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On the parity of ranks of Selmer groups IV

Jan Nekovář

With an appendix by Jean-Pierre Wintenberger

Abstract

We prove the parity conjecture for the ranks of p-power Selmer groups (p 6= 2) of a large
class of elliptic curves defined over totally real number fields.

Introduction

In recent years substantial progress has been made on the parity conjecture for Selmer
groups of elliptic curves and Hilbert modular forms. It seems, however, that the authors
interested exclusively in elliptic curves or in abelian varieties considered as motives with rational
coefficients [CFKS, DD08, DDa, DDb, DDc, Gre, Kim07, Kim, MR07, MR08] and those striving
for utmost generality [Nek01, Nek06, Nek07, Nek08] inhabit two separate universes. The purpose
of this article is to explain that a combination of the techniques of the two schools yields the
following result.

Theorem 1. Let k be a totally real number field, k0/k a finite abelian extension and k′/k0 a
Galois extension of odd degree. Let E be an elliptic curve over k; assume that at least one of the
following conditions is satisfied:

(a) E is modular (over k) and 2 - [k : Q];
(b) j(E) 6∈ Ok.

Then, for each prime number p 6= 2, the parity conjecture

Cpar(E/k′, p) corkZpSelp∞(E/k′)≡ ords=1 L(E/k′, s) (mod 2)

holds. If k = Q, then the statement also holds for p= 2.

In the above, Selp∞(E/k′) is the Selmer group for the p-power descent on E, which sits in an
exact sequence

0−→ E(k′)⊗Qp/Zp −→ Selp∞(E/k′)−→X(E/k′)[p∞]−→ 0.

By Theorem A.1 of the Appendix to this article, the elliptic curve E is potentially modular (i.e.,
it becomes modular over a suitable finite totally real extension of k). This implies that the
L-function L(E/k′, s) admits a meromorphic continuation to C and satisfies the expected
functional equation ([Tay02, proof of Corollary 2.2], [Nek06, § 12.11.6]). In particular,
ords=1 L(E/k′, s) ∈ Z is well-defined.

One can deduce more general parity results by combining Theorem 1 with [MR07,
Theorems 6.4 and 7.1], [MR08, Theorem 1.1], [Gre, § 11.8] or [DDc, Theorems 4.4 and 4.6]
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(in these articles the authors prove relative results of the form ‘Cpar(E/k′, p) implies Cpar(E/L, p)
for various extensions L/k′’).

In the case when E has potentially ordinary reduction at all primes above p,
Theorem 1 was proved (even for p= 2) in [Nek06, 12.9–11] (note that the proof of [Nek06,
Corollary 12.2.10(1),(2)] (respectively, of [Nek06, Corollary 12.2.10(3)]) works unconditionally, by
[Appendix: Theorem A.1] (respectively, by [Appendix: Proposition A.2] applied to T = {v | p})).
To treat the general case we are going to replace in the arguments the Iwasawa-theoretical
result [Nek06, 10.7.17] by the following result of Mazur and Rubin (a special case of [MR07,
Theorem 7.1]).

Theorem 2 (Special case of [MR07, Theorem 7.1]). Let p 6= 2 be a prime number, K/k a
quadratic extension of number fields and F an abelian extension of K of p-power order, dihedral
over k. Assume that no finite prime of K stable under Gal(K/k) ramifies in F/K. Then, for each
elliptic curve E over k and each character χ of Gal(F/K),

corkZp[χ] Selp∞(E/F )(χ) ≡ corkZp Selp∞(E/K) (mod 2),

where we have denoted by Zp[χ] the ring generated over Zp by the values of χ and by

N (χ) = {n ∈N ⊗Zp Zp[χ] | ∀g ∈Gal(F/K), g(n) = χ(g)n}

the χ-component of any Zp[Gal(F/K)]-module N .

1. Proof of Theorem 1

Step 1: reduction to the case k′ = k (cf. [Nek06, § 12.11.2,7,8]; p is arbitrary)
This can be carried out in the following general context. Let M 'M∨(1) be a self-dual pure
motive over a number field K with coefficients in a number field L⊂Q. Fix embeddings
i∞ : Q ↪→C and ip : L ↪→Qp; let p be the prime of L induced by ip. The p-adic realization of M
is a self-dual p-adic geometric representation Mp 'M∨p (1) of Gal(K/K) (pure of weight −1 at
almost all finite primes). The parity conjecture for the Bloch–Kato Selmer group of Mp predicts
that the integer

δ(K,M, p) := dimLp H1
f (K,Mp)− ords=0 L(i∞M/K, s) ∈ Z

satisfies

Cpar(K,M, p) δ(K,M, p)
?≡ 0 (mod 2)

(provided that L(i∞M/K, s) admits meromorphic continuation around s= 0). For K = k,
M = h1(E)(1), L= Q and p = p this reduces to the usual parity conjecture

Cpar(E/k, p) corkZp Selp∞(E/k)
?≡ ords=1 L(E/k, s) (mod 2).

Proposition 3. LetK ′/K be a finite Galois extension with Galois groupG. Denote by Ĝ the set
of isomorphism classes of irreducible representations of G over Q and by Ĝ◦ = {ρ ∈ Ĝ | ρ' ρ∨}
the self-dual ones. After an extension of scalars we can assume that all ρ ∈ Ĝ are defined over L.
If, for each ρ ∈ Ĝ, the L-function L(i∞M ⊗ ρ/K, s) admits meromorphic continuation around
s= 0 and satisfies the expected functional equation, then

δ(K ′, M, p)≡
∑
ρ∈Ĝ◦

δ(K,M ⊗ ρ, p) · dim(ρ) (mod 2).
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In particular, the validity of Cpar(K,M ⊗ ρ, p) for all ρ ∈ Ĝ◦ implies the validity of

Cpar(K ′, M, p). IfG is abelian, then Ĝ is the character group ofG and Ĝ◦ = {χ ∈ Ĝ | χ2 = 1}; thus

δ(K ′, M, p)≡
∑

χ∈Ĝ,χ2=1

δ(K,M ⊗ χ, p) (mod 2).

Proof. The following argument can be, essentially, extracted from [Nek06, 12.11.2,7,8]. There are
standard decompositions

L(i∞M/K ′, s) =
∏
ρ∈Ĝ

L(i∞M ⊗ ρ/K, s)dim(ρ),

H1
f (K ′, Mp) =H1

f (K,Mp ⊗ Z[G]) =
⊕
ρ∈Ĝ

H1
f (K,Mp ⊗ ρ)dim(ρ).

(3.1)

If ρ 6∈ Ĝ◦, then

ords=0 L(i∞M ⊗ ρ/K, s) = ords=0 L(i∞M ⊗ ρ∨/K, s), (3.2)

by the functional equation (the archimedean L-factors do not have a pole at s= 0 in the self-dual
case) and

dimLp H1
f (K,Mp ⊗ ρ) = dimLp H1

f (K,Mp ⊗ ρ∨) (3.3)

by the self-duality result [Nek06, 12.5.9.5(iv)]. (This latter work considers only the case of
abelian G, but the argument works in general. A similar result for finite Galois modules is proved
in [Wil95, Proposition 1.6]. The ordinary case was treated earlier in [Gre94, Proposition 2]).
A special case of such a self-duality (for M = h1(A)(1), L= Q and p = p 6= 2) was reproved
by another method in [DDb, Theorem 1.1]. The statement of the Proposition follows from
(3.1)–(3.3). 2

Corollary 4. If K ⊂K0 ⊂K1 ⊂ · · · ⊂Kn is a chain of finite extensions such that K0/K is
abelian and each Ki/Ki−1 (i= 1, . . . , n) is abelian of odd degree, then Proposition 3 applied to
K0/K and all Ki/Ki−1 yields

δ(Kn, M, p)≡
∑

χ∈Ĝ,χ2=1

δ(K,M ⊗ χ, p) (mod 2), G= Gal(K0/K).

Completion of Step 1. As k′/k0 is a Galois extension of odd degree, it is solvable (of odd degree).
Corollary 4 for K = k, K0 = k0, Kn = k′ and M = h1(E)(1) then implies that Cpar(E/k′, p)
follows from Cpar(E ⊗ χ/k, p) for all quadratic twists of E by χ : Gal(k0/k)−→ {±1} (the
assumptions on the L-functions in Proposition 3 are satisfied, by potential modularity of E
(see [Tay02, proof of Corollary 2.2], [Nek06, § 12.11.6])). If k = Q, then Cpar(E/Q, 2) was proved
in [Mon96]; Corollary 4 then implies Cpar(E/k′, 2).

Step 2: Proof of Theorem 1 in the case (a), k′ = k, p 6= 2 (cf. [Nek06, 12.9.5.2,3])
Let B a quaternion algebra over k ramified at all infinite primes of k except one (and at no
finite prime). Let R⊂B be an Eichler order of level cond(E) and N∗H the (smooth projective)
Shimura curve over k associated to B∗/F ∗ and the open compact subgroup H = (R⊗ Ẑ)∗ ⊂
(B ⊗ Ẑ)∗ (see [Nek07, 1.4]). Modularity of E implies that there is a non-constant k-morphism
Jac(N∗H)−→ E; denote by α :N∗H −→ E its composition with an integral multiple of the Hodge
embedding ([Zha01, p. 30], [CV07, 3.5], [Nek07, § 1.19]).
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Fix a prime P of k above p and an imaginary quadratic extension K/k in which all primes
of k dividing P cond(E) split; then

ords=1 L(E/K, s)≡ [k : Q]≡ 1 (mod 2)

(see [MR08, Remark 1.2]). The infinite ring class field K[P∞] in the sense of [Nek06, 12.6.1.4]
is an abelian extension of K unramified outside the primes of K above P and is dihedral
over k, and G= Gal(K[P∞]/K)'Gtors × Zrp with r = [kP : Qp] and Gtors finite. By [CV07,
Theorem 4.2] there exist an integer n big enough so that Gtors injects into Gn = Gal(K[Pn]/K),
a CM point x ∈N∗H(K[Pn]) and a character χ :Gn −→ Zp[χ]∗ not factoring through Gn−1 with
χ(Gtors) = {1} and such that

eχ(α(x)) =
∑
g∈Gn

χ−1(g) α(x) ∈ (E(Fn)⊗ Zp)(χ) (Fn =K[Pn]Gtors)

is not torsion. This implies, by a generalization of [BD90, Theorem 2.2] proved in [Nek07,
Theorem 3.2] (as E does not have CM by K; see [Nek06, 12.9.6]), that

corkZp[χ′] Selp∞(E/Fn)(χ
′) = 1,

where χ′ is the character of Gal(Fn/K) =Gn/Gtors through which χ factors. Applying Theorem 2
to the extension Fn/K we obtain Cpar(E/K, p):

corkZp Selp∞(E/K)≡ 1≡ ords=1 L(E/K, s) (mod 2).

Varying K as in [Nek06, 12.10.9] we deduce Cpar(E/k, p).

Step 3: First reduction in the case (b), k′ = k (cf. [Nek06, 12.10.5,6])
There is a totally real quadratic extension k2/k such that the quadratic twist E ⊗ χ of E by the
corresponding quadratic character χ : Gal(k2/k) ∼−→ {±1} has multiplicative reduction at some
prime Q of k. Applying Corollary 4 to k2/k we see that it is enough to prove Cpar(E ⊗ χ/?, p)
over ? = k, k2. Moreover, after possibly replacing k by a cyclic extension of odd order in which Q
splits, we can assume that there is a prime P 6=Q above p (cf. [Nek06, 12.10.6]).

Step 4: Application of a variant of Brauer’s theorem (p 6= 2) (cf. [Tay02, Nek06,
12.11.6])
Thanks to Step 3, we can assume that there is a prime Q of k at which E has multiplicative
reduction and a prime P 6=Q of k above p.

By assumption there exists a totally real finite Galois extension k̃/k over which E becomes
modular; set G= Gal(k̃/k). By [CR81, Theorem 15.10] there exist solvable subgroups Hj ⊂G
and integers nj ∈ Z such that there is an equality of virtual representations of G

1G =
∑
j

nj IndGHj
(1Hj );

set kj = k̃Hj . As

L(E/k, s) =
∏
j

L(E/kj , s)nj , corkZp Selp∞(E/k) =
∑
j

nj corkZp Selp∞(E/kj),

it is enough to prove Cpar(E/kj , p) for all j. Fix j; then E is modular over kj (see [Tay03, proof
of Theorem 2.4]). If 2 - [kj : Q], then we apply Step 2. Assume that 2 | [kj : Q]. There exists a
prime Qj of kj at which E ⊗k kj has multiplicative reduction and a prime Pj 6=Qj of kj above p.
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Fix a totally imaginary quadratic extension Kj/kj in which Qj is inert and all primes of kj
dividing PjQ−1

j cond(E/kj) are split. Let Bj be a quaternion algebra over kj ramified at Qj and
at all infinite primes of kj except one. There exists a kj-embedding of Kj into Bj and we have
(again by [MR08, Remark 1.2])

ords=1 L(E/Kj , s)≡ [kj : Q] + 1≡ 1 (mod 2).

The argument of Step 2 then applies to the Eichler order Rj ⊂Bj of level Q−1
j cond(E/kj) and the

ring class field Kj [P∞j ], yielding Cpar(E/kj , p) for all j. This completes the proof of Theorem 1.
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Appendix. Potential modularity of elliptic curves

over totally real fields

Jean-Pierre Wintenberger

Abstract

Using the techniques of R. Taylor, we prove that an elliptic curve defined over
a totally real number field F is potentially modular, i.e. becomes modular over a
finite totally real extension F ′ of F . We can be more precise on the ramification of
F ′/F .

The following theorem is well known to experts.

Theorem A.1. Let E an elliptic curve over a totally real number field F . Then there exists a
totally real number field F ′ ⊃ F such that EF ′ is modular.

We explain what we mean by ‘modular’. Let F ′ be a totally real number field (a finite
extension of Q). Let π be a cuspidal automorphic representation of GL2(AF ′). We shall suppose
that the archimedean components of π are such that π corresponds to a Hilbert modular form of
parallel weight 2. Taylor has associated to π a compatible system (ρπ,λ) of representations of the
Galois group GF ′ (see [Tay89]). There is a conductor n, which is an ideal of the rings of integers
of F ′, a Hecke algebra T with Hecke operators Tq ∈ T for q prime of F ′ not dividing n, and
a morphism θ : T→ C. The subfield L of C generated by the image of θ is a finite extension
of Q. For each prime λ of L, the Galois representation ρπ,λ :GF ′ →GL2(Lλ) is absolutely
irreducible [Wil86, Proposition 2.1], unramified outside the primes dividing n and the rational
prime ` below λ, and is characterized by

tr(ρπ,λ(Frobq )) = θ(Tq ),

for every prime q of F ′ which is prime to n`.
When we say that E is modular over F ′, we mean that there exists such a π such that,

for any prime λ of L, the Galois representation ρπ,λ is isomorphic to the Galois representation
ρ(E)` given by the action of GF ′ on the Tate module V`(E) = Q` ⊗Z`

limn E(Q)[`n] (` is the
characteristic of λ). By compatibility of the Galois representations attached to π and E and
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the absolute irreducibility of the Galois representations attached to π, it suffices to check the
isomorphism ρπ,λ ' ρ(E)` for one λ.

Of course, it is believed that one can take F ′ = F in the theorem. The following proposition is
much weaker, but it is useful (see [Nek06, Corollary 12.2.10 and Definition 12.11.3] and [Nek08,
comments after Theorem 1]).

Proposition A.2. Let T be a finite set of primes of F such that E has good reduction at all
q ∈ T . One can then impose that F ′/F is unramified at T .

Remark . Let N be a finite extension of F . One can furthermore impose that N and F ′ are
linearly disjoint extensions of F (see [HST06, Proposition 2.1]).

Let us give a proof of the theorem and the proposition.

If EQ has complex multiplication (by a quadratic field L), V`(E) is induced from the Galois
character of GLF attached to a Hecke character of LF and E is modular over F (see [JL70,
Proposition 12.1]).

From now on, suppose that EQ has no complex multiplication. We denote by M the smallest
Galois extension of Q containing F . For each prime l of F such that E has good reduction at l,
we denote by al the trace of the Frobenius Frobl of E, i.e. Norm(l) + 1− al is the number of
points of E in the residue field k(l).

The following lemma is a variant of a theorem of Serre [Ser81, 8.2].

Lemma A.3. There exist infinitely many rational primes ` which satisfy the following properties:

(i) ` > 5, ` splits completely in the Galois extension M/Q;

(ii) E has good ordinary reduction at each prime l of F above `;

(iii) al 6≡ −1, 1 mod `.

Proof. For ` that splits completely in F and l a prime of F above ` such that E has good reduction
at l, one has |al |< 2

√
`. Furthermore, the ordinarity condition in property (ii) is equivalent to the

condition that ` does not divide al . For ` > 5, it follows that the congruences al ≡−1, 0, 1 mod `
are equivalent to the equalities al =−1, 0, 1. One sees that, to prove the lemma, one has to find
infinitely many rational primes ` satisfying property (i), such that, at each prime l of F above
`, E has good reduction at l and al 6=−1, 0, 1.

Since EQ has no complex multiplication, a theorem of Serre [Ser72] implies that there exists q0
such that, for each rational prime q > q0, the image of GM in the Galois group of the extension
M[q] of M generated by the points of order q of E is isomorphic to GL2(Fq). The number of
elements of GL2(Fq) is f(q) = (q2 − 1)(q2 − q). The number of elements of GL2(Fq) of trace t is
f0(q) = 2(q − 1)2 + (q − 2)(q2 − q + 1) if t 6= 0 and f1(q) = (q − 1)2 + (q − 1)(q2 − q + 1) if t= 0.
The quotients f0(q)/f(q) and f1(q)/f(q) have limit 0 when q goes to ∞. By choosing q > q0
sufficiently large, it follows from Chebotarev’s theorem applied to M[q]/M that, for each ε > 0,
there exists a set PM of primes of M of density greater than 1− ε such that for l ∈ PM , one has
al 6=−1, 0, 1. Let P ′M be the set of primes l of M such that σ(l) ∈ PM for all σ in the Galois
group of M/Q. The density of P ′M is bigger than 1− [M : Q]ε. By that we mean that the lower
limit of

∑
l∈P ′M

Norm(l)−s/
∑

l Norm(l)−s when s→ 1+ is bigger than 1− [M : Q]ε. Choosing
ε < 1/[M : Q], we see that P ′M is infinite, which proves the lemma. 2
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Let ` be as in the lemma and such that:

– no prime of F above ` belongs to T ;
– GM maps surjectively onto GL2(F`).

Apply Taylor’s potential modularity [Tay02, Theorem 1.6.] to the representation ρ̄ of GF in
GL(E[`]). As E has good ordinary reduction at primes above `, the reducibility hypotheses of
the restriction of ρ̄ to the decomposition group of primes above ` are satisfied. We get:

– a totally real finite extension F ′ of F , with F ′/F Galois, such that every prime l of F above
` splits completely in F ′;

– a cuspidal automorphic representation π of GL2(AF ′), whose archimedean components are
as described above after the statement of the theorem, and a place λ of the field of coefficients
of π above ` such that ρπ,λ and ρ̄|GF ′

have isomorphic reductions: ρ̄π,λ ' ρ̄|GF ′
;

– for every prime l′ of F ′ above `, the restriction of ρπ,λ to the inertia subgroup Il ′ is of the
form (

χ` ∗
0 1

)
,

where χ` is the cyclotomic character.

To prove the proposition, we furthermore require that no prime of F in T ramifies in F ′.
We explain what we have to add to the arguments of Taylor in [Tay02] to check that this

is possible. Let p as in [Tay02] be the auxiliary prime such that the considered moduli problem
for Hilbert–Blumenthal abelian varieties has p-level structure induced from a character of a
quadratic extension L of F .

Firstly, we can choose the level structure at p so that it is unramified at all primes in T . We
choose the auxiliary prime p such that no prime of F above p is in T . When we apply Lemma 1.1.
of [Tay02], we impose that every prime of T splits in the quadratic extension L of F =K. We
choose the set S of primes of F such that it contains our T . We choose the characters ψx for
x ∈ T unramified. We have that φ in Lemma 1.1. is the cyclotomic character. In the proof of
Lemma 1.1. on page 132, we have that ψx is unramified. We see that IndGK

GL
ψ is unramified at

all primes in T .
We apply the theorem of Moret-Bailly ([Mor89], [HST06, Proposition 2.1]) to the Hilbert–

Blumenthal modular variety X on [Tay02, p. 136]. We want to ensure that F ′/F is unramified
at all primes in T . By Moret-Bailly, this will follow from the fact that X(Fv,ur) is non-empty, for
each v ∈ T , where Fv,ur is the maximal unramified extension of Fv. We deduce that X(Fv,ur)
is non-empty from the fact that the p and ` level structures are unramified at v ∈ T and
the following fact proved by Rapoport [Rap78] and Deligne and Pappas [DP94]: X has a
compactification X proper over Z[1/p`], smooth over Q, with absolutely irreducible fibers and
there is an open subscheme U of X smooth over Z[1/p`] which is dense in each fiber and which
parametrizes abelian schemes with suitable additional structures. For v ∈ T , we take the open
subset Ωv ⊂X(Fv) of [HST06, Proposition 2.1] to be the set of points of U with values in the
ring of integers Ov,ur of Fv,ur. The set Ωv is not empty as the scheme U has a point with values
in the algebraic closure of the residue field of Fv, and, by smoothness, this point can be lifted to
a point with values in Ov,ur.

We finish the proof of the theorem and the proposition. A theorem of Skinner and
Wiles [SW01, Theorem 5.1] implies the modularity of ρ|GF ′

. The theorem of Skinner and Wiles is
quoted as [Ski03, Theorem 4]. In [Ski03], Skinner also states a ‘theorem 3’, which he says should
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be possible to prove. The proof of Theorem 4 relies on a deep and difficult argument using Hida’s
theory, and is mainly concerned with Galois representations whose reduction does not have ‘big
image’. This is not our problem, and the ‘less sophisticated’ ‘theorem 3’ should be enough for our
argument. Indeed, it follows from the congruences al ′ 6≡ −1, 1 mod ` that, for each prime l′ of E′

above `, πl ′ is not a twist of the special representation and we have the minimality hypothesis
for ρπ,λ needed to apply ‘theorem 3’.
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Hautes Études Sci. 54 (1981), 323–401.

Ski03 C. M. Skinner, Modularity of Galois representations, Les XXIIèmes Journées Arithmetiques
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