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Abstract

The NP-hard Metric Dimension problem is to decide for a given graph G and a positive integer k
whether there is a vertex subset of size at most k that separates all vertex pairs in G. Herein, a vertex v
separates a pair {u,w} if the distance (length of a shortest path) between v and u is different from the
distance of v and w. We give a polynomial-time computable reduction from the Bipartite Dominating
Set problem to Metric Dimension on maximum degree three graphs such that there is a one-to-one
correspondence between the solution sets of both problems. There are two main consequences of this:
First, it proves that Metric Dimension on maximum degree three graphs is W[2]-complete with respect
to the parameter k. This answers an open question concerning the parameterized complexity of Metric
Dimension posed by Dı́az et al. [ESA’12] and already mentioned by Lokshtanov [Dagstuhl seminar, 2009].
Additionally, it implies that Metric Dimension cannot be solved in no(k) time, unless the assumption
FPT 6= W[1] fails. This proves that a trivial nO(k) algorithm is probably asymptotically optimal.

Second, as Dominating Set is inapproximable within o(logn), it follows that Metric Dimension
on maximum degree three graphs is also inapproximable by a factor of o(logn), unless NP = P. This
strengthens the result of Hauptmann et al. [JDA’12] who proved APX-hardness on bounded-degree
graphs.

1 Introduction

Given an undirected graph G = (V,E) a metric
basis of G is a vertex subset L ⊆ V such that each
pair of vertices {u,w} ⊆ V is separated by L,
meaning that there is at least one v ∈ L such
that dist(v, u) 6= dist(v, w). Herein, “dist(v, u)” de-
notes the length of a shortest path between v and u.
The corresponding Metric Dimension problem
has been independently introduced by Harary and
Melter [11] and Slater [19]:

Metric Dimension [10, GT61]
Input: An undirected graph G = (V,E) and
an integer k ≥ 1.
Question: Is there a metric basis of size at
most k?

The metric dimension of graphs (the size of a
minimum-cardinality metric basis) finds applica-
tions in various areas including network discovery &

verification [3], metric geometry [11], robot navi-
gation, coin weighing problems, connected joins in
graphs, and strategies for the Mastermind game.
We refer to Cáceres et al. [4], Hernando et al. [13],
and Bailey and Cameron [2] for a more comprehen-
sive list and a more complete bibliography on the
extensive study on metric dimension.

There is a rich literature about the metric di-
mension of graphs, but little is known about the
computational complexity of Metric Dimension.
It is known to be NP-hard and there is a linear-time
algorithm for trees [14]. From a polynomial-time
approximation point of view, it has been shown
to admit a 2 log n-approximation [14] and that
it cannot be approximated within o(lnn), unless
P=NP [3]. Hauptmann et al. [12] showed that, un-
less NP ⊆ DTIME(nlog logn), there is no (1− ε) lnn
approximation algorithm for any ε > 0. Fur-
thermore, they proved APX-hardness on bounded-
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degree graphs. Dı́az et al. [6] showed that Metric
Dimension remains NP-hard on bipartite graphs
but becomes polynomial-time solvable on outerpla-
nar graphs. Additionally, Epstein et al. [8] exam-
ined the complexity of the vertex-weighted variant
of Metric Dimension on various graph classes.

Our Contribution. We provide a polynomial-
time computable reduction that maps an instance
of Bipartite Dominating Set, consisting of a
bipartite graph and an integer h, to an equivalent
Metric Dimension instance (G, k) with k = h+ 4
and G having maximum degree three.

Since Bipartite Dominating Set is W[2]-
hard [18], our reduction proves that Metric
Dimension is W[2]-hard with respect to k even on
graphs with maximum degree three. Additionally,
we prove W[2]-completeness. The question on the
parameterized complexity of Metric Dimension
(on general graphs) was posed by Lokshtanov [16];
also Dı́az et al. [6] pointed to this question. The
W[2]-hardness of Metric Dimension showes that,
unless the widely believed conjecture FPT 6= W [2]
fails, Metric Dimension is not fixed-parameter
tractable, that is, it cannot be solved within
f(k) · |G|O(1) time for any computable function f .
On the other hand, an algorithm that tests each size-
k subset being a metric basis runs in O(nk+2) time.
However, our reduction together with the result that
Bipartite Dominating Set cannot be solved in
no(k) time [5, 18], implies that Metric Dimension
on an n-vertex graph cannot be solved in no(k) time,
unless FPT=W[1]. Thus the trivial nO(k)-algorithm
is (probably) asymptotically optimal.

Furthermore, as Dominating Set cannot be
approximated within a factor of o(log n) unless
NP = P [1], it also follows that there cannot
be an o(log n)-factor approximation for Metric
Dimension. This strengthens the APX-hardness
result for bounded-degree graphs [12] and it
shows that the 2 log n-approximation on general
graphs [14] is up to constant factors also optimal
on bounded-degree graphs.

Preliminaries. A problem that is shown to be
W[1]- or W[2]-hard is not fixed-parameter tractable,
unless W[1] or W[2] is equal to the class FPT which
consists of all fixed-parameter tractable problems.
One can prove W[1]- or W[2]-hardness by means of a

parameterized reduction from a W[1]- or W[2]-hard
problem. This is a mapping of an instance (I, k)
of a problem A in h(k) · |I|O(1) time (for any com-
putable h) into an instance (I ′, k′) for B such that
(I, k) ∈ A ⇔ (I ′, k′) ∈ B and k′ ≤ g(k) for some g.
Our reduction is indeed a polynomial-time com-
putable parameterized reduction. We refer to the
monographs of Downey and Fellows [7], Flum and
Grohe [9], and Niedermeier [17] for a detailed intro-
duction to parameterized complexity analysis.

We use standard graph-theoretic notations. All
the graphs are undirected and unweighted without
self-loops. For a graph G = (V,E) with vertex
set V and edge set E we set n := |V |. A path P
in G is a sequence of vertices v1 − v2 − . . . − vs
such that for 1 ≤ i < s all {vi, vi+1} ∈ E. If there
is a unique shortest path between two vertices u
and v, then we write just u−v for this path without
listing the intermediate vertices. We write dist(v, u)
for the length of a shortest path between v and u.
Moreover, we set dist(v1, v2, . . . , vi) = dist(v1, v2) +
dist(v2, v3) + . . .+ dist(vi−1, vi).

Organization. In the next section we describe
our reduction and prove its correctness in Section 3.
We proceed by proving W[2]-completeness (Sec-
tion 4) and, finally, in Section 5 we prove the run-
ning time as well as the approximation lower bound.
Some proofs are defered to the appendix.

2 Construction of the Reduc-
tion

In this section we give a reduction from the
W[2]-complete Bipartite Dominating Set prob-
lem [18] to Metric Dimension.

Bipartite Dominating Set
Input: A bipartite graph G = (V1 ∪ V2, E)
and an integer h ≥ 1.
Question: Is there a dominating set of size at
most h, that is, a vertex subset V ′ ⊆ V1 ∪ V2
such that N [v] ∩ V ′ 6= ∅ for all v ∈ V1 ∪ V2?

Since the distances from a vertex to all the vertices
in a closed neighborhood of another vertex differ
by at most three, log3 ∆ is a lower bound on the
metric dimension, where ∆ is the maximum degree.
Avoiding large degrees was the main obstacle in the
reduction below.
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Figure 1: Schematic illustration of the top-line of the skeletal structure. Bold edges indicate y-paths.

Let (G = (V1 ∪ V2, E), h) be a Bipartite Dom-
inating Set-instance and let n := |V1 ∪ V2|. We
set V := V1 ∪ V2 and fix a numbering V1 =
{v1, v2, . . . , vs} and V2 = {vs+1, . . . , vn} such that
for all {vi, vj} ∈ E it holds that j ≥ i + 3.
(Clearly, increasing h by two, introducing two iso-
lated vertices to V1, and numbering them by vs+1

and vs+2 ensures this.) We construct an equivalent
instance (G′ = (V ′, E′), k) of Metric Dimension
with k := h+ 4.

We start with a high-level description of the
graph G′: It consists of a skeletal structure in which
we insert a vertex-gadget for each vertex of G and an
edge-gadget for each edge of G. Furthermore, there
are four additional vertices in the skeletal struc-
ture that are forced to be in any metric basis and
these four vertices separate all but n vertex pairs
in each vertex-gadget. Then, choosing a vertex in
a vertex-gadget separates all of the n vertex pairs
in its own gadget plus all the pairs in the vertex
gadgets that are “adjacent” by an edge-gadget to
the chosen vertex-gadget.

Throughout the construction, several times we
will connect two vertices {u, v} by a so-called y-path,
meaning that we insert a path of length y from u
to v. In all cases we make sure that the y-path is
the unique shortest path between the endpoints and
thus u − v denotes this y-path. We set y := 10n2

as we will assume that 1
4y > 2n + 2. Intuitively,

y-paths can be viewed as edges of weight y.

We now describe the construction of G′ in detail:
First, the skeletal structure is formed by 2n vertices
ut1, . . . , u

t
n and ub1, . . . , u

b
n where all consecutive ver-

tex pairs {uti, uti+1} and {ubi , ubi+1} are connected
by a y-path. We call the vertices ut1, u

t
n, u

b
1, u

b
n end-

points. For each endpoint add a length-three path, a
so-called P3, and make the endpoint adjacent to the
middle vertex. We call the first path ut1−ut2−. . .−utn
the top-line and the second path ub1−ub2−. . .−ubn the
bottom-line both including the P ′3s. Additionally,
let ut` be any degree-one vertex in the P3 attached
to ut1 and correspondingly let utr, u

b
`, u

b
r be degree-

one vertices in the P3’s attached to utn, u
b
1, and ubn,

respectively (see Figure 1). (These are the four
vertices that separate all but n pairs in each vertex
gadget.)

For each vertex vi ∈ V we add the vertex-
gadget gVi to G′ (see Figure 2): Construct a cy-
cle of length 2n+ 2 and call two vertices ati, a

b
i on

the cycle with distance exactly n + 1 the anchors
of the vertex gadget. Connect the top-anchor ati
by a y-path to uti and, symmetrically, connect the
bottom-anchor abi by a y-path to ubi . There are two
paths, each consisting of n vertices between the
anchors and we denote the vertices on these paths
by li1, . . . , l

i
n and ri1, . . . , r

i
n, respectively. The left-

vertices li1, . . . , l
i
n remain degree-two vertices in G′

whereas the right-vertices ri1, . . . , r
i
n will be used in

the following to connect the edge-gadgets.
Finally, for all edges {vi, vj} ∈ E with i < j

insert an edge-gadget gEi,j into G′ (see Figure 3):

Add a path of length (j − i + 3
2 )y between the

two right-vertices rij and rji . Denote with wi,j1 the

vertex on the path having distance y to rij and

denote with wi,j2 the vertex on the path having

distance y to rji . Furthermore, denote with uti,j,1
(uti,j,2) the vertex in the top-line that lies between uti
and utj and has distance j to uti (distance i to utj).

Then connect wi,j1 by a y-path to uti,j,1 and also

connect wi,j2 by a y-path to uti,j,2. This completes
the construction of G′.

3 Correctness of the Reduc-
tion

Let (G = (V1 ∪ V2, E), h) be an instance of Bipar-
tite Dominating Set and let (G′ = (V ′, E′), k)
with k = h+4 be the corresponding instance of Met-
ric Dimension that is constructed by the reduction
above. Clearly, the reduction is polynomial-time
computable and thus it remains to show that G has
a dominating set of size h iff G′ has a metric basis
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Figure 2: Schematic illustration of vertex-gadgets and their embedding into the skeletal structure. Bold
edges indicate y-paths.

of size k. We first give an informal description of
the basic ideas behind.

3.1 Basic Ideas and Intuition

First, observe that one has to choose at least one of
the two degree-one vertices in the P3’s attached to
each of the endpoints of the top- and bottom-line
into any metric basis and a minimum-size metric
basis would never take both. We shall show that
{ut`, utr, ub`, ubr} separate each vertex pair in G′ ex-
cept the vertex pair {lij , rij} for all 1 ≤ i, j ≤ n.
Towards this the main observation is that a shortest
path from a vertex in the skeletal structure to a
vertex that is either in a vertex gadget or also in
the skeletal structure would never enter an edge-
gadget. For example, traversing an edge-gadget gEi,j
by entering it at uti,j,1 and leaving it at rji gives a

path of length (|j − i| + 3
2 )y. However, the path

uti − utj − atj − rji that follows the top-line is of
length at most (|j− i|+1)y+n and, thus, is shorter
(recall that 1

4y > 2n + 2). From this the separa-
tion of the vertices in the skeletal structure and
most of the vertices in the vertex-gadgets can be
deduced. The reason why {ut`, utr, ub`, ubr} cannot
separate {lij , rij} is that a shortest path starting in

one of them has to enter a vertex-gadget gVi always
via the anchors {ati, abi} and thus cannot distinguish
between lij and rij .

The fact that {ut`, utr, ub`, ubr} separate each vertex
pair consisting only of edge-gadget vertices is far
from being obvious and proving it requires exten-
sive case distinctions (see Lemma 2). Moreover, we
prove that all vertices in a metric basis of G′ except
{ut`, utr, ub`, ubr} are chosen from the vertex-gadgets
and that the corresponding vertices form a domi-
nating set in G. Towards this it is crucial that the
constant 3

2 in the definition of edge-gadgets is be-
tween one and two: Clearly, taking ri1 into a metric
basis separates all pairs {lij , rij} in its own gadget.
The key point is that it separates also all pairs in
gVj if the edge-gadget gEi,j exists: A path from ri1 to

some rjs and also to ljs via traversing gEi,j is of length

at most (|j − i|+ 3
2 )y + 3n. The only “alternative

path” from ri1 to rjs is by leaving gVi via ati following
the top-line uti − utj , entering gVj via atj and then

taking the length-s path to rjs. In total this path has
length at least (|j− i|+ 2)y and thus traversing gEi,j
is shorter. Hence, because 1

4y > 2n + 2, the path
traversing gEi,j is a shortest path. The idea behind
is that leaving and entering vertex-gadgets via the
anchors costs 2y and traversing gEi,j only costs 3

2y
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Figure 3: A schematic illustration of an edge-gadget gEi,j for the edge {vi, vj}. Dotted edges indicate
paths of length more than one. The concrete length of these paths is indicated by the labels next to the
edge. Bold edges indicate y-paths. The edge-gadget consists of the five parts denoted by BL (bottom
left), BR (bottom right), M (middle), TL (top right), and TR (top right).

more than the top- or (bottom-)line path uti − utj
(ubi − ubj). Moreover, ri1 only separates pairs in “ad-
jacent” vertex-gadgets since a shortest path starting
in ri1 never traverses two edge-gadgets. This would
cause at least two times the additional cost of 3

2y
whereas leaving and entering gVi to and from the
top-line only costs 2y.

We next give a formal proof of the correctness of
the reduction.

3.2 General Observations and Addi-
tional Notation

We first introduce some additional notation for edge-
gadgets.

Notation: For an edge-gadget gEi,j the four ver-

tices {rij , r
j
i , u

t
i,j,1, u

t
i,j,2} are called entrance-vertices

(see Figure 3). Moreover, we partition gEi,j into

five parts: The y-path from wi,j1 to rij is the BL-
(bottom left) part, the TL- (top left) part is the
y-path between wi,j1 and uti,j,1, the TR- (top right)

part is the y-path between wi,j2 and uti,j,2, and the

BR- (bottom right) part is the y-path between wi,j2
and rji . Part M (middle) contains the remaining

vertices, that is, the vertices between wi,j1 and wi,j2
including wi,j1 and wi,j2 .

A path enters (leaves) an edge-gadget gEi,j via a
vertex v (u) if there are two consecutive vertices
v − u on it, such that both are contained in gEi,j
and v (u) is an entrance vertex of gEi,j . We say that

an edge-gadget gEi,j is traversed by a path P if it

contains a subpath consisting only of vertices in gEi,j
that starts with entering gEi,j , contains the M-part,

and ends with leaving gEi,j . Observe that without
cycles there are only four different ways on how to
traverse gEi,j and each is of length (|j− i|+ 3

2 )y. The
following observations are straightforward.

Observation 1. A path that enters and afterwards
leaves an edge-gadget without traversing it is more
than 1

4y longer than a shortest path with the same
endpoints.

Proof. Let P be a path that starts with entering an
edge-gadget gEi,j and ends with leaving it but does
not traverse it. If P does not contain any cycle,
then it is equal either to uti,j,1 − wi,j1 − rij or to

uti,j,2 − w
i,j
2 − r

j
i . Thus P is of length 2y. However,

the paths uti,j,1−uti−ati−rij and uti,j,2−utj−atj−r
j
i

are both of length at most y + 2n. Thus P is by
y − 2n > 1

4y longer.

Next we prove that any shortest path traverses
at most one edge-gadget.
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Observation 2. If a path is at most 1
2y longer

than a shortest path with the same endpoints, then
it traverses at most one edge-gadget.

Proof. Assume that there is a path P in G′ =
(V ′, E′) that starts with traversing an edge-
gadget gEi,j and ends with traversing gEi′,j′ . Then P

has length at least (j−i+ 3
2+j′−i′+ 3

2 )y. We assume
that it starts traversing gEi,j either in rij or in uti,j,1
(the other entrance vertices are completely symmet-
ric). Then P ends either in ri

′

j′ or uti′,j′,1. However,

the path rij − ati − uti − . . .− uti′ and also uti,j,1− uti′
both have length at most j+(1+ i′− i)y and uti′ has

distance at most 2y to uti′,j′,1 and ri
′

j′ . Hence, there

is path that avoids traversing gEi,j with distance at

most j + (1 + i′ − i)y < (j − i+ 3
2 + j′ − i′ + 3

2 )y,
implying that P is more than 1

2y longer than a
shortest path.

We next prove that for all vertices in G′ except for
the vertices contained in an edge-gadget it holds that
a shortest path to a vertex on the top- or bottom-
line never contains a vertex in an edge-gadget.

Lemma 1. In G′ the following holds:

i) For all 1 ≤ i < j ≤ n the path along the top-
line (bottom-line) is a shortest path from uti to
utj (ubi to ubj). It has length (j − i)y.

ii) For all 1 ≤ i, j ≤ n the following paths of length
(|j − i| + 2)y + n + 1 are for all min{i, j} ≤
s ≤ max{i, j} the only shortest paths between
uti and ubj:

uti − uti+1 − . . .− uts − ats − rs1 − rs2 − . . .
−rsn − abs − ubs − ubs+1 − ubj

uti − uti+1 − . . .− uts − ats − ls1 − ls2 − . . .
−lsn − abs − ubs − ubs+1 − ubj .

Proof. [Proof of i):] We prove the claim for i = 1
and j = n on the top-line. As the vertices for all
other choices of i and j also lie on the top-line, this
implies the correctness in all other cases. Lemma 1(i)
can be analogously proven for the bottom-line.

Assume that there is a shortest path P from ut1
to utn that does not follow the top-line. We first show
that P traverses at least one edge-gadget: Because
the distances on the top- and the bottom-line are
completely symmetric, a shortest path never starts

on the top-line enters at some point the bottom-
line and then later on re-enters the top-line. Hence,
when leaving the top-line a shortest path enters an
edge-gadget and, by Observation 1, it traverses it,
say gEi,j .

Since P is a shortest path and traverses by Ob-
servation 2 only gEi,j , it follows that P enters gEi,j
via uti,j,1 and leaves it via uti,j,2. This subpath in P

is of length (j − i+ 3
2 )y. Contradictorily, the path

from uti,j,1 to uti,j,2 along the top-line is of length
less than (j − i)y.

[Proof of ii):] As the other case can be proven
completely analogously, we prove the claim only
for the case i ≤ j. Furthermore, for any choice
of i ≤ s ≤ j the corresponding path has length
(|j − i|+ 2)y+ n+ 1. Thus it remains to prove that
every other path is longer.

Suppose towards a contradiction that there is a
path P ′ from uti to ubj of length at most (j − i +
2)y+n+1 that is different from the paths described
in Lemma 1(ii). By Lemma 1(i) it holds that if
there are two vertices in P ′ that lie on the top-
line (bottom-line), then all vertices on the subpath
between them also lie on the top-line (bottom-line,
resp.). Thus, there are two vertices utα and ubβ
that are both in P ′ but utα+1, u

b
β−1 /∈ P ′. If on

the subpath from utα to ubβ no edge-gadget is used,
then β = α and the path P ′ is identical to the path
described by Lemma 1(i) for s = α.

Thus P ′ traverses exactly one edge-gadget (Obser-
vation 2), say gEα,β . Hence the subpath in P ′ from utα
via gEα,β to ubβ has length at least (β − α+ 3

2 + 1)y.

Contradictorily, the path utα − atα − abα − ubα −
ubα+1− . . .−ubβ is of length at most (2+β−α)y+2n

and thus is by at least 1
4y shorter.

Observation 1, Observation 2, and Lemma 1 to-
gether with the following proposition is all what we
need to prove the correctness of our reduction.

Proposition 1. The four vertices {ut`, utr, ub`, ubr}
separate all vertices in G′ except the pairs {lij , rij}
for all 1 ≤ i, j ≤ n.

The next subsection is dedicated to prove Propo-
sition 1. Based on it, in Section 3.4 we give a formal
correctness proof of the reduction.
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3.3 Proof of Proposition 1

The major work in proving Proposition 1 is to show
that the vertices in the edge-gadgets are separated.
To this end, we first show which entrance vertices
are used by shortest paths starting in {ut`, utr, ub`, ubr}
and ending in an edge-gadget vertex.

Observation 3. Let e be a vertex in an edge-
gadget gEi,j . If e is contained in the TL-, BL- (TR-,
BR-,) or M-part, then all shortest paths from ut` or
ub` (utr or ubr) to e enter gEi,j either via uti,j,1 (uti,j,2)

or rij (rji ).

Proof. We prove the claim for shortest paths start-
ing in ut` or ub`. The other case is completely sym-
metric. A path from ut` or from ub` to e that neither
enters gEi,j via rij nor via uti,j,1 has to traverse either

the TR or BR-part till wi,j2 . With this requirement

the shortest paths are ut` − utj−1 − uti,j,2 −w
i,j
2 with

length 2 + jy − i and ub` − ubj − abj − r
j
i − w

i,j
2 with

length 2 + (j + 1)y + (n− i+ 1). However, each of
the paths ut` − uti − uti,j,1 − w

i,j
1 − w

i,j
2 with length

2 + j + (j − 1
2 )y and ub` − ubi − abi − rij −w

i,j
1 −w

i,j
2

with length 2 + (n− j + 1) + (j + 1
2 )y are at least

by 1
4y shorter, respectively.

Lemma 2. The four vertices {ut`, utr, ub`, ubr} sepa-
rate each vertex-pair consisting of two edge-gadget
vertices.

We now have all the ingredients to prove Propo-
sition 1.

Proof of Proposition 1. We will show that for each
pair of vertices in G′ except for a pair {lij , rij} for

some 1 ≤ i, j ≤ n there is a vertex in {ut`, utr, ub`, ubr}
that separates it. We have three groups of vertices
in G′ namely vertex-gadget-vertices, edge-gadget
vertices, and vertices in the skeletal structure (con-
sisting of top- and bottom-line). Next, we shall
show that each of them is separated from all others.

Skeletal vertices: We prove that all vertices on the
top- and bottom-line vertices are separated from
all others. First, for each vertex pair from the
skeletal structure by Lemma 1 there is a shortest
path between two vertices from {ut`, utr, ub`, ubr} that
contains both vertices, implying that they are sepa-
rated.

Next, consider a vertex pair {u, v} where u is
contained in the skeletal structure and v is contained

in a vertex-gadget gVs . More specifically, let u be
on the top-line between uti and uti+1 (the proof is
completely analogous for the bottom-line). If i ≤ s,
then by Lemma 1(i) the following path is a shortest
path ut` − uti+1 − uts − ats − v − abs − ubs − ubs+1 − ubr.
Symmetrically, if i > s, then the following is a
shortest path ub` − ubs − abs − v − ats − uts − uti − utr.
In both cases the vertex pair lie on a shortest path
starting in {ut`, utr, ub`, ubr} and thus is separated.

Finally, by Lemma 1 for each vertex u in the
skeletal structure there is a path from ut` to ubr that
contains u and there is no shortest path containing
any edge-gadget vertex, implying that u is separated
by ut` or ubr from all edge-gadget vertices.

Vertex-gadget: By the argument above, vertex-
gadget vertices are separated from vertices in the
skeletal structure. Furthermore, for each vertex-
gadget vertex v there is a shortest path from ut`
to ubr via v and no shortest path between them
contains any edge-gadget vertex, implying that ut`
or ubr separate v from all edge-gadget vertices.

It remains to prove that any vertex-gadget ver-
tex v is separated from any other vertex-gadget
vertex v′ except in the case that they correspond
to a pair {lij , rij}. Consider first the subcase where
v and v′ are contained in the same vertex-gadget,
say gvi . Then, by Lemma 1(ii) the following is a
shortest path: ut` − uts − ats − rs1 − rs2 − . . . − rsn −
abs−ubs−ubr. Clearly, the subpath rs1− rs2− . . .− rsn
can be exchanged by ls1 − ls2 − . . .− lsn. This implies
that v and v′ are separated.

Consider the subcase where v and v′ are in dif-
ferent vertex-gadgets, say v ∈ gVi and v′ ∈ gVj with
i < j. By Lemma 1(ii) the following paths are short-
est paths: ut`−uti−ati−v and ut`−utj−atj−v′. Thus
dist(ut`, v) ≤ 2 + (i− 1)y + y + n and dist(ut`, v

′) >
(j − 1)y + y, implying that dist(ut`, v) 6= dist(ut`, v

′).

Edge-gadget: Because of the above considerations
it is enough to prove that edge-gadget vertices are
separated from other edge-gadget vertices. This is
done by Lemma 2.

3.4 Correctness of the Reduction

Based on Observation 1, Observation 2, and Proposi-
tion 1 we next prove the correctness of our reduction
(see Section 2). For the sake of readability the proof
is separated into two implications.
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Proposition 2. If (G, h) is a yes-instance of Bi-
partite Dominating Set, then (G′, k) is a yes-
instance of Metric Dimension.

Proof. For a yes-instance (G = (V,E), h) with
V = {v1, . . . , vn} of Bipartite Dominating Set
denote by K ⊆ V a dominating set of size at most h.
We prove that the corresponding Metric Dimen-
sion instance (G′ = (V ′, E′), k) with k = h + 4 is
also a yes-instance. More specifically, we prove that
the set L ⊆ V ′ that contains {ut`, utr, ub`, ubr} and for
each vertex vi ∈ K the vertex ri1 is a metric basis.

By Proposition 1 the vertices {ut`, utr, ub`, ubr} ⊆ L
separate all pairs of vertices in V ′ except the vertex
pair {lij , rij} for all 1 ≤ i, j ≤ n. Clearly, all pairs

{lij , rij} are separated if ri1 ∈ L. Thus, consider

the case where ri1 /∈ L. As K is a dominating set
there is a vertex rα1 ∈ L such that {vi, vα} ∈ E,
implying that there is an edge-gadget gEi,α. Next,

we prove that rα1 separates the pair {lij , rij} for
all 1 ≤ j ≤ n. This is done by proving that
P l := rα1 − rαi − wi,α2 − wi,α1 − riα − rij (if α < i

then interchange wi,α1 and wi,α2 ) is a shortest path
and all other paths between rα1 and rij are more

than 1
4y longer. Having proved this it follows that

P l extended by a shortest path within gVi is also a
shortest path for lij . Thus {lij , rij} is separated by rα1 .

The length of P l is (i−1)+(α−1)+(|α−i|+ 3
2 )y.

By Observation 2 each path that is at most 1
2y

longer than a shortest path from rα1 to rij traverses at
most one edge-gadget and each path that traverses
an edge-gadget different from gEi,α is at least by 2y

longer than P l. Thus it remains to consider the
paths from rα1 to rij that do not traverse any edge-
gadget. There are only two of them, one following
the top-line, rα1 −atα−utα−uti−ati−rij , and the other

following the bottom-line, rα1 −abα−ubα−ubi−abi−rij .
Both are of length more than (|α−i)|+2)y and, thus,
are at least 1

4y longer than P l. Thus P l is a shortest
path, implying that rα1 separates {lij , rij}.

Proposition 3. If (G′, k) is a yes-instance of Met-
ric Dimension, then (G, h) is a yes-instance of
Bipartite Dominating Set.

Proof. Let (G′ = (V ′, E′), k) by a yes-instance
of Metric Dimension where G′ is constructed
from the Bipartite Dominating Set in-
stance (G = (V,E), h) with k = h + 4 and V =
{v1, . . . , vn}. Furthermore, let L be a metric basis

of G′ of size at most k. As already argued, L con-
tains at least one degree-one neighbor of each of the
endpoints {ut1, utn, ub1, ubn} (otherwise the degree-one
neighbors would not be separated). Then Proposi-
tion 1 proves that these degree-one neighbors sepa-
rate all vertices in G′ except the vertex pairs {lij , rij}
for all 1 ≤ i, j ≤ n.

We now form a vertex subset K ⊆ V and prove
that it is a dominating set of size at most h: For
each vertex v ∈ L that is contained in a vertex-
gadget gVi add vi ∈ V to K. Additionally, for each
vertex v ∈ L contained in an edge-gadget gEi,j with
i < j add vi to L if v is contained on the TL- or
BL-part of gEi,j and add vj to L in all other cases.

We next prove that K is a dominating set for G.
Suppose towards a contradiction that there is a
vertex vi ∈ V that is not dominated by K. By
definition of K none of the vertices in gVi is con-
tained in the metric basis L. However, there is one
vertex u ∈ L that separates {li1, ri1}. Denote by P l
the set of all shortest paths from u to li1 and by Pr
the set of all shortest paths from u to ri1. Observe
that li1 and ri1 both have the same distance to ati
and abi and that each path in P l either contains ati
or abi . Thus all paths in Pr neither contain ati nor abi ,
since otherwise li1 and ri1 would not have been sepa-
rated by u. Hence, each path in Pr enters gVi via an
entrance vertex rij of an edge-gadget gEi,j . If u is con-
tained either directly in one of these edge-gadgets
or it is contained in gVj , then by the construction
of K this implies that either vi or vj is contained
in K. This yields a contradiction since {vi, vj} ∈ E
and thus vi is dominated.

Towards a contradiction, consider a shortest path
in P ∈ Pr entering gVi via rij but u is neither

contained in gEi,j nor in gVj . Clearly, by Observa-

tion 1 it follows that P traverses gEi,j . Thus, P en-

ters gEi,j via uti,j,2 (uti,j,1 if i > j) or rji . However, by

Lemma 1 the shortest path from uti,j,2 (uti,j,1) to rij
contains ati (abi), implying a contradiction in the
first case. Hence, we can assume that P enters gEi,j
via rji . By Observation 2 it traverses only gEi,j , im-

plying that it enters gVj either via an anchor or via

some rjα. If P enters gVj via the anchor atj (abj) this

implies that the path from u to ri1 contains utj (ubj).
However, by Lemma 1 the shortest path from utj
(ubj) to ri1 contains ati (abi ), yielding a contradiction.

In the remaining case the path from u to ri1 en-
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ters gVj via rjα and since it traverses only gEi,j , this

implies that u is contained in gEj,α. In addition, by
the construction of K it follows that u has distance
greater than y to rjα and, hence, P contains wj,α1

or wj,α2 . The subpath from wj,α1 or from wj,α2 to ri1
is of length at least (1 + |j − i| + 3

2 )y. However,

either wi,j1 or wi,j2 has distance at most y + n to utj
and dist(utj , r

i
1) = (|j− i|+1)y+1, implying that P

is not a shortest path.

Proposition 2 together with Proposition 3 imply
that our reduction given in Section 2 is correct.
Additionally, observe that the maximum degree in
any graph constructed by our reduction is three.
In the remaining part we discuss the computation
lower bounds that are implied by it.

4 W[2]-Completeness

In the previous section we proved the correctness of
our reduction which maps an instance (G, h) of Bi-
partite Dominating Set into an instance (G′, k)
of Metric Dimension with k = h+4. Since Bipar-
tite Dominating Set is W[2]-hard with respect
to h [18], this implies that Metric Dimension is
W[2]-hard with respect to k on maximum degree
three graphs. Note that this classification is tight
in the sense that Metric Dimension is (trivially)
polynomial-time solvable on graphs with maximum
degree two. We prove in this section that Metric
Dimension is indeed W[2]-complete.

Theorem 1. Metric Dimension on graphs with
bounded degree three is W[2]-complete with respect
to the parameter size of a metric basis.

Proof. The W[2]-hardness follows from the discus-
sion above. Hence, it remains to show contain-
ment in W[2]. This is done by giving a parame-
terized reduction to the W[2]-complete Red-Blue
Dominating Set problem [7]: Given a bipartite
graph (R ∪ B,E) and an integer h ≥ 1 it is asked
whether there is a size at most h vertex subset
D ⊆ R that dominates all vertices in B.

For an instance (G = (V,E), k) of Metric Di-
mension we construct an equivalent Red-Blue
Dominating Set instance (G′ = (R∪B,E′), k) as
follows: First the vertex set B is formed by insert-
ing for each vertex pair {u,w} ⊆ V a vertex αu,w.
Then R is a copy of V and there is an edge between

v ∈ R and αu,w ∈ B if dist(v, u) 6= dist(v, w). It is
straightforward to argue that there is a one-to-one
correspondence between the vertices in a metric
basis for G and a red-blue dominating set in G′.

5 Running Time and Approx-
imation Lower Bounds

We next show a running time as well as an approx-
imation lower bound for Metric Dimension.

Chen et al. [5] proved that Dominating Set
(given an n-vertex graph, decide whether it has a
size-h dominating set) cannot be solved in no(h)

time, unless FPT = W[1]. By the details of the re-
duction in [18] (there is a one-to-one correspondence
between the solution sets) this also holds for Bi-
partite Dominating Set. This implies together
with the observation that the parameter k in our
reduction (see Section 2) is linearly upper-bounded
by the parameter h from the Bipartite Dominat-
ing Set instance where we reduce from, the same
running-time lower bound for Metric Dimension.

Theorem 2. Unless FPT = W[1], Metric Di-
mension cannot be solved in no(k) time, even on
maximum degree three graphs.

Note that the lower bound provided by Theorem 2
is asymptotically tight in the sense that a trivial
brute-force algorithm that tests each size-k vertex
subset whether it is a metric basis achieves a running
time of O(nk+2).

Additionally, observe that the proof of Proposi-
tion 3 also provides a one-to-one correspondence
between a metric basis and a dominating set in the
instance where we reduce from. Moreover, our re-
duction can be computed in polynomial time. The
reduction from Dominating Set to Bipartite
Dominating Set [18] also admits these two proper-
ties. Thus, the result that Dominating Set cannot
be approximated within o(log n), unless NP = P [1],
transfers to Metric Dimension.

Theorem 3. Unless NP = P, Metric Dimen-
sion on maximum degree three graphs cannot be
approximated within a factor of o(log n).
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6 Conclusion

We have shown that Metric Dimension is W[2]-
complete even on graphs with maximum degree
three. By modifying our construction appropriately
we conjecture that it is possible to show that Met-
ric Dimension is W[2]-complete even on bipartite
graphs with maximum degree three.

We performed a first step towards a systematic
study of the parameterized complexity of Metric
Dimension. From our perspective, the most in-
teresting questions that arise is whether Metric
Dimension is fixed-parameter tractable on planar
graphs or with respect to the treewidth of the in-
put graph. By simple observations on vertices with
the same neighborhood, it is straightforward to ar-
gue that Metric Dimension is fixed-parameter
tractable with respect to the size of a vertex cover.
This motivates a systematic study of “stronger pa-
rameterizations” [15], for instance the size of a feed-
back vertex set. Finally, we would like to mention
the open question whether the 2o(n) lower bound
for Dominating Set (unless the exponential time
hypothesis fails) can be transfered to Metric Di-
mension.

Acknowledgements. We thank Rolf Nieder-
meier for helpful comments improving the presenta-
tion.
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A Proofs

A.1 Proof 1 (Lemma 2)

Proof. Let u be a vertex in the edge-gadget gEi,j with

i < j, and let v be a vertex in the edge-gadget gEi′,j′
with i′ < j′. By our vertex numbering it follows that
i < j′ and i′ < j. We shall show that u and v are
separated by ut1, u

t
n, u

b
1, or ubr, implying that they

are also separated by the corresponding degree-one
vertices {ut`, utr, ub`, ubr}.

Recall that Lemma 1 provides the distance be-
tween any vertex on the top- or bottom-line to any
other vertex either contained in a vertex-gadget or
on top- or bottom-line. The following distances will
be frequently used:

dist(rij , u
t
1) = iy + j (1)

dist(rij , u
t
n) = (n− i+ 1)y + j (2)

dist(rij , u
b
1) = iy + n− j + 1 (3)

dist(rij , u
b
n) = (n− i+ 1)y + n− j + 1 (4)

dist(uti,j,1, u
t
1) = (i− 1)y + j (5)

dist(uti,j,1, u
t
n) = (n− i)y − j (6)

dist(uti,j,1, u
b
n) = (n− i+ 2)y − j + n+ 1 (7)

dist(uti,j,2, u
t
1) = (j − 1)y − i (8)

dist(uti,j,2, u
t
n) = (n− j)y + i (9)

dist(uti,j,2, u
b
n) = (n− j + 2)y + i+ n+ 1 (10)

We prove Lemma 2 by several case distinctions.
Therein, the following five claims are helpful to
simplify the argumentation (the proofs are separate
subsections in the appendix).

Claim 1: {u, v} are separated if i = i′ and j = j′.

Claim 2: {u, v} are separated if u ∈ TL∪BL and
i < i′. Symmetrically, {u, v} are separated if u ∈
TR∪BR and j > j′.

Claim 3: {u, v} are separated if i+ j 6= i′ + j′ and
either

i) dist(uti,j,1, u, u
t
i,j,2) = (j − i + 3

2 )y and

dist(uti′,j′,1, v, u
t
i′,j′,2) = (j′ − i′ + 3

2 )y, or

ii) dist(rij , u, r
j
i ) = (j − i + 3

2 )y and

dist(ri
′

j′ , v, r
j′

i′ ) = (j′ − i′ + 3
2 )y.

Claim 4: {u, v} are separated if u ∈ M and v ∈
TL′ ∪TR′.

Claim 5: {u, v} are separated if u ∈ M and v ∈
BL′ ∪BR′.

We now prove Lemma 2 by a case distinction on
how the indices i, i′, j, and j′ are related to each
other. Without loss of generality, we assume that
i ≤ i′. Moreover, by Claim 1 either i 6= i′ or j 6= j′.
We first prove the case with j = j′ and i 6= i′

(Case 1). The case where i = i′ and j 6= j′ is omitted
because it can be proven completely analogously.
Hence, the remaining cases are i < i′ < j < j′

(Case 2) and i < i′ < j′ < j (Case 3). Note that
in all these cases, by Claim 2 we may assume that
u /∈ TL∪BL.

Case 1 i < i′ < j = j′:
If u ∈M , then Claim 3, 4, and 5 prove that {u, v}
are separated. It remains to consider u ∈ TR∪BR.

Subcase 1: u ∈ TR.
If dist(utn, u) = dist(utn, v), then dist(utn, u) =

dist(utn, u
t
i,j,2, u)

(9)
< (n−j)y+i+y. Since i < i′ and

it follows from Equations 2, 6, and 9 that v ∈ TR′.
Thus, dist(u, uti,j,2) = i′−i+dist(v, uti′,j′,2). Let x =

dist(u, uti,j,2), then dist(v, uti′,j′,2) = x+ i− i′.
Subcase 1.1: x < 2

3y.
Then dist(ut1, u) = dist(ut1, u

t
i,j,2) + x

and dist(ut1, v) = dist(ut1, u
t
i′,j′,2) + x + i − i′.

Since i < i′ it follows from Equation 8
that dist(ut1, u

t
i,j,2) > dist(ut1, u

t
i′,j′,2).

Hence dist(ut1, u) > dist(ut1, v).

Subcase 1.2: x ≥ 2
3y.

Then dist(u, ub1) = dist(u, rij , u
b
1)

(3)
= iy+n− j + 1 +

(j−i+ 3
2 )y−x = (j+ 3

2 )y+n−j+1−x. Furthermore,

dist(v, ub1) = dist(v, ri
′

j′ , u
b
1)

(3)
= i′y+n−j′+1+(j′−

i′+ 3
2 )y−x− i+ i′ = (j+ 3

2 )y+n− j+ 1−x− i+ i′.
Since i 6= i′ it follows that u and v are separated.

Subcase 2: u ∈ BR.
This subcase is analogous to the previous
one: Assume that dist(ubn, u) = dist(ubn, v).

Then dist(ubn, u) = dist(ubn, r
j
i , u)

(4)
< (n− j + 1)y +

n − i + 1 + y. Since i < i′ it follows from Equa-
tions 4, 7, and 10 that v ∈ BR′. Thus, dist(u, rji ) =

i− i′ + dist(v, rj
′

i′ ). Denoting with x = dist(u, rji ) it

follows that dist(v, rj
′

i′ ) = x− i+ i′.

Subcase 2.1: x < 2
3y.

Then dist(utn, u) = dist(utn, r
j
i )+x and dist(utn, v) =
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dist(utn, r
j′

i′ ) + x − i + i′. Since i < i′ it follows

from Equation 2 that dist(utn, r
j
i ) < dist(utn, r

j′

i′ ).
Hence dist(utn, u) < dist(utn, v).

Subcase 2.2: x ≥ 2
3y.

Then dist(u, ut1) = dist(u, uti,j,1, u
t
1)

(5)
= (i−1)y+ j+

(j − i+ 3
2 )y − x = (j + 1

2 )y + j − x. Furthermore,

dist(v, ut1) = dist(v, uti′,j′,1, u
t
1)

(5)
= (i′ − 1)y + j′ +

(j′ − i′ + 3
2 )y− x+ i− i′ = (j + 1

2 )y + j − x+ i− i′.
Since i 6= i′ it follows that u and v are separated.

Case 2 i < i′ < j < j′:
If u ∈M , then Claim 3, 4, and 5 prove that {u, v}
are separated. It remains to consider u ∈ TR∪BR.
Subcase 1: u ∈ TR.
It follows from the Claims 2, 3, 4, and 5 that
v ∈ TL′ ∪BL′. If dist(utn, u) = dist(utn, v),

then dist(utn, u)
(9)
= (n − j)y + i + x where x =

dist(u, uti,j,2) < y. It follows that v ∈ TL′

and dist(utn, v) = dist(utn, u
t
i′,j′,1, v)

(6)
= (n −

i′)y − j′ + dist(uti′,j′,1, v). Assuming dist(utn, u) =

dist(utn, v), we have j = i′ + 1. Hence,

(n− j)y + i+ x = (n− j + 1)y − j′ + dist(uti′,j′,1, v)

dist(uti′,j′,1, v) = x+ i+ j′ − y.

Since x < y it follows that dist(uti′,j′,1, v) < i + j′.
Hence,

dist(ut1, v) = dist(ut1, u
t
i′,j′,1, v)

(5)
= (i′ − 1)y + j′ + x+ i+ j′ − y
= (j − 3)y + 2j′ + i+ x < (j − 1)y − i
(8)
= dist(ut1, u

t
i,j,2) < dist(ut1, u).

Thus, u and v are separated.
Subcase 2: u ∈ BR.
Again, it remains to consider v ∈ TL′ ∪BL′. Hence,

dist(ubn, u) = dist(ubn, r
j
i , u)

(4)
= (n−j+1)y+n−i+1+

x where x = dist(u, uti,j,2) < y. It follows that v ∈

BL′ and dist(ubn, v) = dist(ubn, r
i′

j′ , v)
(4)
= (n − i′ +

1)y+n−j′+1+dist(ri
′

j′ , v). Assuming dist(ubn, u) =

dist(ubn, v), we have j = i′ + 1. Hence,

(n− j + 1)y + n− i+ 1 + x = (n− j + 2)y + n

− j′ + 1 + dist(ri
′

j′ , v)

dist(ri
′

j′ , v) = x− i+ j′ − y.

Since x < y it follows that dist(ri
′

j′ , v) < j′ − i.
Hence,

dist(ub1, v) = dist(ub1, r
i′

j′ , v)

(3)
= i′y + n− j′ + 1 + x− i+ j′ − y
= (j − 2)y + n− i+ 1 + x

< jy + n− i+ 1

(3)
= dist(ub1, r

j
i ) < dist(ub1, u).

Thus, u and v are separated.

Case 3 i < i′ < j′ < j:
If u ∈ TR∪BR, then since j′ < j by Claim 2 it fol-
lows that {u, v} are separated. It thus remains the
case where u ∈ M. If v ∈ TL′ ∪TR′ ∪BL′ ∪BR′,
then Claim 4 & 5 prove that {u, v} are separated.
Thus let v ∈ M′ and i+ j = i′ + j′ (otherwise they
would be separated by Claim 2).

Assume that dist(u, ut1) = dist(v, ut1) and let x =

dist(wi,j1 , u). From dist(ut1, w
i′,j′

1 )− dist(ut1, w
i,j
1 ) =

(i′y + j′) − (iy + j) = (i′ − i)y + j′ − j it follows

that dist(wi
′,j′

1 , v) = x− j′ + j − (i′ − i)y.
From Equation 3 follows dist(ub1, u) =

dist(ub1, r
i
j) + y + x = iy + n − j + 1 + y + x.

Furthermore, it follows that

dist(ub1, v) = dist(ub1, r
i′

j′) + y + x− j′ + j − (i′ − i)y
= (i+ 1)y + n+ j − 2j′ + 1 + x.

Thus, dist(ub1, u)−dist(ub1, v) = (i+1)y+n−j+1+
x−((i+1)y+n+j−2j′+1+x) = 2j′−2j. Since j 6=
j′ it follows that u and v are separated.

A.2 Proof 2 (Claim 1 in Lemma 2)

Claim 1: It follows that u and v are contained in gEi,j
and we make a case distinction on in which part
they lie.

Case 1: At least one of {u, v} is contained in
the M-part. Suppose u is contained in the M-part,
then by Observation 3 a shortest path from ut` (ub`)

to u contains the subpath uti,j,1 − w
i,j
1 (rij − w

i,j
1 )

and from there traverses the M-part till u. Clearly,
if v is also contained in the M-part, then the same
holds for v and thus dist(ut`, v) 6= dist(ut`, u). If v
is either contained in the TL- or BL-part, then v
is contained either on a shortest path from ut` to u
or on a shortest path from ub` to u. The remaining
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subcase where v is contained in the TR- or BR-part
can be proven analogously by interchanging the role
of {ut`, ub`} by {utr, ubr}.

Case 2: u, v are both either in the TL-, BL-,
TR-, or BR-part. Observe that if u and v are both
on the TL- (BL-, TR-, BR-) part, then they are
separated by ut` (ub`, u

t
r, u

b
r) since there is a short-

est path from ut` or ub` (utr, u
b
r) to wi,j1 (wi,j2 ) that

contains v and u.

Case 3: u is contained in the TL- or BL-part
and v is contained in the TR- or BR-part. Recall
that by our vertex numbering it holds that j ≥ i+3.
In this case, since uti has distance less than 2y to
all vertices on the TL- and BL-part, it follows that
dist(ut1, u) < (i+ 1)y. Additionally, a shortest path
from ut1 to v has to contain either uti,j,2, rji , or

wi,j2 . Since dist(ut1, u
t
i,j,2)

(8)
= (j − 1)y− i ≥ (i+ 2)y,

dist(ut1, w
i,j
2 ) > (i− 1 + j − i+ 1

2 )y ≥ (i+ 2 + 1
2 )y,

and dist(ut1, r
j
i ) > dist(ut1, u

t
i,j,2) it follows that u

and v are separated by ut1.

Case 4: u is contained in the TL- (TR-) part
and v is contained in the BL- (BR-) part. We
prove the claim in case of u ∈ TL and v ∈ BL. The
other case is completely symmetric. If the shortest
path from v to ut1 goes via uti,j,1, then u lies on this
shortest path and, thus, u and v are separated. If
the shortest path from v to ut1 goes via rij , then ob-

serve that dist(ut1, v) > dist(ut1, r
i
j)

(1)
= iy + j.

Furthermore, from Equation 5 it follows
that dist(ut1, u) ≤ (i− 1)y + j + y = iy + j.

A.3 Proof 3 (Claim 2 in Lemma 2)

Claim 2: We prove that if u ∈ TL∪BL and i < i′,
then the vertex ut1 or ub1 separate {u, v}: It follows
that dist(ut1, u, u

b
1)

≤ dist(ut1, u
t
i,j,1, u) + dist(ub1, r

i
j , u)

≤ dist(ut1, u
t
i,j,1) + dist(ub1, r

i
j) + 2y

(3,5)
= (iy + n− j + 1) + ((i− 1)y + j) + 2y

= (2i+ 1)y + n+ 1.

Furthermore, from Observation 3 it follows
that dist(ut1, v, u

b
1)

> dist(ut1, u
t
i′,j′,1) + dist(ub1, r

i′

j′)

(3,5)
= ((i′ − 1)y + j′) + (i′y + n− j′ + 1)

= (2i′ − 1)y + n+ 1 ≥ (2i+ 1)y + n+ 1.

Hence, ub1 and ut1 separate {u, v}. The symmetric
case can be proven analogously be interchanging
the role of {ut1, ub1} by {utn, ubn}.

A.4 Proof 4 (Claim 3 in Lemma 2)

Claim 3: By the requirements it is ensured that a
path from

i) ut1 to utn via u (v) enters gEi,j (gEi′,j′) via uti,j,1
(uti′,j′,1), traverses it, and leaves it via uti,j,2
(uti′,j′,2), or

ii) ub1 to ubn via u (v) enters gEi,j (gEi′,j′) via rij (ri
′

j′),

traverses it, and leaves it via rji (rj
′

i′ ).

In case of i) it holds that dist(ut1, u, u
t
n)

= dist(ut1, u
t
i,j,1, u) + dist(u, uti,j,2, u

t
n)

(5,9)
= ((i− 1)y + j) + ((n− j)y + i) + (j − i+

3

2
)y

= i+ j + (n+
3

2
− 1)y.

Symmetrically, dist(ut1, v, u
t
n) = i′+j′+(n+ 3

2−1)y.
Since i + j 6= i′ + j′ it follows that u and v are
separated by ut1 and utn.

Now, assume that ii) holds, then dist(ub1, u, u
b
n)

= dist(ub1, r
i
j , u) + dist(u, rji , u

b
n)

(3,4)
= iy + n− j + 1 + n− i+ 1

+ (n− j + 1)y + (j − i+
3

2
)y

= (n+ 1 +
3

2
)y + 2n− j − i+ 2

and, symmetrically, dist(ub1, v, u
b
n) = (n+ 1 + 3

2 )y +
2n− j′− i′+ 2. Since i+ j 6= i′+ j′ it follows that u
and v are separated.
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A.5 Proof 5 (Claim 4 in Lemma 2)

Claim 4: We prove the claim for v ∈ TL′. The
case with v ∈ TR′ follows from the symmetry
of the construction. From Observation 3 fol-

lows dist(ut1, v) = dist(ut1, u
t
i′,j′,1, v)

(5)
= (i′ − 1)y +

j′ + x with x = dist(uti′,j′,1, v) < y. Furthermore,

dist(ut1, u) = dist(ut1, u
t
i,j,1, w

i,j
1 , u) = (i − 1)y +

j + y + dist(wi,j1 , u) = iy + j + dist(wi,j1 , u). As-
suming that dist(ut1, v) = dist(ut1, u) (otherwise u
and v are separated) we have (i′ − 1)y + j′ + x =
iy + j + dist(wi,j1 , u) and, hence, dist(wi,j1 , u) =
(i′ − i− 1)y+ j′ − j + x. Thus, i′ ≥ i. From this to-
gether with Observation 3 it follows that dist(ub1, u)

= dist(ub1, r
i
j , w

i,j
1 , u)

(3)
= iy + n− j + 1 + y + (i′ − i− 1)y + j′ − j + x

= i′y + n+ j′ − 2j + 1 + x.

Furthermore, it follows that dist(ub1, v) =

dist(ub1, r
i′

j′ , v)
(3)
= i′y + n− j′ + 1 + dist(ri

′

j′ , v). By

Observation 3 dist(ri
′

j′ , v)

= min{dist(ri
′

j′ , u
t
i′,j′,1, v),dist(ri

′

j′ , w
i′,j′

1 , v)}
= min{y + 2j′ + x, 2y − x}.

Hence, dist(ub1, v)
(3)
= i′y+n− j′+ 1 + min{y+ 2j′+

x, 2y − x}. Assuming dist(ub1, u) = dist(ub1, v) it
follows that

i′y + n+ j′ − 2j + 1+x

= i′y + n− j′+1 + min{y + 2j′ + x, 2y − x}

and thus 2j′ − 2j + x = min{y + 2j′ + x, 2y − x}.
Since the case 2j′ − 2j + x = y + x + 2j′

yields a contradiction (y = −2j), it follows that
2j′ − 2j = 2y − 2x. However, x < y implies
j′ > j and thus i ≤ i′ < j < j′. Since x =
y − j′ + j, dist(uti′,j′,1, v, u

t
i′,j′,2) = dist(uti′,j′,1, v) +

dist(v, wi
′,j′

1 , wi
′,j′

2 , uti′,j′,2), implying that all pre-
conditions of Claim 3 are fulfilled and thus u and v
are separated.

A.6 Proof 6 (Claim 5 in Lemma 2)

Claim 5: We prove the claim for v ∈ BL′. The
case with v ∈ BR′ follows from the symmetry of

the construction. From Observation 3 it follows

that dist(ub1, v) = dist(ub1, r
i′

j′ , v)
(3)
= i′y + n − j′ +

1 + x with x = dist(ri
′

j′ , v) < y. Furthermore,

dist(ub1, u) = dist(ub1, r
i
j , w

i,j
1 , u)

(3)
= iy + n− j + 1 +

y+ dist(wi,j1 , u) = (i+ 1)y+n− j+ 1 + dist(wi,j1 , u).
Assuming that dist(ub1, v) = dist(ub1, u) (otherwise u
and v are separated) we have i′y + n− j′ + 1 + x =
(i + 1)y + n − j + 1 + dist(wi,j1 , u) and, hence,

dist(wi,j1 , u) = (i′− i− 1)y+ j− j′+x. Thus, i′ ≥ i.
This together with Observation 3 implies dist(ut1, u)

= dist(ut1, u
t
i,j,1, w

i,j
1 ) + dist(wi,j1 , u)

(5)
= (i− 1)y + j + y + (i′ − i− 1)y + j − j′ + x

= (i′ − 1)y − j′ + 2j + x.

In addition, dist(ut1, v) = dist(ut1, u
t
i′ , v) = (i′−1)y+

dist(uti′ , v) and

dist(uti′ , v) = min{dist(uti′ , w
i′,j′

1 , v),dist(uti′ , r
i′

j′ , v)}
= y + j′ + min{y − x, x}.

Hence, dist(ut1, v) = i′y + j′ + min{x, y − x}. As-
suming dist(ut1, u) = dist(ut1, v) (otherwise u and v
are separated) implies

(i′ − 1)y − j′ + 2j + x = i′y + j′ + min{x, y − x}
2j − 2j′ + x = y + min{x, y − x}.

This gives that either 2j − 2j′ + x = y + x
or 2j − 2j′ + x = 2y − x. In the first case this
gives y = 2j − 2j′, contradicting 1

4y > 2n. The sec-
ond case gives x = y+ j′− j. Since x < y it follows
that j > j′ and, thus, i ≤ i′ < j′ < j. However,
since dist(ri

′

j′ , v) = x = y + j′ − j, it follows that

dist(utn, v) = dist(ub1, u
t
i′,j′,2, w

i′,j′

2 , wi
′,j′

1 , v)

(9)
= (n− j′)y + i′ + (j′ − i′ + 1

2
)y + j − j′

= (n− i′ + 1

2
)y + i′ − j′ + j.
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Furthermore,

dist(utn, u) = dist(ubn, u
t
i,j,2, w

i,j
2 , wi,j1 )− dist(wi,j1 , u)

(9)
= (n− j)y + i+ (j − i+

1

2
)y

− ((i′ − i− 1)y + j − j′ + x)

= (n− i+
1

2
)y + i

− ((i′ − i− 1)y + j − j′ + x)

= (n− i′ + 3

2
)y + i− j + j′ − x

= (n− i′ + 1

2
)y + i.

Hence,

dist(ubn, u)− dist(ubn, v) = i− (i′ − j′ + j)

= i− i′ + j′ − j.

Recall that i ≤ i′ and j′ < j. Thus,
dist(ubn, u) − dist(ubn, v) < 0 and, hence, u
and v are separated by ubn.
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