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ON THE PARITY OF THE CLASS NUMBER OF 
THE FIELD OF q-TH ROOTS OF UNITY 

DENNIS R. ESTES 

ABSTRACT. It is shown that the parity of the class number 
of the field Q(Cg) of the q-th roots of unity over the rationals 
is odd whenever q and p = (q — l ) /2 are primes and 2 is inert 
in the real subfield of p-th roots of unity over the rationals. 
As a consequence, the genus coincides with the spinor genus 
of the ring of integers in Q(Cg) viewed as a lattice over the 
ring of integers in the real subfield. 

Throughout this article, £n denotes a primitive n-th root of unity, 
kn = Q(Cn) is the cyclotomic field of n-th roots of unity over the 
rationals Q; fc+ denotes the real subfield of kn; 0 + and 0 + are the 
rings of algebraic integers in kn and k+ ; C n , C+ are the class groups of 
the two rings; and their orders /in, h„ are the class numbers of the two 
fields. It is known that /i+ divides hn with quotient h~, the relative 
class number of kn over k+. Moreover, hn is odd if and only if h~ is 
odd [8, Satz 45]. We prove in this note the following 

THEOREM. If q and p — (q — l) /2 are prime integers and 2 is inert 
in the real subfield of the cyclotomic field of p-th roots of unity over the 
rationals then the class number of the cyclotomic field of q-th roots of 
unity is odd. 

The study of the parity of the class number of number fields is 
motivated by the research of several authors. H. Hasse credits E. 
Kummer with the initial investigations on the parity of hq,q a prime, 
based on a series of Kummer's papers between 1847 and 1870 (See 
[8] for a list of Kummer's articles and Satz 45 for extensions and 
refinements of Kummer's results to imaginary cyclic extensions of Q). 
Kummer's work can be viewed as an analogue of Gauss' work on the 
2 primary component of the class groups of binary quadratic forms for 
the binary quadratic lattice Oq over 0 + (see Proposition below). In 
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[16], C.T.C. Wall shows that the topological classification of free group 
actions on Sn depends in part on the 2 primary component of C + . 
More recently, J. Hurrelbrink and M. Kolster [11] have shown that 
the 2 primary component of the Birch-Tate conjecture for cyclotomic 
fields is true in certain cases when the class number is odd (The 
Birch-Tate conjecture states that the order of the K group K ^ C ^ ) 
is VÜ2{E)C,E{ — 1), where CE is the zeta-function of E and W2(E) is twice 
the product J}pn(p) with n(p) the largest integer n such that E contains 
the maximal real subfield k^n^p a prime. Mazur and Wiles [12] have 
shown that the odd parts are the same for abelian number fields). In 
particular, if 2 ^ ' ^ exactly divides W2(E)(E( — 1),E = &+ and n a 
power of an odd prime, then the Birch-Tate conjecture holds if and 
only if h~ is odd. 

Our investigation and that of D. Davis' work in [5] were the result of 
inquiries by O. Taussky. Taussky considered the question as to when a 
unimodular circulant C factors integrally as AAt

1 t denoting transpose. 
She proved that if such a factorization exists then A can be selected 
as a circulant, and verified that such a factorization exists for 5 x 5 
symmetric positive definite circulants by translating the question into 
a question as to whether certain totally positive units in the real subfield 
of cyclotomic extensions are norms (see [15] and [13]). The connection 
with cyclotomic extensions can be deduced from the observation that 
n x n integral circulants are matrix representations of the elements of 
the group ring Z[G], G a cyclic group of order n and, when n is prime, 
Z[G] is a subdirect sum of 0 n and Z. From this imbedding, one can 
conclude that if totally positive units in 0 + are norms of units from 
Oçthen each symmetric unimodular positive definite circulant C factors 
as AAl with A integral. Since the image of the norm map to k+ on the 
units in Oq is the group of squares of units in 0 + [17, Proposition 1.5], 
each totally positive unit in 0 + is a norm from Oq if and only if each 
totally positive unit in 0 + is a square. D. Davis, with the assistance of 
E.C. Dade, computed the index of the totally positive real units modulo 
squares for all primes q < 5,000, and these computations led Taussky 
to the conjecture that this index is 1 whenever both q and p = (q — l)/2 
are primes. In [5], Davis verified Taussky's conjecture in the event that 
2 is a generator modulo p. With n a prime power, the totally positive 
units in 0 + are squares of units from 0 + if and only if h~ is odd [6, 
Lemma 5 and Theorem 3], and we prefer to consider in this note the 
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following variant of Taussky's conjecture: h~ is odd whenever q and 
p — (q — l ) /2 are primes. It follows from Davis' work and is also shown 
in [11] that this conjecture holds when 2 is a generator modulo p. 

Additional work on the parity of class numbers of abelian fields not 
previously cited can be found in [1, 2, 3, 9, 10] and their references. 
Most of these articles extended Hasse's Satz 45, providing more detailed 
relations between the class number of real abelian extensions and 
various subgroups of the group of units within. One of the more 
definitive results is that of Cornell and Rosen [3] who show that if n has 
five or more prime divisors then 2 divides /i+. Finally, K.F. Hettling 
has shown that the 2-part of the Birch-Tate conjecture is valid for all 
totally real number fields whenever 2^E;^ is the exact 2-power dividing 
W2(E)ÇE( — 1) and, in this event, the orders of certain class groups are 
odd [9]. 

Connection with quadratic lattices. The relative norm from kq to &+ 
induces a quadratic lattice structure on Oq over 0+, and the relation of 
the parity of the class number of kq with quadratic lattices is provided 
by the following proposition. 

PROPOSITION. A necessary and sufficient condition that h~ is odd is 
that the genus and the spinor genus of Oq coincide. Equivalently, the 
number of classes in the genus of Oq is odd. 

PROOF. The map els (J) —> els ( / / /*) , * denoting complex conjuga
tion, defines an epimorphism from Cq to the group G of classes in the 
genus of Oq [4, Proposition 2.6]. Since q is a prime, the unique ramified 
prime in Oq is principal, hence the kernel of this map is the image of 
C+ in Cq. Since C+ injects into Cq [17, Theorem 4.14], Q has odd 
order if and only if h~ is odd. Since G has odd order if and only if G/G2 

is a trivial group and the number of spinor genera in the genus of Oq 

is the cardinality of G/G2 [4, Theorem 2.10], the proposition follows. D 

PROOF OF THE THEOREM. We start with the formula h~ 
= 2qY[[B(l, x)/2) which expresses the relative class number in terms of 
the generalized Bernoulli numbers B(l,x) — Pax(a)]/<2S X a n °dd char-
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acter for kq and a = 1 , . . . q — 1 [17, Theorem 4.17]. Among these char
acters is the quadratic character X2(a) defined by the Legendre symbol 
which is 1 or -1 according to whether a is or is not a square modulo 
q. Since the Gauss character theory implies that Q(y/—q) has the odd 
class number —B(l, X2), h~ is odd if and only if /i0 = n i ^ ( l » x)/2] is 
odd, the product taken over the characters modulo q of order 2p. Note 
that qB(l, x)/2\s an integer in kp and, as p is prime, the galois group of 
this field acts transitively on the qB(l,x)- Thus, qB(l,x)/2 n a s norm 
ho from kp to Q. Consequently, h~ is odd if and only if qB{\,x)/2 
is coprirne to each of the primes in kp dividing 2 for any choice of x 
of order 2p. It will be convenient in what follows to select a choice of 
X- Since p is prime, 2 is either inert or splits completely in k+. Since 
q > 3, the latter cannot occur, hence 2 is inert or the product of two 
prime ideals in kq. Thus, either 2 or -2 is a primitive root modulo q. 
Let b = 2 or —2 depending on which generates the units modulo q and 
define x by x ( a ) — Cip when a = ò^mod q(b = 2 if q — 5). Then x gen
erates the group of characters modulo #, and its conjugates under the 
galois group of kp over Q are the odd nonquadratic characters modulo 
Q-

Since 2 is inert in fc+, qB(l, x ) / 2 is coprirne to the dyadic primes in kp 

if and only if its norm 6 = ç B ( l , x)qB(l, X*)/4 to k+ is coprirne to 2, * 
denoting complex conjugation. Thus, h~ is odd if 46 is not in the ideal 
in k+ generated by 8; i.e., the expression for 46 as an integral linear 
combination of 1, CP, • • •, C p 2 n a s a t least one coefficient not divisible 
by 8. Now 

p 

46 = Y,(dc - d-c)x(c) 
C = l 

where dc = J^ aò, 1 < a, b < q — 1 and ab~l = c mod q. 

Let Xi = XX2- Then Xi is an even character of order p and, as c 
varies from 1 to /?, x i r u n s through all the p-th roots of unity. The 
choice of c which gives the value Cp_1 is determined by the equation 
yp-i = 2 p - i = ^ ( 2 ) 2 - ! EE - X 2 ( 2 ) p m o d q. Thus, X i (p) = C?"1 ' T h e 

expression for 46 in terms of a basis for kp is therefore 

46 = J2i(dc - d-c)X2(c) - {dp - d_p)x2(p)]Xi(c), 1 < c < p - 1, 

and 46 is not divisible by 8 if 

Dc = (dc - d-c)x2{c) ^ (dp - cLp)x2(p)mod 8 
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for some c between 1 and p — 1. Now 

q - l q-l 

where ((x)) = x — [x] — 1/2 or 0 according to whether x is or is not an 
integer, [x] the greatest integer not exceeding x and s(c, q) the Dedekind 
sum 

q-\ q - l 

5(c,<?) = ]T((ca/g))((a/ç)) = Y,((ca/q))a/q (see [14, pp. 1,8]). 
a = l a = l 

Therefore, Dc = q2(s(c,q) - s(-c,q))x2(c). 

We will need the following properties of Dedekind sums ([14, pp. 1, 
4-5, 8, 26-27, 70]): 

(1) s(h 4- kt, k) = s(h, k) for t an integer, 

(2) *(-Ä,fc) = -a(fc,k), 

(3) I2hks{h, k) + 12hks(k, ft) = -3hk 4- ft2 4- A:2 + 1, 

(4) 12hks(h, k) = (k- l)(k - ft2 - 1) if fe = lmod ft, 

(5) 12hks{h, k) = (k- 2){k - (ft2 + l)/2) if ifc = 2mod ft, 

(6) 12hks{h, k) = k2 + (ft2 - 6ft 4- 2)k 4- ft2 4-1 if k = - lmod ft, 

(7) 2kds(h, k) is an integer, d the greatest common divisor of 3 and 
/c, and 

(8) 5(1, k) = - 1 / 4 4-1/6* 4- fc/12. 

Thus, by (2), Dc = 2q2s(c,q)x2(c), and, in view of (7), we have 
only to exhibit a c between 1 and p — 1 for which 2qs(c, q)x2(c) ^ 
2qs(p,q)X2(p)mod 8. 

Case 1. p = 3mod 8. Then q = 7 mod 8, and X2(p) = X2(-2) = —1. 
Since ç = 1 mod p, (4) implies that 2qs(p,q)x2(p) — ~p(2 — p)/3 = 
1 mod 8. However, 2gs(l,g)x2(l) = p(2p - l ) /3 = 5 mod 8. 

Case 2. p = 5 mod 8. Then ç = 3 mod 8 and X2(p) = x( -2) = 1. 
Therefore 2qs(piq)x2(p) — p(2 —p)/3 = 3mod 8, while 2çs(l,ç)x2(l) — 
p ( 2 p - l ) / 3 = 7 m o d 8 . 

We should remark that when 2 is inert in k£, the condition that p = 3 
or 5 mod 8 is equivalent to 2 being a generator for the units modulo 
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p. Thus, the argument given in the above two cases provides another 
proof of a result of D. Davis in [5]. 

Case 3. p = 7 mod 8. Then q = — 1 mod 16 and 2qs{p, q)x2{p) = 
lmod 8. Note that since q and p = (q — l ) /2 are primes and 
p ^ 3,<7 = — 1 mod 3. Let a denote the largest positive integer such 
that 3 a divides q + 1. Then q = - 1 + 3ae mod 3 a + 1 with e = 1 or - 1 . 

Case 3.1. e = 1. Apply (3) and then (1) to obtain 

i 2 , o2a+2 , 1 

S(3- ,g ) = -S(,,3-)4 + 4|^ 
- s( 1 + 3 e,3 ) 4 + 1 2 ( ? 3 a + 1 . 

Set e = 1 and apply (3) again to obtain 

s(T» a)-sir» 113°) 3 2 a + 2 + ( - l + 3 ^ + 1 ^ + 3 ^ + 1 
8(6 ,q)-s(A , 1 + 3 ) i2(-i + 3»)3»+1 + 12Ç3-+1 ' 

Since 3 a + 1 = 3 mod ( -1 + 3°), (1) implies 

o2a+2 , / I i oa\2 , i 2 , o2o+l , i 

s(3 ,<?)-S(3, 1 + 3 ) 1 2 ( _ i + 3°)3«+i + 1293«+l ' 

Since —1 + 3° = - 1 mod 3, (6) gives 

( - l + 3 a ) 2 - 7 ( - l - f 3 a ) + 10 
s(T+\q) 

12(- l + 3a)3 
32a+2 + ( - 1 + 3 a ) 2 + j g 2 + 32a+2 + x 

12(- l + 3 a )3 a + 1 12ç3a+1 

which, upon simplification, is 

+ 1 _ q{32a - 18 • 3 a + 2) + q2 + 32a+2 + 1 
5 ( 3 ' g ) * 1 2 ^ ' 

and since q = — 1 mod 16, 

Q . o2a . o . oa+2 

49S(3a+1,9) = J + 2 mod 16. 
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Therefore, 2qs(3a+1
1q) = 5mod 8. Since q = — 1 mod 3, quadratic 

reciprocity implies that X2(3a+1) = 1. Thus, 2çs(3a+1,ç)x2(3a+1) =É 
2ps(p,q)X2(p) mod 8. 

Case 3.2. The argument is similar to the previous case. First apply 
(3) then (1) to express s(3fl+1,g) in terms of s ( - l - 3 a ,3 a + 1 ) . Next 
use (2), then (3), the property that 3°+ 1 = - 3 mod (1 + 3a), then 
(1), (2) and finally (4) to conclude that 2qs(3a+\q) = 5 mod 8. Thus, 
2gs(3a+1,<7)x2(3°+1) # 2q8(p,q)x2(p)mod 8. 

The proof is now concluded with the observation that when p = 
1 mod 8, 2 splits in Q(y/p) and is therefore not inert in fc+. 
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