/2 exp ( - ( n~--~ ) l/2 t - O (x" y ' t ) ) [ I VO [2 - Ao - q + -~t + / nO \ '/2 ) +O,J 

I>0, 

in the sense of distributions. Since 

/ /nO\ 11~ ) 
lim(4ztt)-'a2exp~-t2--},--,o t-O(x, y, t) = fx(Y), 

it follows from the fact that exp ( -0 )  is in L2(M) and from Duhamel's principle that 

H(x, y, t) >~(4ztt)-m2 exp ( - (  n-~--~ ) l/2t-O(x, y, t)). 

We point out that the L 2 assumption of exp ( -0 )  is rather mild. In particular, if q is 
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bounded from below by a constant q0, then 

exp (-o(x '  y' t)) <~ exp ( r2(x' tq~ 

which is clearly L 2 on a manifold with nonnegative Ricci curvature. 

w 5. Heat equation and Green's kernel 

We will utilize the Harnack inequality, the upper and lower estimates of the heat kernel 

to derive some properties of  the heat equation and Green's kernel on a complete 

manifold. Later on, we will also apply our upper bound to obtain estimates on 

eigenvalues and Betti numbers for compact manifolds. 

THEOREM 5.1. Let M be a complete manifold with Ricci curvature satisfying 

Ric(x) >~ -Cgr2~,x)  

for some constant, C9>0, where r(p,x) denotes the distance from x to some fixed point 

p E M. Then any solution u(x, t) o f  the heat equation 

on M x  [0, ~)  which is bounded from below is uniquely determined by its initial data 

u(x, O) = Uo(X). 

Proof. We may assume, by adding a constant to u(x, t), that u(x, t)~O. Let us first 

prove that u(x, t) is uniquely determined when Uo(X)--O. In this case, we will show that 

u(x, t)~-O. 

First, we observe that by defining 

f0,  if 0 ~  < t ~  < 1 
u(x, t) [ u(x, t -1) ,  if t ~  l 

on M x  [0, oo), v(x, t) is a weak solution of the heat equation 

By regularity, v(x, t) must, in fact, be a smooth solution. Applying the Harnack 

inequality to v(x, t), we conclude that 
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where 

to)[t ) exp A(to-t)+ 4(to-t)/ 

A <~ CT[2aCi912+a3(a- 1)-lr-2(x, p ) + 4 a ( a -  1) -I C 9 r2(x, p)]. 

In order to obtain the above estimate of A, we have used the curvature assumption. 

Setting a=2 ,  and l<~t<~to/2, we have 

o(x, t) <~ o(p , to) C( to) exp ( C( to) rZ(x, p) ) 

for all x ~ M .  Since 0 - 0  on Mx[0,  1], the above growth estimate is valid on Mx[0,  to/2]. 

Applying the uniqueness theorem in [!5], we conclude that v=0 on Mx[0,to/2]. 

However to is arbitrary, this shows that v----0 on M x [ 0 , ~ ) ,  and hence u - 0  on 

Mx[0,  ~), as claimed. 

To prove the general case uo(x)>.O, we observe that by the maximum principle, the 

solution Uk(X, t) of the heat equation with initial data 

u~(x, o) = 9k(r(p, x)) uo(x) 

satisfies 

uk(x, t) ~ u(x, t), 

if q~k(r(p, x)) is a cut-off function with 0~<q0k<~l, and 

1, if r ~ k  
~~ 0, ifr~>2k. 

We now claim that Uk(X, t)--*U(X, t) uniformly on compact subsets of M. Indeed, since 

O~uk<~u, and by the monotonicity of uk in k, the sequence must converge uniformly on 

any compact subset to some solution v(x, t) of the heat equation with v(x,O)=uo(x). 

However, Uk<.U, V<~U on M• ~). Applying our uniqueness argument to u - v  which 

is a nonnegative solution with initial data (u -v ) (x ,  0)=0, we conclude Uk--,U uniformly 

on compact sets. However, the heat equation is known to preserve L2(M) and is unique 

in L2(M), whence each of the Uk is uniquely determined. Passing to the limit, so is u. 

On a complete manifold, one defines the Green's function 

G(x, y) = H(x, y, t) dt 
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if the integral on the right hand side converges. One checks readily, that G is positive 

and AG(x, y)=-cSx(y). 

THEOREM 5.2. Let M be a complete manifold with nonnegative Ricci curvature. I f  

G(x, y) exists, then there exist constants Clo and Cll depending only on n, such that 

C1o V-I(B~(V"-f )) dt<~ G(x, y) 

~ C n f :  V-I(Bx(~-J--))dt 

and 

Clo f |  V-V2(Bx(X/--i-)) V-V2(By(X/-[-)) dt <~ G(x, y) 

Cll  v-l/2(Bx(Vr--i-)) v-l/2(By(~f't-)) dt 

where r=r(x, y). 

Proof It suffices to show that 

and 

f: H(x, y, t) dt <<. Cl2 V- ~(Bx(~/-T)) dt 

H(x, y, t) dt <<. Cj2 V-t~(Bx(X/--i-)) V-I/2(By(Vr--[-)) dt. 

Indeed, by Theorem 3. I, we have 

f: f: f; G(x,y)= H(x,y,t)dt<~ H(x,y,t)dt+ H(x,y,t)dt 

f: ::~ ~ H(x, y, t) dt+Clo I,'- ~(B~(VT)) dt 

and similarly 

:o G(x, y) <~ H(x, y, t) dt+C n V-l/2(Bx(~/-'-i-)) V-l/2(By(Vr--f )) dt. 

(5.1) 

(5.2) 
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Moreover, the lower bound of G follows by applying Theorem 4.1 to the inequality 

f; G(x, y) >t H(x, y, t) dt. 

To prove (5.1), we apply Theorem 3.1 to get 

for2H(x, y, t) dt <- Cto for2 V-'(Bx(X/-~))exp (-~-t ) dt. 

Letting s=r4/t, where r2<~s<~, we have 

ff V-'(Sx(V-i-))exp( t )dt= --~ ds. 

On the other hand, the comparison theorem (3.17) yields 

ov , 

Hence (5.3) becomes 

v(o ) 
v(o, r 

- V(B 
X " 

fo r2 fr ~ - s  H(x,y,t)dt<~Clo v-l(Bx(~/--s-))(~)2-nexp(-~r2)ds. 

However, the function 

(5.3) 

T H E O R E M  5.3. Let M be a compact manifold with or without boundary. I f  SM:#(~, 

we assume that it is convex, i.e. II~>0. Suppose that the Ricci curvature of M is 

nonnegative. Let {0=po<pl~<p2~<...} be the set of  eigenvalues of  the Laplacian on M. 

When OM*(~, we denote the set of  Neumann eigenvalues also by {0=fl0<]Al~fl2~,,.} 
and the set of  Dirichlet eigenvalues by {(0<)~.1<~.2~...}. Then there exists a constant 

C13 depending only on n, such that 

Cl3(k+ 1) 2/" 
~k ~ d 2 

is bound from above, and the claim follows. The proof of (5.2) is exactly the same. 

Applying our upper bound of the heat kernel for compact manifolds, we obtain the 

following eigenvalue estimates. 



194 PETER LI AND SHING TUNG YAU 

and 

~k ~> 

CI3 k 2/n 

a~ 

for all k>~ 1, where d is the diameter of M. 

Proof. Let H(x, y, t) be the appropriate heat kernel. Since the Dirichlet heat kernel 

is dominated from above by the Neumann heat kernel, for either boundary condition, 

by Theorem 3.2, we have the estimate 

H(x, y, t) <~ Ci3 V-l(Bx(V'-i-)). 

Integrating both sides and applying (3.17), we have 

~ e-~': <'Cl3 f~V-l(Bx(V~-i-)) dt <~cl3 fMf(t) (5.4) 

where 

v ( o , ~ _  V_~(B~(d)), 

f(t) = J V(O, V t ) 
I v-'(B~(a)), 

if t ~ d  

if t>~d. 

Since V(Bx(d))= V(M), (5.4) yields 

where 

(k+ I) e -~k' <~ C13 g(O, 

l l ,  if t~d .  

(5.5) 

We multiply both sides by dkt and minimize the function d:g(t)  as follows: 

Due to the fact that 

d ( e  udg(t)) =#k e~dg(t)+e ~tg'(t), 

the function minimizes at to must satisfy 

#k g( to) = - g' ( to). 
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But g'(t)=O when t>~d, to must be less than or equal to d. Hence  

/ d \  n n /  d \ n  

and 

n 
to= ~u~" 

Substituting this value into (5.5) yields 

k+ 1 <~ Ci3(dvZ-~k) ~. 

A similar method gives estimates on 21, also. 

Remark. Obviously, using the same method as above, one can obtain eigenvalue 

estimates on compact manifolds with Ricci curvature bounded from below by - K ,  for 

some constant K~>0. In fact, the resulting lower bounds for the eigenvalues Ak and/~k 

depend only on n, K, d and k alone. 

THEOREM 5.4. Let M be a compact manifold with or without boundary, l f  OM4=~, 

we assume that it is convex. Suppose the Ricci curvature o f  M is bounded from below 

by - K ,  for some constant K>~O, and also the sectional curvatures o f  M are bounded 

from above by x>0. Let bk be the kth Betti number for either the cohomology group 

I-lk(M) or the relative cohomology group I-I~(M, OM), then there exist constants Cl4 

and Cl5 depending only on n such that 

and 

bl ~< Cl4 exp (ClsKd 2) 

bk ~< C14 exp (C15(K+~r d 2) 

for k> l, where d is the diameter o f  M. 

Proof. To prove the estimate on bl, we consider the harmonic representative of 

elements in H1(M) and H~(M, OM). The first is represented by harmonic 1-forms with 

absolute boundary condition, while the latter is represented by harmonic 1-forms with 

relative boundary condition. However, it was proved in [9] that the heat kernel 

H~(x, y, t) for 1-forms, with either boundary condition, can be dominated by 

IHl(x, x, t)[ <~ n ektH(x, x, t). 
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Integrating both sides and applying our estimate for H(x, x, t), yields 

bl <~ C14 fM V-l(Bx(X/--[-)) exp (Cl5 Kt). 

Setting t=d  2, the desired estimate follows. 

To prove the estimates for k>~2, we follow the same procedure as above for the 

heat kernel for k-forms. In [9], it was proved that f~l IHk(x, x, t) I can be estimated by 

fM IHk(x'x't)l<~(k)e'tlJM H(x,x,t) ,  

where B is a lower bound of the curvature term which arises in the Bochner formula. 

However, it is known that [12] B can be estimated by K and ~. Hence the estimates are 

established. 

w 6. The Sehr6dinger operator 

In this section, we will study the fundamental solution Hx(x, y, t) of the opertor 

A - ~ 2 q  8 

8t 

where q(x) is a fixed potential on M and 2>0 is a parameter which is varying. 

The behavior of H2(x, y, 0 as ~-->~ will be studied. In the case when M=R n, it was 

proved in [22] in relation to semi-classical approximation of multiple wells. Theorem 

6.1 gives an asymptotic behavior of H~(x, y, t) on arbitrary complete manifolds which 

enables one to push the argument in [22] through to the setting of a general manifold. 

THEOREM 6.1. Let M be a complete manifold without boundary. Suppose q is a 

C z function defined on M. For any 3.>0, we consider H~(x, y, t), which is the funda- 

mental solution o f  the equation 

( A - ~ 2 q - ~ t t )  u(x, t)=O 

on MX(O, ~). Then 

lim log Hx(x, y, t/g) 
= - O ( x ,  y ,  t) 

~-.| 2 

where O(x, Y, t) is defined by (3.3). 
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Proof. For any given x, y E M, let Bp(R) be a geodesic ball with radius R containing 

x and y. Applying Theorem 2.1 to Ha(x, y, t), we have 

(t2~ hal2 
Ha(x'x' tl)<--'Ha(x'Y' t2) \-~1] exp(Aa(t2-tl)+Qa'R;a(x'Y' t2-t ')) 

where 

Aa = C7[a R - 1 w r g +  o t 3 ( a  _ 1) - In -2 +22/3 y2/3(a _ 1) v3 a -  ~/3 + (aO)1/22 + a ( a -  1)- IK]  

with K, O, and ~, as defined in Theorem 2.1. Also Qa.R,a(x, y, t) is the metric defined by 

(3.1) with 22q replacing q. Taking log of both sides, we have 

log HA(x, x, tl/2) 

2 

logHa(x, Y, t2/2) na t2 + Aa(t2-tl) Qa, R;a( x, Y, (t2--tl)/2) 
~< 2 + - ~ - l ~  2 2 ~ 2 

Letting 2--+ ~,  and observing that 

Qa.R;a(x, y, t/2) 
2 = Qa, R(x, y, t) 

and 

we conclude that 

log Ha(x, Y, t2/2) 
lim 
a~ |  2 

lim Aa a-,| ~ = 0, 

t> lim l~ x, ti/2) 
2--*= 2 

~a,R(x, y, t2-tl). (6.1) 

Letting R--+oo, and a---~l, this gives 

log HA(x, y, t2/2 ) 
lim 
a--,oo 2 

log Ha(x, x, tl/2) 
I> lim p(x, y, t2-tl). (6.2) 

a--,= 2 

We now claim that 

log HA(x, x, tl/2) 
lim lim I> 0, 
tl----~0 a--~ 0o 2 

and the lower bound will follow. Indeed, if qo>-q on Bp(2R), then the kernel 

c-q~ y, t) satisfies the equation 
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with l:l(x, y, t) being the heat kernel with Dirichlet boundary condition on Bp(2R). 

Hence, by the assumption qo>~q and the maximum principle, 

H~(x, y, t) ~- e n[x,  y, t) 

on Bp(2R) XBp(2R) x [0, oo). In particular 

log Ha(x, x, tl/2 ) log/at(x, x, t l/2 ) 
I> -qo  t~ § (6.3) 

However, by the asymptotic formula for l=l(x, x, t) as t---~0, 

lim 
,t--,| 

log f l(x,  x, h/2) I ( l o g H ( x , x ,  tl/g.) 
= 4-,| ~ \- ~ = O. 

Hence, after letting ,~---~, (6.3) becomes 

lim logHx(x, x, tl/2) 
>~ -qo tl, 

and the claim follows by letting h---~0. 

To establish the upper bound, we employ Theorem 3.3, which gives 

log H~(x, y, t/g ) 
~< 2 -I log (1 +6) n V-1/2(SI) V-In(S2)+2-2Ax 6(2+6) t 

2 

+Oa, s(x, $2,6(1+6) t)+Oa, R(y, S I, 60 

+ O(x, $2,6(1+6) t)-_O(x, S~, (1+26) (1+6) t). 

(6.4) 

Letting 2-.0o, then a---~l and R---~oo, we get 

lim log Ha(x, y, t/A) 
~< 20(x, S2, 6(1 + 6) t )+O(Y,  S I , 6t)-_Q(x, S 1 , (1 +26) (1 +6) t). 

~--,| 2 

Sett ing S2---{x ) and S~={y}, we derive the inequality 

lim 
~--,| 2 

log Ha(x, y, t/2 ) 
<~ 20(x, x, 6(1 +6) t)+Oty, y, 6t)-O(x, y, (1 +26) (I + 6) t). (6.5) 

On the other hand, taking F: [0, 1]---~M to be the trivial curve with y(s)=x, we see that 

O(x, x, t) <~ tq(x). 

Hence, by letting 6---~0 in (6.5), the upper bound follows. 
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Remark. Since the techniques used in the above theorem are completely local in 

nature, Theorem 6.1 is still valid when the manifold is compact with or without 

boundary, for any boundary condition. In the case when OM*f~, we need a version of 

the Harnack inequality which is valid for any points which are e distance away from 

aM. Such a Harnack inequality can be derived using the method employed in w 1 and 

w 2. In that case, the estimate will depend on e and the geometry of aM. 

Appendix 
We will establish the fact that the function O(x, y, t) defined in w 2 is Lipschitz for a 

locally hounded potential function q. Let r be the geodesic distance between y and z in 

M and Y2 be a geodesic joining y to z which realizes distance. For any e>O, we can find 

a curve Yl parametrized by s E[O, 1] joining x to y such that 

O(x, y,t)+e >~l  fo' ly,, ds+t fo' q(F,) ds. 

We define a new curve 7 by 

y(s) = IY, ( i ~ r ) ,  if0~<s<-- l - r  

~72(s+r-1) ,  if 1-r<~s<~ 1. 

Clearly ~s )  is a curve joining x to z. Hence 

| yO 1 fO I O(x, Z, t) <~ -4t 1~'12 ds + t q(y(s) ) ds 

fo ,-r <1_ i~ql2(l_r)_2 ds+ 1~,212 ds+t qOq(s)) ds+trqo ' 
4t -r 

where q0 is the supremum of Iql in a neighborhood containing the curve y. By a change 

of variable, the above inequality yields 

l f01 ~t f01 O(x, Z, t) <~ 4t(l-r-----~ ]Fl[2ds+ +t(1- r )  q(?l(s)) ds+trq o 

l ( ~ _ r )  f01 +r = l_r(O(x,y,t)+e)+ l - r -  t q(?l(s))ds -~+trqo. 

Hence 

r 
O(x,z,t)_O(x,y,t)<~_~_rO(X,y,t)+ e r tqo+ r 

1 - r  1 - r  -~" 
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Letting e-->0, and using 

PETER LI AND SH1NG TUNG YAU 

Q(x, y, t) <~ r2(x' y) +tq o, 
4t 

we conclude that  if r(y, z)~<�89 then 

O(x, z, t ) -O(x,  y, t) <. r(y, z) " C, 

where the constant  C depends  on qo, t, and r(x, y). Reversing the role of  y and z yields 

the desired Lipschi tz  p roper ty  of  O(x, y, t). 
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