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ABSTRACT

The behavior of Catmull-Rom curves heavily depends on the
choice of parameter values at the control points. We ana-
lyze a class of parameterizations ranging from uniform to
chordal parameterization and show that, within this class,
curves with centripetal parameterization contain properties
that no other curves in this family possess. Researchers
have previously indicated that centripetal parameterization
produces visually favorable curves compared to uniform and
chordal parameterizations. However, the mathematical rea-
sons behind this behavior have been ambiguous. In this pa-
per we prove that, for cubic Catmull-Rom curves, centripetal
parameterization is the only parameterization in this fam-
ily that guarantees that the curves do not form cusps or
self-intersections within curve segments. Furthermore, we
provide a formulation that bounds the distance of the curve
to the control polygon and explain how globally intersection-
free Catmull-Rom curves can be generated using these prop-
erties.

Categories and Subject Descriptors

I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object rep-

resentations

1. INTRODUCTION
Catmull-Rom curves are widely used in graphics for a va-

riety of applications ranging from modeling to animation.
These parametric curves have three important properties
that make them so popular. First, the curves are smooth and
interpolate their control points, which gives the user direct
control over various points on the curve. Second, the curves
have local support, so that each control point only affects
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a small neighborhood on the curve. Finally, Catmull-Rom
curves have an explicit piecewise polynomial representation,
allowing them to be easily be converted to other bases and
manipulated computationally.

Perhaps the most popular parameterization of Catmull-
Rom curves is a uniform parameterization (i.e. the control
points are equally spaced in parametric space). However,
this choice of parameterization does not reflect the Euclidean
distance between control points well. For curves with dif-
ferent length segments, this parameterization can lead to
artifacts such as cusps and self-intersections, which occur
frequently (Figure 1a). Moreover, the distance of the curve
from the control polygon can be unbounded, which makes
these curves difficult to control in practice.

(a) Uniform

(b) Chordal

(c) Centripetal

Figure 1: Cubic Catmull-Rom curves with (a) uni-
form, (b) chordal, and (c) centripetal parameteriza-
tion. While uniform and chordal parameterizations
can produce self-intersections, centripetal parame-
terization is the only one that guarantees no self-
intersections within curve segments.



(a) (b) (c) (d)

Figure 2: Catmull-Rom curves generated using the same control polygon (a) with different parameteriza-
tions. Uniform parameterization (b) overshoots and often generates cusps and intersections within short
curve segments, while chord-length parameterization (c) exhibits similar behavior for longer curve segments.
Centripetal parameterization (d) is the only one that guarantees no intersections within curve segments.

An alternative is to automatically create the parameter-
ization of the curve from its geometric embedding in Eu-
clidean space. Doing so gives rise to other known curve
parameterizations such as chordal and centripetal parame-
terizations (Figure 1bc). However, like uniform parameteri-
zation, most parameterization choices still produce the same
artifacts observed with uniform parameterization (cusps,
self-intersections, etc...).

Researchers have previously compared uniform, chordal,
and centripetal parameterizations for various curves [3, 4,
6, 8] and observed that, among these three parameteriza-
tion choices, centripetal parameterization produces visually
favorable curves. Yet, the reasoning behind this preference
has been limited to informal explanations based on intu-
ition, rather than a more formal mathematical explanation.
Floater [5] does provide some evidence that, among these
three parameterizations, centripetal parameterization pro-
duces curves closer to the control polygon for cubic splines
than uniform or chordal parameterization. However, cen-
tripetal parameterization can be considered as just one
choice within an infinite family of parameterization choices
between uniform and chordal. Therefore, there may exist
some other parameterization that would produce even more
favorable results than centripetal parameterization.

In this paper, we concentrate on cubic Catmull-Rom
curves and analyze the full class of parameterizations rang-
ing from uniform to chordal parameterization, such that the
parameterization is a function of the length between two
consecutive control points. We show that centripetal param-
eterization, which is at the center of this class, inherits some
important properties that no other parameterization in this
class possesses for these curves. We mathematically prove
that centripetal parameterization of Catmull-Rom curves
guarantees that the curve segments cannot form cusps or
local self-intersections, while such undesired features can be
formed with all other possible parameterizations within this
class. Furthermore, we provide a formulation that bounds
the distance between the control polygon and the actual
curve. Based on these two properties we derive rules to
achieve globally intersection-free Catmull-Rom curves.

2. BACKGROUND
Catmull-Rom curves were first described in [2] as a

method for generating interpolatory curves with local sup-
port by combining Lagrange interpolation and B-spline basis
functions. Barry and Goldman [1] exploited this relationship
to show how to construct non-uniform Catmull-Rom curves
by factorizing the computation into a pyramid. Let Pi ∈ R

m

be the control points of a Catmull-Rom curve and each con-

trol point be associated with the parametric value ti. A Ck

Catmull-Rom curve is composed of polynomial segments of
degree 2k + 1 between consecutive control points. These
polynomial pieces are only affected by a local set of control
points. The polynomial piece of the curve between ti and
ti+1 is influenced by control points Pi−k through Pi+1+k.
Furthermore, the curve is interpolatory (i.e. at ti and ti+1,
the curve evaluates to Pi and Pi+1 respectively).

We concentrate on C1 cubic Catmull-Rom curves as they
are the simplest and most popular form of these curves. Fig-
ure 3 shows Barry and Goldman’s pyramid algorithm for cu-
bic Catmull-Rom curves that builds the polynomial C12(t)
for the curve segment between parameter values t1 and t2.
This pyramid is composed of triangles with two points at the
base and arrows with coefficients leading to its apex. This
notation should be interpreted as multiplying each point at
the base of the triangle by the coefficient on the arrow and
summing the result. From this diagram, it is easy to see
that C1 Catmull-Rom curves are cubic polynomials as there
are 3 levels in this pyramid and each adds a single, linear
factor.

C12
t2−t

t2−t1

t−t1
t2−t1

L012 L123
t2−t

t2−t0

t−t0
t2−t0

t3−t

t3−t1

t−t1
t3−t1

L01 L12 L23
t1−t

t1−t0

t−t0
t1−t0

t2−t

t2−t1

t−t1
t2−t1

t3−t

t3−t2

t−t2
t3−t2

P0 P1 P2 P3

Figure 3: Cubic Catmull-Rom curve formulation.

Notice that Barry and Goldman’s description of the Cat-
mull-Rom curve is non-uniform and allows for arbitrary ti

values. The choice of these ti is what we refer to as the
parameterization of the Catmull-Rom curve. The behavior
of these curves depends significantly on the parameterization
as shown in Figure 2. Various parameterization methods
have been developed previously [7, 8, 10] and we analyze
a class of parameterizations described by [8] ranging from
uniform to chordal parameterization where we define the
parameter values as

ti+1 = |Pi+1 − Pi|α + ti , (1)

and t0 = 0, where 0 ≤ α ≤ 1. Note that when α = 0, the
parameterization is uniform, and when α = 1, the parame-
terization becomes the chordal parameterization. Similarly,
α = 1

2
corresponds to centripetal parameterization.



Figure 4: Control points Bj of the cubic Bézier curve
constructed from cubic Catmull-Rom curve segment
with control points Pi.

3. CUSPS AND SELF-INTERSECTIONS
Cusps and self-intersections are very common with Cat-

mull-Rom curves for most parameterization choices. In fact,
as we will show here, the only parameterization choice that
guarantees no cusps and self-intersections within curve seg-
ments is centripetal parameterization.

To determine if a curve segment of the Catmull-Rom curve
has a self-intersection, we will convert the polynomial to
Bézier form. Let P0,P1,P2,P3 be four consecutive con-
trol points of the Catmull-Rom curve with parameter values
0, dα

1 , dα
2 +dα

1 , dα
3 +dα

2 +dα
1 , where di = |Pi − Pi−1| as shown

in Figure 4. The control points of the cubic Bézier curve Bj

(j ∈ {0, 1, 2, 3}) representing this polynomial between dα
1

and dα
2 + dα

1 , reparameterized to lie in the range [0, 1] are
then

B0 = P1

B1 =
d2α

1
P2−d2α

2
P0+(2d2α

1
+3dα

1
dα

2
+d2α

2
)P1

3dα

1
(dα

1
+dα

2
)

B2 =
d2α

3
P1−d2α

2
P3+(2d2α

3
+3dα

3
dα

2
+d2α

2
)P2

3dα

3
(dα

3
+dα

2
)

B3 = P2.

(2)

A smooth curve will not have cusps or self-intersect on
the parameter range [0, 1] if there exists a line such that the
curve projected onto this line has derivative greater than
zero over that interval [9]. Our choice of projection will be
the line connecting B0 and B3 as this is the only choice
that is applicable to curves of all dimensions. Note that this
condition with our choice of projection is both a necessary
and sufficient condition for 1D curves (i.e. when the Bj are
co-linear), and is a necessary but not sufficient condition for
higher dimensions.

We will first show that parameterizations other than cen-
tripetal can produce cusps and self intersections by analyz-
ing the derivative of the curve at the endpoints. We will
then show that for centripetal parameterization, it is not
possible to produce cusps or self intersections.

Theorem 1. For parameterizations of cubic Catmull-

Rom curves other than centripetal, the projected derivative

may be negative at the end-points.

Proof. Given that our curve is a cubic and that the axis
we have chosen connects the two end-points of the Bézier
curve, we need only consider the vector B1 −B0 in relation-
ship to our chosen axis (B2 − B3 follows through symme-
try). Hence if (B1 − B0) · (B3 − B0) < 0, then the pro-
jected derivative will begin negative (the direction of the
derivative of a Bézier at its end-points is given by the vector
from the end-point to the adjacent control point). Expand-
ing this expression using Equation 2 and the property that

di = |Pi − Pi−1|, yields

d2α
1 d2

2 − d2α+1
2 d1 cos(θ)

3dα
1 (dα

1 + dα
2 )

< 0 (3)

where θ is the angle between P0−P1 and P2−P1 as shown
in Figure 4. The left-hand side of this inequality achieves
its minimum when cos(θ) = 1 and the expression simplifies
to

d2α
1 d2 < d1d

2α
2 .

When α < 1
2
, this expression is satisfied when d2 < d1.

When α > 1
2
, this expression is satisfied when d1 < d2. The

only value of α that cannot meet this inequality is α = 1
2
.

Hence, the centripetal parameterization is the only parame-
terization for which the projected derivative at the endpoint
is always positive.

Since the derivative must be positive somewhere for the
curve to reach B3 and the derivative is continuous, a neg-
ative derivative at the endpoint implies that a cusp or self
intersection can be created. Thus, centripetal parameteriza-
tion offers the only possibility for avoiding cusps and local
self intersections.

This test, however, is not sufficient to show that cen-
tripetal parameterization cannot produce cusps within a sin-
gle polynomial. We will show this property in two stages,
first by proving a general property regarding cusp forma-
tion, and then by showing that centripetal parameterization
meets the requirements of that property.

Theorem 2. A cubic Bézier curve whose interior control

points project to be within the open interval defined by the

end-points of the Bézier curve cannot have a cusp or self-

intersection.

Proof. Since Bézier curves are affinely invariant, we can
assume without loss of generality that B0 is at the origin
and B3 is on the x-axis at x = 1. The control points for
the projected curve will be univariate values as well and
the control points for the projected Bézier curve are then
(0, x1, x2, 1) where x1, x2 are the x components of B1 and
B2. Our goal is to show that this projected curve cannot
have a zero derivative over this interval.

To this end, we construct the control points of the deriva-
tive of this curve, which is a quadratic Bézier curve with
control points (3x1, 3(x2 − x1), 3 − 3x2). Our assumption
in the theorem states that 0 < x1 < 1 and 0 < x2 < 1.
Therefore, there are two cases to consider: x1 ≤ x2 and
x1 > x2.

If x1 ≤ x2, then the control points of the derivative curve
are all greater than or equal to zero and, by the convex hull
property of Bézier curves, the derivative is greater than zero.

If x1 > x2, then we can solve for the minimum of this
quadratic Bézier polynomial, which is

3(x1(1 − x1) + x2(x1 − x2))

1 + 3(x1 − x2)
.

Notice that the denominator is always positive, since x1 >
x2. Furthermore, x1(1 − x1) > 0 because 0 < x1 < 1, and
x2(x1 − x2) > 0 since 0 < x2 and x1 > x2. Therefore, the
numerator is always positive as well and the derivative is
always greater than zero.

Theorem 2, assumes that the projection of the interior
control points lies in the range (0, 1). We must show this is
the case for centripetal parameterization.



Theorem 3. For centripetal parameterization of cubic

Catmull-Rom curves, the interior control points of a cubic

Bézier curve may not project beyond the outer control points.

Proof. We can again consider only the case of B1 (since
B2 follows by symmetry). Consider the projected magnitude
of B1 − B0 onto the edge defined by the end-points of the
Bézier curve.

(B1 − B0) · (B3 − B0)

|B3 − B0|2
.

If B1 projects onto the open interval defined by B0 and
B3, then this quantity must be within the range (0, 1). By
Theorem 1, the numerator is non-negative and, hence, this
quantity is greater than or equal to 0. The case when this
quantity is equal to 0 corresponds to B1 = B0, which can
indeed happen. However, this boundary case does not in-
dicate a cusp as the derivative is only zero exactly at the
end-point. Therefore, to apply Theorem 2, we only must
show that this quantity cannot satisfy

(B1 − B0) · (B3 − B0)

|B3 − B0|2
≥ 1.

Using Equation 2 and letting r = d1/d2 be the ratio be-
tween the lengths of consecutive segments of the control
polygon, this expression simplifies to

rα − r1−α cos(θ)

3(1 + rα)
≥ 1. (4)

This expression will be maximal when cos(θ) = −1. Using
this substitution and rewriting the expression yields

r1−α ≥ 3 + 2rα.

For 1
2
≤ α ≤ 1 this expression is obviously false.

Thus, Theorem 2 guarantees that centripetal parameteri-
zation cannot produce cusps or self-intersections. Theorem
1 shows that this is the only parameterization of cubic Cat-
mull-Rom curves with that guarantee.

4. DISTANCE BOUND
A commonly desired property in all of geometric modeling

is that the control structure should provide some intuition
about the shape being modeled. One typical way that this
is expressed is that a curve should behave “similarly” to its
control polygon. Other researchers [5] have also noted that
a good interpolatory curve is one that does not deviate far
from its control polygon. Thus, we would like to have a way
to measure the possible deviation of a curve from its control
polygon.

Consider the curve segment from P1 to P2 with Bézier
points given by Equation 2. We will bound the distance
of this curve to the line segment containing its end-points.
To do so, we first bound the distance of the curve to the
infinite line containing its end-points as a lower bound to
the distance to the line segment itself.

To bound this distance to the infinite line, we first bound
the distance of B1 and B2 to this line. Again, via symmetry,
we only need to consider B1’s distance to the infinite line

h1 =

√

|B1 − B0|2 −
(

(B1 − B0) ·
(B3 − B0)

|B3 − B0|

)2

=
d2α
2 d1 |sin(θ)|

3(dα
1 + dα

2 )dα
1

Substituting r = d1/d2 yields

h1 = d2
r1−α |sin(θ)|
3(1 + rα)

. (5)

Furthermore, the distance of a cubic Bézier curve to the
infinite line containing its end-points is bounded by 3

4
the

distance of its control points to that line. Using this fact and
the property that |sin(θ)| ≤ 1, we can bound the distance h
of any point on the curve to the infinite line by

h ≤ d2
r1−α

4(1 + rα)
. (6)

Notice that, for α < 1
2
, this distance is potentially un-

bounded for arbitrary r. That is, for such parameterizations,
we cannot bound the distance of the curve from the control
polygon. However, for α ≥ 1

2
, this distance will be bounded

solely as a fraction of the length of the edge (independent
of r). For example, for both centripetal parameterization
(α = 1

2
) and chordal parameterization (α = 1) the distance

of the curve segment to the infinite line contained by its end-
points is no more than 1

4
times the length of the edge. The

minimal bound (independent of r) is achieved when α = 2
3

where the ratio is 1
8

times the length of the edge.
While centripetal and chordal parameterizations have sim-

ilar bounds to the infinite line segments, they behave much
differently in practice. For 1

2
≤ α < 2

3
, the maximal distance

ratio is achieved for r > 1 meaning that the line segment we
are bounding distance to is smaller than its adjacent line
segments (i.e. d2 is relatively small). For 2

3
< α ≤ 1, the

maximal distance ratio is achieved for r < 1, which is the
case in which the line segment we are bounding distance to
is large in comparison to the adjacent line segments (i.e. d2

is relatively large). Since the bound in Equation 6 is related
to the length of the line segment, d2, the curve using chordal
parameterization will appear farther away from the control
polygon than the curve with centripetal parameterization,
in absolute distance. In fact, for 1

2
≤ α ≤ 2

3
, the limit curve

will never be farther than 1
8

the length of the longest line
segment in the control polygon and will typically be smaller.
This effect can be seen in Figure 2, where the distance of the
chordal curve is much further from the control polygon than
the centripetal curve.

However, simply bounding the distance of the curve seg-
ment of a Catmull-Rom curve to the infinite line containing
its end-points is not sufficient to bound the distance of the
curve to the line segment of the control polygon. When the
interior Bézier points project outside of the line segment de-
fined by B0 and B3, we must consider the distance of the
control point B1 to its closest end-point. Notice that, by
the discussion in Section 3, 1

2
≤ α ≤ 1 implied that B1 will

never project outside the interval on the side of its opposite
control point B3. Therefore, we only need to consider the
length of the edge B1 − B0 to bound the distance of the
curve to the end-point of the line segment.

We start by computing the angle θ at which the vector
B1−B0 becomes perpendicular to B3−B0. This is the point
at which we must start using the distance l1 to the end-point
B0 rather than the infinite line to bound the distance to the
line segment. From the expression in Equation 3, we can
find that

cos(θ) > r2α−1 . (7)

If we compute the length squared of the edge B1 − B0, we



α = 1
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α = 1

α = 1
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Figure 5: Bounding volumes for cubic Catmull-Rom curves with different α values. Bounds in the top row
are computed using the length of the corresponding segment only, so that they represent maximum possible
bound for the segment. Bounds in the bottom row also uses the lengths of neighboring segments using
equations 6 and 8; therefore, they are more tight. Note that centripetal parameterization (α = 1

2
) does not

need circular bounds at the control points, because the curve is always confined in the boxes aligned with
the edges of the control polygon.

obtain

l21 = |B1 − B0|2 =
d2
2(r

2 + r4α − 2 cos(θ)r1+2α)

9r2α(1 + rα)2
.

Notice that this equation depends on θ and is larger as cos(θ)
decreases. Combining this equation with the inequality con-
straints on cos(θ) from Equation 7 and taking the square
root of the expression, we can bound the maximal distance
to the end-point as

l1 ≤ d2

√
r2 − r4α

3rα(1 + rα)
. (8)

This expression is identically 0 for α = 1
2

meaning that a
Catmull-Rom curve with centripetal parameterization can
be bounded solely using bounding boxes extruded in the
perpendicular direction of its line segments. However, for
α = 1, this bound can be as high as 1

3
the length of the

line segment. Therefore, for most curves we need not only
bounding boxes around line segments but spheres around
vertices to bound the curve completely. Figure 5 shows a 2D
example of such bounding volumes. The figure demonstrates
both the local bounds considering only the length of the
line segment, as well as tighter bounds achieved by a (less
local) evaluation of the lengths of adjacent segments using
equations 6 and 8.

5. INTERSECTION-FREE CURVES
Our goal here is to develop criteria that result in inter-

section free Catmull-Rom curves. There are three cases to
consider: the local case where we must avoid cusps and self-
intersections within a single polynomial, the adjacent case
where we consider intersection between adjacent polynomi-
als, and the g lobal case where different polynomial segments
not adjacent to one another may intersect.

In Section 3 we showed that by using centripetal parame-
terization we can guarantee that the curve will not contain
cusps or self-intersections within curve segments, satisfying
the local case. Also, as shown in section 4, we have a bound-
ing box that defines limits on the distance of the curve from
the corresponding segment of the control polygon. As long
as we use a centripetal parameterization and avoid overlap-
ping bounding boxes, the curve will not self-intersect. This
satisfies the global case.

Unfortunately, we cannot use the same bounding boxes to
deal with the adjacent case, since bounding boxes of adjacent

segments will always overlap. Therefore, we must have an
alternative means of ensuring that such adjacent segments
do not intersect. We do this by constructing an angular

bound on the control polygon of the curve.

Figure 6: Bézier control polygons of two neighboring
curve segments.

Consider the two Bézier curves in Figure 6 that have
control points B1

0,B
1
1,B

1
2,B

1
3 and B2

0,B
2
1,B

2
2,B

2
3 where

B1
3 = B2

0 corresponding to two different curve segments of
the Catmull-Rom curve with centripetal parameterization.
A Bézier curve lies within the convex hull of its control
points, hence our intersection criteria will simply guaran-
tee that the convex hulls do not intersect. Notice that each
convex hull (shown shaded gray in the figure) contains its
end-points. Furthermore, we can exclude the points B1

2 and
B2

1 as they are necessarily co-linear and will lie on opposite
sides of the “V” formed by the control polygon.

Therefore, we need only consider the hull formed by
B1

0,B
1
1,B

1
3 intersected with the hull formed by B2

0,B
2
2,B

2
3.

There are three cases to consider: B1
1 and B2

2 both lie on
the outside of the “V”, B1

1 is on the inside of the “V” and B2
2

is on the outside (the symmetric case follows), and the case
where both B1

1 and B2
2 are on the interior (as illustrated in

Figure 6).
For the first case, the portion of the convex hull we need

to avoid intersecting consists only of the edges of the control



polygon. It is not possible to have a self-intersection in such
cases, since the curves are bounded away from each other.

The other two cases are very similar, and so we will an-
alyze the convex hull for only one side. We will bound the
angle γ between B1

1 − B1
3 and B1

0 − B1
3. First, we compute

the length of the projection of B1
1−B1

3 onto B1
0−B1

3. Using
Equation 4, this length is given by

d2 − d2
r1−α cos(θ)

3 + 3rα
.

The ratio involving this length and the distance of B1
1 to the

line segment formed by B1
0 and B1

3 will be tan(γ). Combin-
ing this expression with Equation 5 when α = 1

2
, we obtain

tan(γ) =

√
r |sin(θ)|

3 + 2
√

r −√
r cos(θ)

.

Maximizing this function we find that γ ≤ π
6
; that is, the

curve will extend beyond the control polygon toward the
interior of the “V” within an angle of π

6
.

Therefore, when both B1
1 and B2

2 are on the interior of the
“V”, the angle that will guarantee no intersection between
adjacent curve segments is π

3
. This bound is not necessarily

tight, and we expect that a tighter bound could be gener-
ated. However, this bound, in combination with the global
intersection test from Section 4, allows us to guarantee an
intersection free Catmull-Rom curve when using centripetal
parameterization.

To summarize, we form intersection-free curves as follows:

1. We use a centripetal parameterization to avoid self in-
tersections within a curve segment.

2. To avoid intersections between adjacent curve seg-
ments, we restrict the angular bound of adjacent con-
trol polygon segments to be greater than π

6
, as de-

scribed in this section.

3. We avoid intersections between other curve segments
by not allowing overlap between bounding boxes for
non-adjacent segments.

6. DISCUSSION
As a result of our theoretical and experimental analysis,

we had several observations about Catmull-Rom curves. In
this section we discuss some general intuition related to the
use of various parameterizations on Catmull-Rom curves.

Note that all the parameterizations we consider are based
on the distance between control points. Therefore, when all
line segments of the control polygon have the same length,
all parameterizations of this family produce the same curve.
The differences between parameterization choices appear
when the control polygon has line segments with different
lengths. As the differences between the lengths of neigh-
boring segments increase, the different characteristics of the
parameterizations are amplified.

6.1 Distance to Control Polygon
In the previous sections we discussed the upper bound

for the distance between the curve and the corresponding
edge of the control polygon. In practice this distance can
be much smaller than the upper bound. In fact, for uni-
form parameterization as an edge becomes larger compared
to its neighbors, the curve becomes closer to the edge. A

similar behavior happens with chordal parameterization for
shorter edges, while longer edges push the curve segments of
the chordal parameterization closer to the upper bound. In
that sense, edge distance behavior of uniform and chordal
parameterizations are the opposite of each other. This be-
havior can be seen in Figure 7.

Figure 7: Cubic Catmull-Rom curves with parame-
terization values α ranging from 0 to 1. The green
curve is α = 0 (uniform), the blue curve is α = 1

2
(centripetal), the red curve is α = 1 (chordal), and
the grey curves are other values of α between 0 and
1 with regular intervals 0.1.

With increasing α values, for shorter edges the curve
rapidly deviates from uniform parameterization and ap-
proaches chordal parameterization curve slowly. On the
other hand, for longer control polygon segments, as α in-
creases, the curve slowly deviates from uniform parame-
terization and rapidly approaches chordal parameterization
with large values of α. This behavior is demonstrated in Fig-
ure 7. Therefore, the result of centripetal parameterization
is relatively closer to uniform parameterization for longer
edges, and closer to chordal parameterization for shorter
edges. As a result, curves with centripetal parameteriza-
tion are closer to the control polygon than others when the
entire curve is considered.

6.2 Cusps and Self-Intersections
Uniform parameterization often produces cusps or self-

intersections within curve segments. Even when there are
no cusps or intersections, uniform parameterization tends
to produce high curvature points along shorter segments,
which are usually undesirable in practice.

As α increases, such features become less likely to ap-
pear. As we show in Section 3, when α > 1

2
cusps or self-

intersections can only happen when the Catmull-Rom curve
overshoots its control points. However, centripetal parame-
terization is the only member of this parameterization fam-
ily that guarantees no cusps or self-intersections anywhere
within a single Catmull-Rom curve segment.

6.3 Edge Direction
The least favorable property of chordal parameterization

is its extreme sensitivity to the direction of control poly-



Figure 8: Cubic Catmull-Rom curves with parame-
terization values α ranging from 0 to 1. The green
curve is α = 0 (uniform), the blue curve is α = 1

2
(centripetal), the red curve is α = 1 (chordal), and
the grey curves are other values of α between 0 and
1 with regular intervals 0.1.

gon edges. This behavior can be observed near short edges.
While the curves with chordal parameterization are very
close to shorter edges of the control polygon, this makes the
curves overshoot when longer edges are adjacent to shorter
ones. As a result, relatively minor changes in the position
of a control point with a short edge can drastically alter
the shape of the curve with chordal parameterization. This
behavior is demonstrated in Figure 8. Note that uniform
and centripetal parameterizations are not affected nearly as
much.

6.4 Curvature
Cubic Catmull-Rom curves are not curvature continuous

and have curvature discontinuities at the control points.
However, the curvature is continuous within a single curve
segment. In our experiments, we noticed that centripetal
parameterization tends to produce the highest curvature
within a curve segment at one of its end-points (Catmull-
Rom control points). Unfortunately, this behavior is not
guaranteed, and one can place control points in such a way
as to demonstrate a counterexample. Despite this lack of
a guarantee, counter-examples are difficult to find and, in
most cases, the curvature does concentrate at the control
points. We demonstrate this behavior in Figure 9. Note
that the control points shown in Figure 9b correspond to
local curvature maxima in Figure 9a. High curvature points

generated with other parameterizations often do not coin-
cide with control points (Figure 10). In practice, this lack of
correspondence makes it significantly more difficult to con-
trol these curves to create a desired shape.

(a)

(b)

Figure 9: (a) A cubic Catmull-Rom curve with cen-
tripetal parameterization, (b) the same curve with
its control polygon. Note that control points coin-
cide with local high curvature points on the curve.

(a)

(b)

Figure 10: The same control points in Figure 9 with
(a) uniform and (b) chordal parameterizations. No-
tice that local high curvature points do not coincide
with the control points unlike centripetal parame-
terization in Figure 9.

7. CONCLUSION
Our analysis on the parameterization of cubic Catmull-

Rom curves demonstrates that centripetal parameterization
has special properties. In particular, this parameterization
was the only parameterization that guaranteed no local self-
intersections of the curve. Furthermore, we created distance
bounds of the curve to its control polygon for curves within
this parameterization family. Using these distance bounds,
we derived angle constraints on the control polygon that
could guarantee Catmull-Rom curves with centripetal pa-
rameterization were globally intersection free. Finally, these
properties were valid in general dimension R

m.
There are several areas we would like to would like to ex-

plore in the future. The angle bounds in Section 5 are not
tight and the Catmull-Rom curve typically does not come
close to approaching the convex hull of its control polygon
except at its end-points. We believe that this bound could
be improved substantially since the non-trivial intersection
case happens when the curve spans the edge of its control
polygon, which bounds the distance of the curve to its con-
trol line even tighter.

We also have only explored C1 Catmull-Rom curves.
While these curves are by far the most popular in the fam-
ily of Catmull-Rom curves, we have yet to examine higher
degree curves. One important property that is lost with
higher degree Catmull-Rom curves is the lack of local self-
intersections with centripetal parameterization as we can
create cases where this phenomenon happens even using C2

Catmull-Rom curves. However, the frequency of such self-
intersection seems to be less than with other parameteriza-



tions, but it is unclear whether anything precise can be said
about this property when using higher order continuity.
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