
ON THE PARSING ANO COVERING OF

SIMPLE CHAIN GRAMMARS

Anton Nijholt
Vrije Universiteit

Department of Mathematics
P.O.-Box 7181, Amsterdam

The Netherlands

ABSTRACT.

A method is presented for obtaining a simple deterministic pushdown transducer which

acts as a parser for simple chain grammars. It is shown that a simple deterministic

grammar can be constructed which covers the simple chain grammar. To obtain both the

simple deterministic pushdown transducer and the cover result, a new type of parse is

introduced which differs from the left and right-parses which are common for the

usual one pass no back-tracking parsing algorithms. For the simple chain grammars this

parse, the so-called left part parse, follows from a simple le~t part property which

is satisfied by the grammatical trees of simple chain grammars.

I. INTRODUCTION

In this paper we show how some negative cover results for a subclass of the context-

free grammars can lead to an optimal parsing method for the same subclass of grammars.

The class of context-free grammars which we consider is the class of si~r~le chain

gr~Tmnars~ This class, introduced in [6] is a subclass of the LR[O) grammars. It has

been shown that simple chain grammars can be parsed with a very simple botto~-~ p~-

sing method. ~breover~ each simple chain grammar can be transformed to an equivalent

simple LL[I) [or simple deterministic [3]) grammar, Such a transformation leads to

some negative cover results. It can be shown that there is no such transformation

331

which makes it possible to obtain, by a string-hcmomorphlsm, the right parses o% the

simple chain grammar from the left parses of the simple LL(1) grammar. That is, the

simple LL(l) grammar does not left-to-~ght-cover the simple chain grammar. Neither

do we have that the left parses of the simple LL(l) grammar can be mapped on the

left parses of the simple chain grammar, that is, the simple LL{l) grammar does not

left cover the simple chain grammar.

How to consider these negative results? One can argue that the simple LL(13 grammars

are a tee restrictive class of grammars to expect nice cover results. However, the

motivation to transform grammars is exactly to obtain such restrictive classes of

grammars which can be parsed in a more simple way than the original grammars. More-

aver, the transformation which can be given is very simple and straightforward. Dne

can also conclude that a definition of cover by means of a hamomorphism is too res-

trictive. However, as easily can be verified, if we use in the definition of cover

instead of a homomorphism, a (deterministic) finite transducer mapping then still

we do not obtain positive cover results. Besides, introduction of more complicated

mappings than a homomerphism is a rather rude approach of such a simple transforma-

tion. An other approach, which we will not fallow here, is to let the "homomorphic"

transformations be %unctors which go from a (syntax) category associated with one

grammar to the category of the other grammar [2]. Although this way of looking at

"structure" preserving transformations has been investigated in several papers (see

the references in [2]), this approach has not yet lead to very useful results. A

concept as cover gives a relation between (mostly) simple descriptions of parse

trees {for example left or right parses) and is therefore simple to work with.

Further investigations of the categorical approach may however lead to more satis-

factory results than are now available.

In this paper our point of view on this problem is the following. In the theory of

parsing we are used to describing the structure of grammatical trees by means of the

productions of the context-free grammar with respect to which the parsing is done.

To be more specific, we associate left parses with top-down parsing and right parses

with bottom-up parsing.

An exception of this rule are the left corner parses [73 which become useful when

332

we consider left corner grammars, Here we introduce another type of parse, which we

associate with the simple chain grammars, the left part parse. We believe, and we

try to illustrate this in the following sections, that this choice o# parse is the

most natural one, among ethers since, as for example the left parses #or LL[KI @ram-

mars, productions are given as output o# the parsing process as soon as they are

determined. Moreover, this parse re#leers the somewhat hybrid character (partly

top-down, partly bottom-up] o# the simple chain @rammers.

We conclude this section with some preliminaries, In the following section we con-

sider the parsing of simple chain grammars with respect to the le#t part parses. In

the third section the cover problem is considered with respect to these parses.

Preliminaries°

We assume that the reader is familiar with [1], Her notational reasons we review

some concepts° A context-free grammar [CFG for short] is denoted by the 4-tuple G =

[N,T,P,S], where N consists of the nontermlnals [denoted by the Roman capitals A, B,

C,O.E.S], T consists of the terminals (denoted by the Roman smalls a,b,c,d,e),

V = N U T (elements of V will be denoted by X,Y,Z; elements of V* by ~,B,Y,~,~),

V ÷ P is the set o4 productions, P a N x (notation A ÷ ~ for (A,a] ~ P] and S is the

startsymbo3o LeFtmost and rightmost derivations are denoted as usual. We assume that

the CFG's in this paper are reduced. Notice that P does not have g-rules, i.e. vro-

ductions of the #orm A ÷ e, where c is the empty string. A left parse of the sen-

tence w c L(G) is the sequence of productions used in a leftmost derivation oF w.

A right parse is the reverse o4 the sequence of productions used in a rightmost

derivation. A simple syntamc-directed translation schema [simple SOTS #or short] is

a 5-tupl8 @ = [N,T,A,P,S), where N,T and S are as in the case of CFG's, A is a

4initeoutput alphabet end P is a finite sat of rules of the form A ÷ ~,B, where

c [N u T] +, B e [N u A)* and the nonterminals in a are the same as the nontermi-

nals in ~ and they appear in the same order.

Oerivations o#, and translations defined by such schemes are as usual [J]. Let

+
~ V , then FIRST(s] = {a ~ T I a ~ aY #or some Y e V*}. A CFG is said to be a

simple LL[I) or a simple deterministic grammar ~3] i# P ~ N x TV* end #or each pair

333

A ÷ a~ and A ÷ b~ in P we have that a # b or a~ = b@. Simple deterministic grammars

generate simple deterministic languages. Simple deterministic languages can be

accepted by simple deterministic pushdown automata [acceptors). Here we define

immediately the notion of a simple deterministic pushdown transducer [simpLe DPOT).

DEFINITION 1.1. A simple DPOT is a 5-tuple R = [T,&,F,~,S), where T is the input

alphabet, A is the output alphabet, F is the alphabet of pushdown list symbols,

is a mapping from T x F to F* x A*, and S • F is the initial pushdown list symbol.

A configurat/on of R is a triple [w,~,y] in T* x F* x A*, where w will stand for the

unused portion of the input, a represents the contents of the pushdown list and y

is the output string emitted solar. If ~[a,Z] = [~,z] then we write (ax,yZ,y) ~-

[x,y~,yz) t for all x • T*, y s 4" and y • r*. The transitive and reflexive transi-

tive completion of ~ is defined as usual. The translation defined by a simple

OPOT R, denoted by T[R), i s {Ix,y) I [x,S,g] ~ [g,g,y)},

A slight adaption of the definition of a simple chain grammar, as presented in [6],

leads to the following definition.

DEFINITION 1.2. A CFG G = [N,T,P,S) is said to be a simple chain grammar if

[i) FIRST IX] n FIRST [Y) = 0 for all productions A ÷ ~X~ end A ÷ ~Y~ in

P with X # Y, and

[ii]A ÷ ~ and A ÷ aB in P implies B = c.

The f o l l o w i n g theorem, which we give w i thout p roo f , gives an i n d i c a t i o n how to i n -

t roduce look-ahead for simple chain grammars. This can be done (not here] in such

a way that the LL[k) grammars are properly included.

THEOREM 1.1. CFG G = [N,T,P,S] is a simple chain grammar iff

[i) f o r a l l w,w ' ,w" • T*; X,Y • V and ~,~ • V*, i f

S ~ wX~ ~ ww', and
1 1

S ~ wY~ * - -> ww",
1 1

t Not ice t h a t the top o f the pushdown l i s t i s assumed to be on the r i g h t .

334

and [1)w~ = [1) w " , then X ~ Y, t

(ii]A ÷ a and A ÷ a~ in P implies 6 = g.

Whenever we use the words "parse of a sentence w" then we refer to a description of

a grammatical tree for w by means of the productions which arm used in the deriva-

tion of w.

To discuss cover results for simple chcin grammars we need the following definition.

DEFINITION 1.3, A CFG G ~ x-to-y covers a CFG G if there exists a homomorphism

h : P' ~ P* such that

[i] if ~ is sn x-parse of w with respect to G', then h(~'] is an y-parse

of w with respect to G, and

(±i] for each ~ such that ~ is an y-parse of w with respect to G there

exists an x-parse ~' for w with respect to G' such that h[~'] = ~.

In this definition x and y can be replaced by any type of parse, for example "left",

"ri@ht", "left-corner" etc, Left-to-le~t and right-to-right covers will be referred

to as left covers and right covers, respectively. If G' x-to-y covers G then we

use the notation G'[x/w]G. We use 1 to abbreviate "left" and ~ for "right".

An example of a simple chain grammar is the CFG G with only productions S ÷ aEc,

S ÷ aEd, E ÷ aEb and E ÷ ab. It can be shown that there does not exist a simple

LL(l] grammar G' such that G'[1/1]G. Another example is the simple LL[1] grammar G

~and hence it is a simple chain grammar] with only productions S-~ cB, B ÷ a8, B ÷ b,

and B ÷ o, for which it can be shown that there does not exist a simple LL[1] gram-

mar G' such that G'[1/~]G. The way these results can be obtained is to try to con-

struct a simple OPOT for these grammars which acts es a right parser end a left

parser, respectively. Since this turns out to be impossible the negative cover re-

sults follow.

t For any ~ s V +, [I) denotes the first clement of ao

335

2. ON THE PARSING OF SIMPLE CHAIN GRAMMARS

As mentioned in the preceeding section there exist simple chain grammars which can

not be parsed with a simple OPDT yielding a left parse or a right parse, As we show

here, it is, however, possible to construct directly from the simple chain grammar

a simple OPDT which acts as a parser for the grammar. In this case the parses are

however not left or right parses but, as we will call them, left part parses. First

we recall the definition of the set of chains of an element in the alphabet V and

the notion of chain-in,penance.

DEFINITION 2.1. Let G = (N,T,P,S) be a CFG. Let X 0 E V = N u T, then CHCXo), the

set of chains of X 0 is defined by

V* • . , . ~ @± ~ 1 _< i _< n } , CHCX O) : {XoXI...X n s N*T I X 0 ~ XI~D I ~ I Xn~n'

X 0 ~ V is said to be chain-independent if for each pair 71 = XoXi...X n and ~2 =

XoX~...X' in CHCX O) such that 71 # ~2' we have that X # X'.
m n m

Easily can be verified that simple chain grammars are chain-independent, that is,

each element in V is chain-independent,

Informally the left part parse is now introduced with the aid of the following

Figure I. Here two grammatical trees are displayed for the simple chain grammar G

with only productions 1. S + aBC, 2. S ÷ aBO~ 3. 8 ÷ aB, 4. B ÷ d, 5. 8 ~ e,

6, C ÷ c and Z. 0 ~ d. S
T1 C O

T 2 a
6 7

a c a d

a 4 B

e

Figure I. Two grammatical trees for simple chain grammar G.

Consider tree T 1, In Figure 2 it is displayed how tree T 1 can be built up by parti-

al subtrees by considering the next terminal symbol• reading from left to right.

a a B

/
a

336

g B

d d

Figure 2. Partial suPtrees o~ tree T

After remOing one thiro a the ~irst production 3 is complete in the partial subtree~

after the d the second production 3 and production 4 is complete and a~ter reading

the e the productions I and 8 are complete. Such a sequence, in this case 33q16,

will be celled e left part parse° The left part parse for tree T 2 is 33527,

That, for instance, in addition after reading the third a the first production 3 is

uniq~ly determined is caused by the properties of a simple chain grammar, Zq feet

it follows immediately from the left part property of the grammatical trees of a

simple chain grammar [5]° Here we do not consider this property in detail.

The left property is illustrated with the aid of Figure 3.

S

u

(a] simple chain

S

u

{b) LL

Figure 3, Structure of grammatical trees.

S

o

(e) LR

Informal!y~ sine leTt part property says that {or each A (N and for each prefix u

of w = uv e L{A} u uniquely determines the "left pert" of the grammatical tree

which corresponds to the derivation of w from A.

The left oert of the tree in Figure 3{a) is the shaded pert, i.e, the pert deter-

mined by the prefix u and the path from the root of the tree to the last symbol ofu.

337

It can be proved [5] that the trees of simple chain grammars satisfy this property,

For LL-grammers the prefix u determines, eventually by looK-ahead, all the (complete)

productions which ere necessary to derive u from S (see Figure 3(b]J. For LR-gram-

mars only the part of the tree determined by all possible reductions (eventually by

looK-ahead] from u (see Figure 3(c]] is uniquely determined.

Formally the left part parses are introduced in the fcllowLn~ way,

DEFINITION 2.2. Let G = [N,T,P,S] be a CFG. From G we obtain a simple SOTS in the

following way. For each production i.A ÷ ~X in P [where ~ e V* and X e V] let

A ÷ ~X, ~'iX' be a rule of the simple SOTS, where ~'X' is equal to ~X with the ter-

minal symbols deleted. The translation of w ~ L(G) by this simple SDTS is said to

be a left part parse of w.

EXAMPLE. Let G be the simple chain grammar with only productions O, S + aA,

I. A ÷ Sa end 2. S ÷ c. Then we have simple SOTS O with rules S ÷ aA,oA~

A ÷ Sa,SI~ and S ÷ c,2~ and the translation defined by Q is the set

T{QJ = {[a n c a n, on2 I n) I n ~ 0}.

Now we are sufficiently prepared for the main results of this paper. We show that

the simple syntax directed translation of Definition 2.2 on a simple chain grammar

can be implemented on a simple OPOT. Therefore we ~ive first the construction of a

simple OPDT from a simple chain grammar,

CONSTRUCTION 2.1.

Input. A simple chain gram~ar G = {N,T,F,S).

Output. A simple OPOT which acts as a left part parser for G.

Method. Let R = {T,A,2,6,~) be the simple DPOT which is constructed, where A con-

sists of the numbers of productions (from I to [P[), r = ~} u {A-~ I A ÷ c~ in P,

~ and B # c}, and ~ will be specified below, To do this we need again some pre-

liminaries.

Let ±.C ÷ ~Xo~ be in P and let XoXI,..X n ~ CH(Xo) , n ~ O. Now consider the sequence

= C~KoX 0 XoKIXI,,.Xn_IKnX n, where

338

{a] k 0 = i if ~ = s, and k 0 = ¢ otherwise, and

[b] for I ~ i ~ n, k i = j if J.Xi_ I + X i is in P, end k i = e otherwise.

The sequence which is obtained from w by deletin@ all elements from w which ere net

in £ [hence ell elements which represent complete productions] is denoted by ~, thus

~ r * .

Now the transition function 6 is defined as follows:

(i] for each S X I , , , X n ~ CH{S] let

6 [X n , ~] = [[SK1X I X l k 2 X 2 , , , X ~ _ I K n X n] * , k l , . . k n] ,

[i i) f o r each A ÷ ~Xo~ in P, ~ ~ s and X o X I . , , X n ~ CH(Xo), l e t

6[Xn,A~) = [(A~koX 0 X o k l X 1 , , , X n _ l k n X n }~, k o , , , k n } ,

This concludes the construction,

First we give an example of this construction, then we prove that the simple DPDT

which is obtained in this way indeed acts as a "left part parser" for e simple chain

grammar.

EXAMPLE. Consider again the simple chain @rammer with only productions 1, S + eBC,

2. S ÷ aBD, 3, 8 ÷ eB, 4. B + d, 5. B + e, 6, C ÷ c end 7. O ÷ d. We d i s p l a y the

transition function 6 for the tuples in T x £ for which ~ is defined.

6[e,~] = [s-~,s]

~[a,Sa) = [SeB Be ,e l

8(d,Sa} = {SeB,4]

5 [e , S a } = (SaB,5)

6 (c ,SaB]~= { s , 16]

6 (d,SaB] = [s , 27]

6[a,Ba) = [Be,3}

8 {d,Ba] = [¢ ,34)

~[e,Ba) = [c ,35)

End o f example.

Note. The left pert parse which is defined in Oeqinition 2.2 may be celled a top-

down left part parse, If we replace in Construction 2,1 the output KI,,,K n and

ko,,,k n by kn.,ok I end Kno.,K O, respectively, then the parse which is obtained may

be celled e bottom-up left part parse.

CLAIM 2.1, R is e simple DPDT.

339

Proof, Obviously R has no E-rules. That R transduces with empty pushdown list fol-

lows from the following lemma. It remains to show that ~ is well-defined, that is,

that R is deterministic. This can easily be done by verlfying that the assumption

that R is nondetermlnistic leads to contradictions with the properties of a simple

chain grammar. 0

LEMMA 2.1. Let G be a simple chain grammar, let Q be the simple SDTS %or G as in

Definition 2.2 and let R be the DPDT obtained for G by Construction 2.1, Then

{S,S) ~ (w,~) in O iff (w,~,sj F ~ (e,s,~) in R.

Proof. First we show the only if part of this lemma, Therefore we have the follo-

wing claim.

CLAIM 2.2. Let A + ~X~ be in P and let X ? XI~ 1 ? ... ? Xn_l~n_ I ? Y~ be e possible

d e r i v a t i o n , where XX l , , .Xn_ IY • N V, end ~ i , ~ • V ~, 1 ~ i ~ n-1, Then (Y ,Y ') ~ { y ,~) ,

&* f o r some m ~ 0~, y • T +, ~ c and w i th Y' = Y i f Y • N and Y' = ~ o the rw ise , im-

p l i e s

[y,A-~,~) ~ (e,[A~KXo,,.X n IK'Xn]~, K,..K'~], where X 0 = X and X n = Y.

Proof. Suppose m = O, then y = Y • T and ~ = e. Then, since A + ~X~ and X ~ Y~, we
I

have that ~[y,A~] = [CA~KX...Xn_IK'Y]" K...K'], where X...Xn_lY • CH[X), and it

follows that

(y,A~,~) F- [[A~KXo,..Xn_IK'Xn]" K,..K'~).

Now assume m > 0 and assume the claim holds for all m' < m (induction hypothesis].

Then, if j.Y + YIY2,.,Yq is the first production which ls used, we have the fallo-

wing derivation, [Y,Y) ~ (YIY2,.,yq,(Yl...Yq_l)'~y '] ~ {yly 1 a q ...Yq,~l~2..,~q_lJ~q),

where [Yi,Y~) mi T* [yi,~i), I ~ i ~ q, Yi • and m i < m, Then we can use the in-

duction hypothesis from which we obtain

(Yl,A-~,e) ~ (~ , (A~KX. , .YK IY I) ^ , k . . . k 1 ~ l) ,

and

(Y i , Y Y I . . . Y i _ I , ~] ~ (e , Y Y l . . . Y i _ I k i Y i ' , K/~ i]

f o r 1 < l ~ q ,

340

Then we have

(y lY2, o~yq,A--~,e] F~- [Y2oo ,yq , [~kX , o°YklY13~ k , o , k l ~ 1]

,*] - k . . , k l ~ I k 2 ~ 2 . , , k q ~ q] = m- [g , (A~KX, , .YYI , , .Yq_IKqY q

= (g, CAmkXo.. ,Xn_lk 'Xn] ' , k . . . k ' ~ l ~ 2 O , . ~ q _ l J ~ q] ,

where X 0 = X and X = Y, which wos to be proved.
n

Now let A ~ ~p and suppose [C,C) ~ [x,~], then from Claim 2,2 it ~ollows thot

Notice that the cloim also holds for ~ = g ond A = So Now let I. S + ZIZ2,~.Zn

T*, the first production which is used in a derivation w = ZlZ2,,,z n ~ where

(ZL,Z L) ~ [z / , ~ i) , I ~ i ~ n, Then i t f o l l ows tho t

IS,S] ~ (Z I Z 2 . . . Z n , { Z I , . . Z n _ I] ' I Z ~) ~ [w,~1.. .~n_11~ n]

implies

(w,S,a) ~ (g , g , ~ l ° . , ~ n _ l l ~ n] ,

which was to be proved.

Now we come to the if part o¢ the lemma.

be

CLAIM 2.3, [w,Am----X,g] l -m [g ,g ,~] imp l ies (A,A) ~ [mXw,m'X'~], where m'X' is equal to

~X with terminal symbols deleted.

Proof. The proof is by induction on m, Let w = ox, a

x = g, hence w = o. In this case

where

m~° T ond x ~ I~ m = I then

~[a,A~--~] = ((A~XLoX 0 XoKIX!,,.Xn_IKnXn)~, Kok1"''Kn)'

XoXI.,0Xn ~ CH(Xo), X n = a, [A~XKoX 0 XoKIXI..,Xn_IKnXn)~ =

end 7' = KI,.~K n is the le~t port parse associated with XO ~ Xn. Thus,

[a,A~---~,g] F-- (g,g,ko'G') imp l ies [A,A] ~ (aXXo,~'X'KoX ~] ~ [aXo ,a 'X ' ko~ '] .

Now let m > 1. Let the first step be done with the tronsition

6[a,A~--'~} = [(A~XKoX 0 XoKIXI.,.Xn_IKnXn]~,KoKIo..Kn],

where X = a~ Then,
n

[ax,A~---~,g] ~-- [x,[AaXKoX 0 XoKIXI...Xn_IKnXn)~, KoKI...K n] ~ [g,g,~}.

341

Obviously there exist x i c T , 0 ~ i ~ n, such that x = XnXn_l...X2XlXo and w i ~ A*,

0 ~ i ~ n, such that ~ = kokl...kn~n~n_l...~2~l~ O, where ~'z = x.~ = ~ if k.~ # e

[notice that in case k 0 # ~ or k i / e, 1 ~ i ~ n, then A~XKoXo ̂ = E or Xi_lkiXi ^ = e,

respectively) and such that, for those K.'s not equal ~,
1

[xi,X. ~K.X ,s) ~ [s,g,~i] i-~ i i

and

[Xo,A~XKoXo,~) ~ [e,S,~O].

Since mo,m i < m we obtain

[Xi_l,Xi_ 1] ~ (Xixi,kiX~ i) 1 ~ i ~ n [*]

and

[A,A) & [SXXoXo ,~ 'X 'KoX~ O]

N o t i c e t h a t the cases k i = E and K i

follows immediately that

[A,A] ~ [~Xax,~'X'~]. 0

Now let [w,~,e:i ~ [S,S,~]. The first step, with w = ax, yields

(ax,S,c) F- [x,(SKoX 0 ~oKiX1...Xn_IKnXn]',koKI...K n]~ [~,~,~),

where, again X n = a and the other notations are as usual. From Claim 2.3, with an

analogous partition of x and ~ as in its proof, we obtain

(S,S) ~ [XoXo,KoX~o), and for I ~ i ~ n,

(Xi_1,Xi_ I] ~ [Xixi,kiX~i), hence

IS,S] ~ (XnXn,,.Xl,kokl..,kn~n...~1~O] = [w,~],

which had to be proved. 0

(**]

/ e can be taken together. Prom [*] and (**] it

Now the following corollary is immediate.

COROLLARY 2.1. Each simple chain grammar has a simple OPDT which acts as a left

part parser.

342

3. ON THE COVERING OF SIMPLE CHAIN GRAMMARS

As previously mentioned there is no transformotion from the class of simple chain

grammars to the class of simple deterministic grammars such that we can obtain a

left cover or a loft-to- right cover, With the results of Section 2 we con now show,

in a way analogous to the argument in [q], that each simple chain grammar G has an eq

equivalent simple deterministic (simple LL[lJJ grammar G' such that loft parsee with

respect to G' can be mapped on left part parses with respect to G, that is,

G'[1/Ip]G. Since this result ~ollows immediately [as a more restricted case) from

some general results in [4] we can confine ourselves to a sketch of the proof.

THEOREM 3.1. Let G be a simple chain grammar, Then G can be transformed to o simple

deterministic grammar G', such that G'[I/Ip]G.

Proof. [sKetch), For o simple chain grammar G = {N,T,P,SJ we can construct, with

Construction 2.1, o simple OPDT R which acts o left port parser. It is obvious hew

to construct from R a simple deterministic grammar G' = {N',T,P',S'~. Then, in G'

S' ~-> w iff

where h is the cover-homemorphism defined as follows. The production of G' obtained

from e rule

~{a, AJ = {XIX2o,,XK,yJ

is mapped on y,

Then it is straightforward to show that the conditions in Definition 1.3 for a left-

to-left part cover are satisfied. 0

343

4, CONCLUSIONS

The class of simple chain grammars can be considered as a generalization of the

class of strict deterministic grammars of degree 1 [8]. The strict deterministic

grammars o# degree I form a proper subclass of the class of simple chain grammars,

There#ore, results obtained #or simple chain grammars also hold for strict deter-

ministic grammars of degree 1. Although each simple chain grammar can be transformed

to a simple LL[I] grammar, this transformation is not a left or s left-to-right

cover. The main motivation for writing this paper was to provide an answer to this

" c o v e r - p r o b l e m " .

To o b t a i n bo th a p o s i t i v e cove r r e s u l t and an o p t i m a l p a r s i n g method we i n t r o d u c e d

a new t y p e o f pa r se , Th is leeds t o t he f o Z l o w i n g o b s e r v a t i o n , To o b t a i n a more

s imp le p a r s i n g method (s imp le i n t h e sense c# t he t y p e o f d e v i c e which can be wsed,

here a s lmp le DPDT) we have t o i n t r o d u c e a l ess s imp le t y p e o f pa rse , Maybe t h i s i s

no t too s u r p r i s i n g , Anyway, t h e s imp le cha in grammars and t h e r e s u l t s p r e s e n t e d here

p r o v i d e a c l e a r i l l u s t r a t i o n o# such an o b s e r v a t i o n ,

Le~t part parsing~ resulting in either a top-down or a bottom-up left part parse,

can be done for any (g-free) non-left recursive context-free grammar. A straight-

forward generalization of Construction 2.1 will make this clear. The parser is then

a ~nondeterministic) pushdown transducer without e-rules and with one state only.

ACKN OWLE DGEMENTS

I thank Marja Verburg for her careful typing of this paper.

344

RE FE RE N CES

I. A.V. AHO and J.O. ULLMAN, The Theory of Parsing, Translation and Compiling,

VeI, 1 and 2, P r e n t i c e - H a l l , Englewood Cli~fs, N.J , , 1972

and 1973.

2. D.B~ 8ENSON, Some preservation properties of normal form gra~nars, Siam J.

of Comput. 8 (1977], pp. 361-402.

3. A.J. KORENJAK and J.E. HOPCROFT, Simple deterministic languages, i__En "7th

Ann, Sympos. on Sw, and Aut. Theory, IEEE 1966", pp, 36-46.

4. A. NIJHOLT, On the covering of parsable gran~ars, J. Comput. System Sci .15

E1977), pp. 99-110.

5. Ao NIJHOLT, A left part theorem for grammatical trees, IR-22, Dept. of

Mathematics, Vrije Universiteit Amsterdam, august 1977.

6. A. NIJHOLT, Simple chain grar~ars, Proceedings of the 4th Cell. on Auto-

mata, Languages and Programming 1877 [ads, A. Salomaa and

H. Steinby) pp. 352-364, Lecture Notes in Computer Science

52, Springer Verlag, Berlin.

2. O.J. ROSENKRANTZ and P.M. LEWIS, Deterministic left-corner parsing, in

"11th Ann, Sympos. en Sw. and Aut. Theory, IEEE 1970",

pp. 139-152.

8. M,A, HARRISON and I,H. HA\~L, Real-time strict deterministia langv~ges,

Siam J, o f Comput, 4 (1972), pp: 333-349.

