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On the paraxial approximation in quantum optics II:

Henochromatic modes of a Maxwell field

M. Fernanda Jongewaard de Boer and Christopher Beetle
(Dated: January 15, 2023)

A companion paper [1] has argued that the best way to associate single-particle quantum states
of a scalar field to the modes of a narrowly collimated beam of classical radiation modeled in
the paraxial approximation uses the “henochromatic” states previously introduced by Sudarshan,
Simon and Mukunda [2, 3]. This paper extends that result to Maxwell fields, again emphasizing
the central role of unitarity in defining the association. The principal new technical element in the
present discussion has to do with the intertwining of polarization and spatial degrees of freedom in
the resulting single-photon states.

I. INTRODUCTION

In a companion paper [1] we detailed how the
“henochromatic” fields proposed by Sudarshan, Simon
and Mukunda [2, 3] offer a uniquely preferred way, among
a broad class of similar proposals [4–9], to associate ex-
act, single-particle, quantum states of a scalar field to
the modes of a (linearly polarized) laser beam as they
are understood in the paraxial approximation. Most im-
portantly, the mapping from paraxial waves to henochro-
matic states is unitary, allowing the logic of the resulting
quantum states to mirror that of the underlying parax-
ial wave modes. The present paper extends our previ-
ous analysis, and its proof of the unique advantages of
henochromatic states, to the case of a Maxwell field.

There are many well-known ways to quantize a
Maxwell field. We will focus on the Coulomb quantiza-
tion because, in addition to its simplicity (for pure radia-
tion fields), the paraxial approximation for Maxwell fields
is itself best understood by first imposing the Coulomb
gauge condition classically. The incorporation of this
gauge condition, however, introduces the main techni-
cal difficulty in our analysis of Maxwell fields that did
not arise for scalar fields. Namely, in passing to the
paraxial approximation, it is conventional to simplify the
Coulomb condition ∇ · A(r, t) = 0 to the transversal-
ity condition k0 · A(r, t) = 0, where k0 is the principal
wave vector around which the support of the paraxial
field A(r, t) is clustered in Fourier space. The simplifica-
tion is considerable in the paraxial approximation as it
serves to “disentangle” the polarization and spatial de-
grees of freedom of the field. But our goal is to asso-
ciate the resulting “disentangled” fields to genuine states
in the single-particle sector of the Hilbert space of the
Coulomb quantization, which definitely remain “entan-
gled” by the exact Coulomb gauge condition. We show
below, however, that this difficulty is indeed merely tech-
nical, and that henochromatic Maxwell fields still provide
a uniquely preferred association of the type we seek.

This paper is organized as follows. Section 2 reviews
the paraxial approximation for Maxwell fields, paying
special attention to the role of the Coulomb gauge con-
dition. Section 3 recalls the standard quantization of the
Maxwell field in the Coulomb gauge, emphasizing an ap-

proach that avoids focusing undue attention on a fixed
basis of (plane-wave) states in defining the Fock structure
of the resulting Hilbert space. Section 4 outlines sev-
eral desirable features a prospective mapping from wave
modes in the paraxial approximation to exact, single-
photon states ought to have, and then proceeds to show
that the mapping defined by the henochromatic states is
unique, at least within a large class of similar mappings,
in exhibiting all of these features. We conclude with some
comments in Section 5.

II. THE PARAXIAL APPROXIMATION FOR

MAXWELL FIELDS

A pure radiation field in Maxwell theory satisfies the
homogeneous Maxwell equations

∇ · E(r, t) = 0 ∇× E(r, t) = −∂B

∂t
(r, t)

∇ ·B(r, t) = 0 ∇× B(r, t) =
1

c2
∂E

∂t
(r, t).

(1)

Any pair of electric and magnetic fields, E(r, t) and
B(r, t), satisfying these equations can be derived from
a Coulomb vector potential of the form

A(r, t) := ∇×
∫

R

3

B(ξ, t)

4π‖r− ξ‖ d3ξ, (2)

provided they are sufficiently well-behaved asymptoti-
cally. More precisely, restricting the integral here to a
finite volume Σ ⊂ R3, one can show mathematically that

B(r, t) = ∇× A(r, t) +∇

∮

δΣ

n̂(ξ) ·B(ξ, t)
4π‖r− ξ‖ d2ξ (3)

and

E(r, t) = −∂A

∂t
(r, t) +∇

∮

δΣ

n̂(ξ) · E(ξ, t)
4π‖r− ξ‖ d2ξ

−∇×
∮

δΣ

n̂(ξ)× E(ξ, t)

4π‖r− ξ‖ d2ξ (4)

for all r ∈ Σ. A field is “well-behaved asymptotically” if
the surface integrals here vanish as the boundary δΣ is
taken to infinity.
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There is an easier way to implement this condition,
however, at least for fields that can be written as well-
defined superpositions of plane waves. Namely, the
Coulomb-gauge potential for each individual plane-wave
mode B(r, t) = B0 e

i(k·r−c‖k‖t) comprising such a field is

A(r, t) = lim
ǫ→0+

∇× B0 e
i(k·r−c‖k‖t)

‖k‖2 + ǫ2
, (5)

where the regulating factor ǫ accounts for the distribu-
tional nature of the Fourier transform of the Coulomb
potential. The limit ǫ → 0+ here exists for any k 6= 0,
and any radiation field with no static (i.e., k = 0) com-
ponent can therefore be written uniquely in terms of a
well-defined Coulomb-gauge potential given by eq. (2).
Indeed, these potentials are manifestly in one-to-one cor-
respondence with such radiation fields, confirming ex-
plicitly that the Coulomb condition completely fixes the
gauge of A(r, t).
The paraxial approximation for Maxwell fields can be

motivated in much the same way that it is for scalar
fields [1]. To summarize, a general (positive-frequency)
superposition of plane-wave Maxwell modes has the form

A+(r, t) =

∫

d3k ρ(k)A(k)
ei(k·r−c‖k‖t)

√

(2π)3 2‖k‖ ρ(k)
, (6)

where A(k) is generally a complex, vector-valued func-
tion of k and ρ(k) > 0 is a real, scalar-valued function
corresponding to the density of the plane-wave states be-
ing superposed1. Restricting attention to amplitude pro-
files A(k) satisfying the tranversality condition

k ·A(k) = 0 (7)

for each k implements the Coulomb gauge condition for
eq. (6). The paraxial approximation then applies when
the support of A(k) is (mostly) restricted to a small re-
gion around a given k0 6= 0 in Fourier space. More pre-
cisely, we demand that A(k) ≈ 0 unless ‖k − k0‖ ≪
k0 := ‖k0‖. As in the scalar case, we refer to the set
of radiation fields having the form of eq. (6), satisfying
the transverality condition of eq. (7), and obeying this
loose condition on the support of A(k) as the paraxial

regime of Maxwell theory.
In our nomenclature, fields in the paraxial regime [2–

8] are exact, Coulomb-gauge solutions of the (positive-
frequency) wave equation, which are approximately
monochromatic as a natural consequence of the localiza-
tion of A(k) in Fourier space. In contrast, fields in the

1 As noted in the scalar case, the choices ρ(k) = 1, corresponding
to a uniform density of states in the Fourier 3-space of the inertial
frame implicitly chosen by the time coordinate t in eq. (6), and
ρ(k) = 1/2‖k‖, corresponding to a uniform density of states on
the forward light cone in Fourier 4-space, are the most common
choices. The former leads to simpler commutation relations at
the quantum level, while the latter has better relativistic covari-
ance properties. But in principle one could choose any ρ(k) > 0.

paraxial approximation are exactly monochromatic, but
typically satisfy both the wave equation and the Coulomb
gauge condition only approximately. These approximat-
ing fields emerge by first restricting eq. (6) to be exactly

monochromatic, i.e., by choosing A(k) to have distri-
butional support on the sphere of radius k0 about the
origin in Fourier space. Aligning the +z-axis along the
principal wave vector k0, and using the transverse wave
vector q := k = ẑẑ · k as coordinates on the (forward
hemi-)sphere in Fourier space, yields

Amc(s, z, t) =

∫

d2q

2π
F

mc(q) eiq·s+iz
√

k2
0
−‖q‖2−ick0t, (8)

where the 2-dimensional vector s denotes the transverse
coordinates in the xy-plane and

A(k) =

√

4πk0
ρ(k)

δ

(

kz −
√

k20 − ‖q‖2
)

F
mc(q) (9)

in eq. (6). The transversality condition of eq. (7) de-
mands that

Fmc
z (q) = − q ·Fmc(q)

√

k20 − ‖q‖2
(10)

for such a monochromatic field.
The paraxial approximation for Maxwell fields is most

accurate when modeling monochromatic fields in the
paraxial regime highlighted above. It works by replac-
ing the square roots eqs. (8) and (10) as follows. First,
one expands the square root in the second exponential
factor from eq. (8) in a Taylor series

√

k20 − ‖q‖2 = k0 −
‖q‖2
2k0

+ · · · , (11)

and then drops the higher-order terms not shown here.
The retained quadratic term captures the physical phe-
nomenon of the diffractive spreading of a narrowly colli-
mated beam as it propagates along its longitudinal axis.
Second, one replaces the right side of eq. (10), which
already is of sub-leading order ‖q‖/k0, with zero. The
resulting vector potential then has no component along
the longitudinal (+z-)axis of the beam, and its remaining
components in the transverse (xy-)plane reflect the two-
dimensional space of polarization states of the Maxwell
field. Replacing the carrier frequency ck0 7→ ck for no-
tational simplicity in what follows, the corresponding
spacetime fields have the form [4–6]

Apa(s, z, t) = Ξ(s, z) eik(z−ct) (12a)

with

Ξ(s, z) :=

∫

d2q

2π
F(q) eiq·s e−i ‖q‖

2

2k
z, (12b)
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where Fz(q), and thus Ξz(s, z), vanishes. Although the
envelope function Ξ(s, z) here is now vector-valued, it
satisfies the same paraxial wave equation

0 =

(

2ik
∂

∂z
+△

)

Ξ(s, z)

:=

(

2ik
∂

∂z
+

∂2

∂x2
+

∂2

∂y2

)

Ξ(s, z) (13)

as in the scalar theory. Furthermore, again as in the
scalar case, the space of such envelope functions admits
a Schrödinger-like inner product

(Ξ1,Ξ2) =

∫

d2s Ξ̄1(s, z) · Ξ2(s, z)

=

∫

d2q F̄1(q) ·F2(q), (14)

where the first integral has the same value for every cross-
section (z = const.) of the beam. This inner product
gives the space Kk of fields from eq. (12) sharing a com-
mon carrier frequency ck the structure of a Hilbert space.
Note that eqs. (13) and (14) can both be recast in

terms of the non-zero components Ξx,y(s, z) of the enve-
lope function. This reduces the paraxial approximation
in Maxwell theory to a pair of independent scalar parax-
ial approximations, one for each (linear) polarization of
the beam. However, this decoupling is quite distinct from
what happens even for strictly monochromatic fields that
solve the wave equation exactly. Indeed, one can regard
eq. (10) as a condition intertwining the “polarization”
degrees of freedom of a monochromatic field, loosely as-
sociated with the direction of the vector Amc(s, z, t) or
Fmc(q) at a point, with its “spatial” degrees of freedom,
associated with how the field varies from one point to
another. Simplifying this condition to Apa

z (s, z, t) = 0
or Fz(q) = 0 in eq. (12) has the effect of disentangling
those degrees of freedom. But the absence of such en-
tanglement for Maxwell fields in the paraxial approxima-
tion that is the exception, not the rule. We must pay
careful attention below to the question of how Maxwell
fields in the paraxial approximation should be “reentan-
gled” when associating them to single-particle states of
the quantum field.

III. QUANTUM MAXWELL THEORY IN THE

COULOMB GAUGE

The Hilbert space of the Coulomb quantization of
Maxwell theory is a Fock space constructed from the
space of those positive-frequency solutions

A+(r, t) =

∫

d3k ρ(k)A(k)
ei(k·r−c‖k‖t)

√

(2π)3 2‖k‖ ρ(k)
(15)

of the wave equation that also satisfy the Coulomb gauge
condition

∇ ·A+(r, t) = 0 or k ·A(k) = 0. (16)

Specifically, the single-particle Hilbert space H is the
completion of the space of such classical fields in the Her-
mitian inner product

〈

A+
1 ,A

+
2

〉

:=
i

~c2

∫

d3r

(

Ā+
1 (r, t) · ∂A

+
2

∂t
(r, t)

− ∂Ā+
1

∂t
(r, t) · A+

2 (r, t)

)

=
1

~c

∫

d3k ρ(k) Ā1(k) ·A2(k). (17)

The Fock construction of the multi-particle Hilbert space
FH for the quantum Maxwell field theory defines a cre-
ation operator â†[A+], one for each (normalizable) field
|A+〉 ∈ H in the single-particle Hilbert space, and its
adjoint annihilation operator â[Ā+], which is most natu-
rally labeled by the adjoint vector 〈A+| ∈ H ∗ lying in the
dual of the single-particle Hilbert space. These operators
satisfy the canonical commutation relations

[

â[Ā+
1 ], â

†[A+
2 ]
]

=
〈

A+
1 ,A

+
2

〉

1̂ (18)

by definition, where the inner product on the right is that
of the single-particle Hilbert space H .
The preceding account of the Coulomb quantization of

the Maxwell field is complete and entirely equivalent to
its conventional, textbook construction. The key ben-
efit of this approach for our purposes is that it avoids
emphasizing the plane-wave basis

Φk,α(r, t) :=

√

~c

2‖k‖ρ(k)
ei(k·r−c‖k‖t)

(2π)3/2
εα(k), (19)

for the Hilbert space H of single-particle quantum states
of the quantum field, where ε1,2(k) is a fixed, but ar-
bitrary (and generally complex), orthonormal basis for
the 2-dimensional subspace of E3 that is perpendicular
to the argument k. Indeed, our goal is to associate a
single-particle, quantum state to any given field in the
paraxial approximation. We do not fix a basis for the
Hilbert space Kk of paraxial Maxwell waves defined in
he previous section. Even if we did, however, the quan-
tum states in H corresponding to those basis states in
Kk would bear no particular relation to a basis fixed
a priori in H . Introducing such an a priori structure
can only serve to obscure the correspondence we aim to
establish. We therefore prefer the basis-independent ap-
proach [9, 12, 13] outlined above. The main disadvan-
tage of our approach is that one cannot write the field

operator Â(r, t) explicitly, as quantum field theory texts
conventionally do in terms of the annihilation operators

âk,α := â
[

Φk,α

]

(20)

for the priviledged, plane-wave basis states (and their ad-
joints). However, the same field operator can be defined
implicitly via the condition

[

Â(r, t), â†[A+]
]

:= A+(r, t) 1̂ (21)

in our approach, where |A+〉 ∈ H is arbitrary.
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IV. PARAXIAL SINGLE-PHOTON STATES

As in the case of scalar fields [1], our goal now is to
construct a mapping Ξ 7→ AΞ from the Hilbert space Kk

of solutions to the paraxial wave equation (for a given
carrier frequency ck) to the Hilbert space H of single-
particle states in quantum Maxwell theory. The mapping
we seek should have the following properties:

A. It should be linear, so that superpositions of the
resulting single-particle states exactly mirror those
of the underlying paraxial waves.

B. It should be unitary, at least in the sense that
〈AΞ,AΞ′〉 vanishes whenever (Ξ,Ξ′) does. This
will ensure that the algebra of projection opera-
tors associated with the filtering and measurement
of single-particle quantum states also mirrors that
of the underlying paraxial waves.

C. It should be consistent with our results for the
scalar model in the following sense. Enforcing
the Coulomb gauge condition on AΞ(r, t) generally
has the effect of intertwining the spatial degrees of
freedom of a single-photon state with its polariza-
tion, as discussed at the end of section II above.
However, there are some paraxial waves Ξ(s, z) for
which the approximating field of eq. (12) already

satisfies the Coulomb gauge condition. We assert
that no such intertwining should be required for
those states, and that the mapping Ξ 7→ AΞ should
then be dictated by the scalar-field mapping of [1].

D. It should be covariant in the sense that rotating
Ξ(s, z) about the optical (+z-)axis, or rigidly trans-
lating it in Euclidean space, induces the same trans-
formation of AΞ(r, t) relative to the inertial frame
in which we enforce the Coulomb gauge condition.

E. It should be scale invariant in the sense that the
definition of AΞ(r, t) in terms of Ξ(s, z) should not
privilege any particular length scale other than that
set by the carrier frequency ck.

In addition to these requirements, and again as in the
scalar model, we will restrict our attention to mappings
of the general form

AΞ(s, z, t) =

∫

d2q

2π
F

′(q) eiq·s eiκ(q,k)z e−iω(q,k)t. (22)

The functions κ(q, k) and ω(q, k) remain arbitrary for
the moment. All examples of such a mapping we are
aware of in the literature [3–9] have this general form,
though the choices of these two functions vary. Unlike
the scalar model, however, note that F ′(q) in eq. (22) is
not necessarily equal to F(q) in eq. (12). This is because
of the need to intertwine spatial and polarization degrees

of freedom for some Maxwell fields mentioned above, a
need which does not arise for scalar fields.
Before we explore the consequences of the conditions

(A–E) outlined above, recall that AΞ(s, z, t) in eq. (22)
should belong to the single-particle Hilbert space H of
the quantum Maxwell theory. That is, it should sat-
isfy both the (positive-frequency) wave equation and the
Coulomb gauge condition, whence

ω(q, k) = c
√

κ2(q, k) + ‖q‖2 (23)

and

0 =
(

q+ κ(q, k) ẑ
)

·F ′(q). (24)

Equivalently, the latter condition requires that the Carte-
sian components of F ′(q) along the z-axis and along the
axis parallel to q within the xy-plane satisfy

F ′
z(q) = − ‖q‖

κ(q, k)
F ′

q
(q). (25)

The remaining component of F ′(q), the one along the
axis perpendicular to q within the xy-plane, is uncon-
strained by this condition.
Now we proceed to the conditions (A–E) laid out

above. Because the Fourier transform is a linear op-
eration, the linearity condition (A) will hold automati-
cally provided that the mapping F(q) 7→ F ′(q) is linear.
Equation (25) constrains the allowed linear mappings,
but does not determine one uniquely.
The consistency condition (C) further constrains the

linear mapping F(q) 7→ F ′(q) as follows. The paraxial
field of eq. (12) satisfies the Coulomb gauge condition if
and only if q ·F(q) = 0. In this case, condition (C) de-
mands that the mapping of Maxwell fields we seek should
mimic that of the scalar fields we analyzed previously [1].
The role analogous to F ′(q) in the scalar case, however,
was played simply by the analogue of F(q) itself. Thus,
we condition (C) demands that

F
′(q) = F(q) whenever q ·F(q) = 0. (26)

But the mapping F(q) 7→ F ′(q) must be linear, so this
relationship generalizes to

F ′
⊥
(q) := F

⊥
(q) (27)

for an arbitrary paraxial field, where F⊥(q) denotes the
component of F(q) perpendicular to q in the xy-plane,
i.e., the component unconstrained by eq. (25).
Next we turn to the unitarity condition (B). As in the

scalar case, we simply compute the (relativistic) inner
product of the single-particle states AΞ1,2

(s, z, t) associ-
ated by eq. (22) to an arbitrary pair of paraxial waves
Ξ1,2(s, z), potentially with different carrier frequencies
ck1,2. We find
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〈AΞ1
,AΞ2

〉 := 4π

~c2
δ(k2 − k1)

∫

d2q
ω(q, k1)

∣

∣

∂κ
∂k (q, k1)

∣

∣

F̄
′

1(q) ·F ′

2(q). (28)

The integral here is proportional to the (non-relativistic)
inner product of eq. (14) for all choices of Ξ1,2(s, z) if and
only if there exists a function Ω(k) such that

ω(q, k)
∣

∣

∂κ
∂k (q, k)

∣

∣

F̄
′

1(q) ·F ′

2(q) = Ω(k) F̄1(q) ·F2(q) (29)

for all F1,2(q). But, in the special case where F1,2(q) are
both orthogonal to q, the inner products on either side
are equal by eq. (26). It follows that

ω(q, k)
∣

∣

∂κ
∂k (q, k)

∣

∣

= Ω(k) (30)

generally. This is the same relation we found in the scalar
case [1], where we showed that eqs. (23) and (30), to-

gether with the covariance condition (D) and the scale
invariance condition (E), fixed the unique choices

ω(q, k)

c
= k +

‖q‖2
4k

and κ(q, k) = k − ‖q‖2
4k

(31)

of the undetermined functions in eq. (22), along with
Ω(k) = ck. The same conclusion holds here.

Since eq. (30) equates the scalar factors on either side
of eq. (29), it follows from the latter that the linear map-
ping F(q) 7→ F ′(q) must preserve inner products. That
is, it is a rotation. Equation (27) fixes the rotation axis
to be that perpendicular to q in the xy-plane. Equa-
tion (25) fixes the rotation angle. Combining all of these
results yields

Ahc
Ξ (s, z, t) =

∫

d2q

2π

(

F(q)− 2
q+ 2kẑ

‖q‖2 + 4k2
q ·F(q)

)

eiq·s ei
(

k−
‖q‖2

4k

)

z e−ic
(

k+
‖q‖2

4k

)

t. (32)

This is the unique mapping from Maxwell fields in the paraxial approximation to single-photon states in quantum
field theory that satisfies the conditions (A–E) above. As in the scalar case, the single-particle quantum states are
henochromatic.
In the scalar case, we also established that the set of all henochromatic fields from eq. (32), where (the scalar analogue

of) Ξ(s, z) ranges over all possible solutions of the paraxial wave equation with all possible carrier frequencies ck, is
complete in the single-particle Hilbert space. The analogous result also holds in the vector case. To see this, expand
an arbitrary positive-frequency Maxwell field A+(r, t) satisfying the Coulomb gauge condition in the plane-wave basis
of eq. (6). Using the resulting amplitude profile A(q, kz), set

F(q; k) :=

√

4k2 + ‖q‖2
16πk3

ρ

(

q, k − ‖q‖2
4k

)

[

A

(

q, k − ‖q‖2
4k

)

−
(

q

2k
+ ẑ

)

Az

(

q, k − ‖q‖2
4k

)

]

(33)

Replacing F(q) in eq. (32) with this expression, and
integrating the resulting henochromatic fields over all
carrier frequencies k > 0, then reproduces the original
A+(s, z, t). This shows explicitly that every positive-
frequency Maxwell field can be written (uniquely) as a
superposition of the henochromatic fields from eq. (32).
Note that A(k) in eq. (6) depends on the density of states
ρ(k), but that the factor of ρ(k) under the square root in
eq. (33) renders F(q; k) independent of that choice.

V. CONCLUSIONS

The principal goal of this paper was to extend to the
case of a Maxwell field our previous work [1] demon-

strating the uniquley unitary character of the map-
ping from scalar solutions of the paraxial wave equa-
tion to henochromatic single-particle quantum states of
a scalar field. We have shown that indeed it does ex-
tend, though some additional care is needed in specify-
ing the “polarization degrees of freedom” for the resulting
single-particle state. Once again, as in the scalar case,
henochromatic fields of the form we study here have ap-
peared previously in the literature [3, 6]. What is new in
our discussion is the emphasis on the unitary character
of the mapping. Physically, this mathematical feature of
the mapping ensures that all superpositions and projec-
tions of henochromatic single-photon states exactly mir-
ror those of the underlying beam modes in the paraxial
approximation.
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