ON THE PARSING AND COVERING OF

SIMPLE CHAIN GRAMMARS

Anton Nijholt
Vrije Universiteit
Department of Mathemetics
P.0.-Box 71681, Amsterdam

The Netherlands

ABSTRACT.

A method is presented for cbtaining a simple deterministic pushdown transducer which
acts as a& parser for simple chalin grammars. It is shown that a simple deterministic
grammar can be constructed which covers the simple chain grammar. To obtain both the
simple deterministic pushdown transducer and the cover result, a new type of parse is
introduced which differs from the left and right- parses which are common for the

usual one pass no back-tracking parsing algorithms. For the simple chain grammars this
parse, the so-called left part parse, follows from a simple left part property which

is satisfied by the grammatical trees of simple chain grammars.

1. INTRODUCTION

In this paper we show how some negative cover results for a subclass of the context-
free grammars can lead to an optimal parsing method for the same subclass of grammars.
The class of context-free grammars which we consider is the class of simple chain
grammars. This class, introduced in [B8] is a subclass of the LR{0) grammars. It has
besn shown that simple chain grammars can be parsed with a very simple bottom-up par-—
sing method. Moreover, each simple chain grammar can be transformed to an equivalent
simple LL{1) (or simple deterministic [3]) grammar. Such a transformation leads to

somg negative cover results. It can be shown that there is no such transformation



331

which makes it possible to obtaln, by a string-homomorphism, the right parses of the
simple chain grammar from the left parses of the simple LL{1) grammar. That is, the
simple LL(1) grammar does not left—-to-roght-cover the simple chain grammar. Neither
do we have that the left parses of the simple LL(1) grammar can Be mapped on the
left parses of the simple chain grammar, that is, the simple LL(1) grammar does not
left cover the simple chain grammar.

How to consider these negative results? One can argue that the simple LL{1} grammars
are a too restrictive class of grammars to expect nice cover results. However, the
motivation to transform grammars is exactly to obtain such restrictive classes of
grammars which can be parsed in a more simple way than the original grammers. More-
over, the transformation which can be given is very simple and straightforward. One
can also conclude that a definition of cover by means of a homomorphism 1s too res-
trictive. However, as easily can be verified, if we use in the definition of cover
instead of a homomorphism, a (deterministic) finite transducer mapping then still
we do not obtain positive cover results, Besides, introduction of more complicated
mappings than a homomorphism is a rather rude approach of such a simple transforma-
tion. An gother approach, which we will not follow here, is to let the "homomorphic”
transformations be functors which go from a (syntax) catepary associated with one
grammar to the category of the other grammar [2]. Although this way of looking at
"structure” preserving transformations has been investigated in several papers (see
the references in [2]), this approach has not yet lead to very useful results. A
concept as cover gives a relation between (mostly) simple descriptions of parse
trees (for example left or right parses) and is therefore simple to work with.
Further investigations of the categorical approach may however lead to more satis-
factory results than are now available.

In this paper our point of view on this problem is the following. In the theory of
parsing we are used to describing the structure of gremmatical trees by means of the
productions of the context-free grammar with respect to which the parsing is done.
To be more specific, we associate left parses with top-down parsing and right parses
with bottom-up parsing.

An exception of this rule are the left corner parses [7] which become useful when



332

we consider left corner grammars. Here we introduce another type of parse, which we
associate with the simple chain grammars, the left part parse. We believe, and we
try to illustrate this in the following sections, that this cholce of parse is the
most natural one, among pthers since, as for example the left parses for LL(kl gram-
mars, productions are given as output of the parsing process as soon as they are
determined. Moreover, this parse reflscts the somewhat hybrid character (partly

top-down, partly bottom-up) of the simple chain grammars.

We conclude this section with some preliminaries. In the following section we con-
sider the parsing of simple chain grammers with respect to the left part parses. In

the third section the cover problem is considered with respect to these parses.

Prgliminaries.

We assume that the reader is familiar with [1]. For notational reasons we review
some concepts. A context-free graommar (CFG for short) is dencted by the 4-tuple G =
(N, T,P,8), where N consists of the nonterminals (denoted by the Roman capitals A, B,
C,D.E.S), T consists of the terminals (denoted by the Roman smalls a,b,c,d,el,

V = NuT (elements of V will be denoted by X,Y,Z; elements of vF by a,B,Y,0.90,

P is the set of productions, P c N x V" (notation A » o for (A,a) ¢ P) and S is the
startsymbol. Leftmost and rightmost derivations are denoted as usual. We assume that
the CFG's in this paper are reduced. Notice that P does not have €-rules, i.e. pro-
ductions of the form A - g, where £ is the empty string. A left parse of the sen-
tence w ¢ L{G) is the seguence of productions used in a leftmost derivation of w.

A right parse is the reverse of the sequence of productions used in a rightmost
derivation. A simple syntax—directed translation schema (simple SOTS for short) is
a 5-tuple § = (N,T,A,P,S), where N,T and $ are as in the case of C[FG's, Ads a
finite output alphabet and P is a finite set of rules of the form A > a,8, where

o e (N v TJ+, Be (Nu A)* and the nontarminals in o are the same as the nontermi-
nals in B and they appear in the same order.

Derivations of, and translations defined by such schemes are es usual [1]. Let

a e V%, then FIRST(a) = {a e T i as ay for some ¥ € V*}‘ A CFG is sald to be &

simple LL(1) or a simple deterministic grammar [3] if P & N x V" and for each pair



333

A > apand A > by in P we have that a # b or ap = by. Simple deterministic grammars
generate simple deterministic languages. Simple deterministic languages can be
accepted by simple deterministic pushdown automata (acceptors). Here we define

immediately the notion of a simple deterministic pushdown transducer (simple DPOT]).

DEFINITION 1.1. A simple DPODT is a S5-tuple R = (T,A,T,8,5), where T is the input
alphabet, A is the output alphabet, I is the alphabet of pushdown list symbols, &

is a mapping from T x I' to T* x A", and S e T is the initial pushdown list symbol.

A configuration of R is a triple (w,a,y) in T° x I x A%, where w will stand for the
unused portion of the input, a represents the contents of the pushdown list and y

is the output string emitted sofar. If §(a,Z} = (a,z) then we write (ax,vZ,y) |-
[x,ya,yz)+ for all x € T*, y € A* and Y € I'*. The transitive and reflexive transi-
tive completion of k is defined as usual. The translation defined by a simple

OPDT R, dencted by T(R), is {(x,y) | (x,5,e) k= (e,e,yl}.

A slight adaption of the definition of a simple chain grammar, as presented in [6],

leads to the following definition.

DEFINITIGON 1.2. A CFG G = (N,T,P,S) is said to be a simple chain grammar if
(1} FIRST (X} n FIRST (Y) = @ for all productions A - aXp and A + aYy in
P with X # Y, and

(ii1) A+ o and A >~ aB in P implies B = €.

The following theorem, which we give without proof, gives an indication how to in-
troduce look-ahead for simple chain grammars. This can be done (not here) in such

a way that the LL(k) grammars are properly included.

THEOREM 1.1. CFG G = (N,T,P,S) is a simple chain grammar iff
(1) for all w,w',w” € T X,Y ¢ V and @,¥ e V*, if

S =%=b wXp =%=> ww', and

n . n
S = wYy = W,

+ Notice that the top of the pushdown list is assumed to be on the right.



334

and H]w" = L1)w", then X = Y, t

(i1} A>a and A » B in P implies B = €.

Whanever we use the words "parse of a sentence w” then we refer to & description of
a grammatical tree for w by meens of the productions which are used in the deriva-
tion of w.

To discuss cover results for simple chain grammars we need the following definition.

DEFINITION 1.3. A CFG G' x-to-y covers a CFG G if there exists a homomorphism
s *
h : P" > P suych that
(1} 4if 7 is an x-parse of w with respect to G', then h{rn‘]) is an y-parse
of w with respect to G, and
(i1) for each 7T such that w is an y-parse of w with respect to G there

exists an x-parse m' for w with respect to G’ such that h(w’) = m.

In this definition x and y can be replaced by any type of parse, for example "left”,
"right”, "left-corner” sto. Left-to-left and right-to-right covers will be referred
to as left covers and right covers, respectively. If G' x-to-y covers G then we

use the notation G'Ix/y]G. We use 1 to abbreviate "left” and © for "right”.

An example of a simple chain grammar is the CFG G with only productions S - aEc,

S + afd, E - atb and E > ab. It can be shown that there does not exist a simple

LL(1) grammar G’ such that G'L[1/11G. Another example is the simple LL{1) gremmar G
tand hence it is a simple chain grammar] with only productions S + &B, B » aB, B ~ b,
and B - ¢, for which it can be shown that there does not exist a simple LL(1) gram-
mar G' such that G'[1/T]G. The way these results can be obtained is to try to con-
struct a simple DPDT for these grammars which acts as a right parser end a left
parser, respectively. Since this turns out to be impossible the negetive cover re-

suylts follow.

1
+ For any o = V', [1‘u denotes the first element of a.



335

2. ON THE PARSING OF SIMPLE CHAIN GRAMMARS

As mentioned in the preceeding section thers exist simple chain grammars which can
not be parsed with a simple DPODT yielding a left parse or a right parse. As ws show
here, it is, however, possible to construct directly from the simple chain grammar
a simple DPDT which acts as a parser for the grammer. In this case the parses are
howsver not left or right parses but, as we will call them, left part parses. First
we recall the definition of the set of chains of an element in the alphabet V and
the notion of chain—independency.

DEFINITION 2.1. Let G = (N,T,P,S) be a CFG. Let X, ¢ V= N u T, then CH(XD), the

0
set of chains of XD is defined by

* ¥ .
CH(Xg) = {XgX,eeuX € N'T | xoefx1w,l * ...Txnwn, U, eV, 1<1i<n}.

i
XO € V is said to be chain-independent if for each pair o= XDX,l...Xn and Ty =
X XX in CH(X,) such that w, # T, we have that X_# X'.
C™1 m 8} 1 2 n m

Easily can be verified that simple chain grammars are chain-independent, that is,

each element in V is chain-independent.

Informally the l1eft part parse is now introduced with the aid of the fallowing
Figure 1. Here two grammatical trees are displayed for the simple chain grammar G
with only productions 1. S + aBC, 2. 8 » aB0, 3. B+ aB, 4. B+ d, 5. B > ¢,

6. C+cand 7. O~ d.

Figure 1. Two grammatical trees for simple chain grammar G.

Consider tree T1. In Figure 2 it is displayed how tree T, can be built up by parti-

1

al subtrees by considering the next terminal symbol, reading from left to right.



336

Figure 2. Partial subtrees of tree qu

After reading tne third a the first production 3 is complete in tme pertial subtree.
after the d the second production 3 and production 4 is complete and after reading
the ¢ the productions 1 and 6 are complete. Such a seguence, in this case 33416,
will be called e left part parse. The left part parse for tree ?2 is 33527,

That, for instance, in addition after reading the third a the first production 3 is
untquely determined is caused by the properties of a simple chain grammar. In fact
it follows immediately from the left part property of the grammatical trees of a

simple chain grammar [5]. Here we do not consider this property in detail.

The left property is illustrated with the sid of Figure 3.

&S\ S /S\
u u u
{a) simple chain (b) LL (e) LR

Figure 3., Structure of grammatical trees.

Informally, tne left part property says that for each A € N and for each prefix u
of w = uv € L{A) u uniguely determines the "left part” of the grammatical tree
which corresponds to the derivation of w from A.

The left part of the tree in Figure 3(a) is the shaded par%t, i.e. the part deter-

mined by the prefix u and the path from the root of the tree to the last symbol ofu.




337

It can be proved [51 that the trees of simple chain grammars satisfy this property.
For LlL-grammars the prefix u determines, eventually by lock-ahead, all the {complete)
productions which are necessary to derive u from S (see Figure 3(b)). For LR-gram-
mars only the part of the tree determined by all possible reductions (eventually by
look-ahead) from u (see Figure 3{c)]} is uniguely determined.

Formally the left part parses are introduced in the following way.

DEFINITION 2.2. Let G = (N,T,P,S]) be a CFG. From G we obtain a simple SDTS in the
following way. For each production i.A =+ aX in P (where o ¢ V' and X e V) let

A > oX, 0'iX’ be a rule of the simple SOTS, where a'X’ iz egual to aX with the ter-
minal symbols deleted. The translation of w ¢ L{G) by this simple SDTS is said to

be a left part parse of w.

EXAMPLE. Let G be the simple chain grammar with only productiocns 0. S = aA,
1. A+ 8a and 2. S »> c. Then we have simple SOTS Q with rules S > aA,0A;

A - 5a,S1; and 8 > c,2; and the translation defined by Q is the set

@ = {E&cd, 21 | a2 ol
Now we are sufficiently prepared for the main results of this paper. We show that
the simple syntax directed translation of Definition 2.2 on & simple chain grammar
can be implemented on a simple DPDT, Thersfore we give first the construction of a

simple DPDT from a simple chain grammar.

CONSTRUCTION 2 1.

Input. A simple chein grammar G = (N,T,P,S).

Output. A simple DPOT which acts as a left part parser for G.

Method. Let R = (T,A,T,6,5) be the simplg DPDT which is constructed, where A con-
sists of the numbers of productions (from 1 to [P]), I' = {§} u {A&g | A+oB in P,

o # € and B # €}, and 8§ will be specified below. To do this we need again some pre-
liminaries.

Let i.C -~ axow be in P and let XDX1"'Xn € CH[XD}, n 2 0. Now consider the sequence

T = CaKOXU XOK1X1...Xn_?Kan, where



338

(al KD = i if ¢ = g, and KO = ¢ otherwise, and

(b} for 1 <i=sn, k, = § if j.X, + X, is in P, and k, = € otherwise.
i i-1 1 i

The sequence which is obtained from T by deleting all elements from ™ which are not

in T' [hence all elements which represent complete productions) is denoted by #, thus

-~ *
Tel .

Now the transition function § is defined as follows:

(1) for each Sx1...xn e CH(S] let

5(Xn,S) = [(SK1Xq X1K2X2...Xh_1Kan] , k1"'Kn]‘

(ii) for sach A - axom in P, o # € and XDX1"'Xn € CH(XO], let

O[Xn,Aa} = {(AQKDXO x0k1x1...xn_1knxn3", KD

This concludes the construction. 0

N N
n

First we give an example of this construction, then we prove that the simple DPOT
which is obteined in this way indeed acts as a "left part parser” for a simple chain

grammar.

EXAMPLE, Consider agein the simple cheln grammar with only productions 1. S » aBC,
2, S+ @BD, 3. B+ aB, 4. B~+d, 5 B>e, B, C>cand 7. 0~ d. We display the

transition function § for the tuples in T x I' for which § is defined.

§(a,8) = (Sa,e) §(d,5aB) = (g,27)
§(a,Sa) = (Seb Ba.el §(a.Ba) = (Ba.3)
§(d,5a) = (SaB,4) §(d,Ba) = (g,34)
§(e,5a) = (S&B,5) §(e,Ba) = (g,35)
§(c,3aB) == (g,16) End of example. B

Note. The left part parse which is defined in Definition 2.2 may be called a top—
down left part parse. If we replace in Construction 2.1 the ocutput K1...Kn and

Kgeeok, by K «ook

g and Kn"'KD‘ respectively, then the parse which is obtained may

1
be called a bottom-up left part parse.

CLAIM 2.1. R is a simple DPDT.



339

Proof. Obvigusly R has no €-rules. That R transduces with empty pushdown list fol-
lows from the following lemma. It remains to show that & is well-defined, that is,
that R is deterministic. This can easily be done by verifying that the assumption
that R is nondeterministic leads to contradictions with the properties of a simple

chain grammar. [

LEMMA 2.1. Let G be a simple chain grammar, let @ be the simple SDTS for G as in
Definition 2.2 and let R be the DPDT obtained for G by Construction 2.,1. Then

(5,5) = (w,7) in § ifF w,5,e) K (e,e,7) in R.

Proof. First we show the only 7f part of this lemma. Therefore we have the follo-

wing claim.

CLAIM 2.2. Let A>aXp be in P and let X=Xy, = ... = X ¥ = Yy be a possible
AU 1 1% T Y “n=t¥n-1 7

derivation, where XX1...XH~1Y € N*V, and wi,w e V¥, 1 <1 <n-1. Then (Y,Y') i {y,m),
for some m 2 0, y € T+, T e A* and with Y’ = Y if Y ¢ N and Y' = € otherwige, im-
plies

(v Ra,e) = (e, (RORXy. .. X KX ), Ke.ok'm), where X

= Xand X_ =Y,
1 n

0

Proof. Suppose m = 0, theny =Y ¢ T and 7 = €. Then, since A - oX@ and X 5 Yy, we
D 1
have that §(y,Aa) = [(Aock—X...Xn_,]'k'y]‘, Keook?), where X...X vy € CH(X), and it
follows that

{y,AQ,E) j= £(Aakx0...xh~1k Xn) s Kaeedk'T).

Now assume m > 0 and assume the claim holds for all m' < m (induction hypothesis).
Then, if j.Y - Y1Y2"'Yq is the first production which is used, we have the follo-

. , vavry X g ,
wing derivation. (Y,Y) = {Y1Y2,..Yq,(Y1...Yq~1] 3Yq3 = \y1y1...yq,ﬁqﬂz...ﬂq~13ﬁq),

m,
i
where (Yi’Yi] = (yi.ﬂiJ, 1<1i=<aq, s € ™ and my < m. Then we can use the in-
duction hypothesis from which we obtain
—— * e —
(yq,Aa,eJ b (s,(A&kX...ququ ) k.,,kqﬂq},
and

v WV he) ¥ eV, Y, R Y, k)

i-17id i

for 1 < i < q.



340

Then we have

— % —
(yqyz.,syq,Aa,e} - [yznq.yq,[AakX..aYk?Y1J ) k.n‘anq}

K N - p I =
e, (RORK. - TV TV TR T, Kk ym kot e ek T

T R N P PTRRL P LR

where XD = X and Xn = Y, which was to be proved. 0

Now let A - olyp and suppose (C,C) 3 {x,m), then from Claim 2.2 it follows that
(x,AG,e) = (e, FORC, KT},
Notice that the claim also holds for o = € and A = S. Now let 1. S 2122,..2P be

the first production which is used in a derivation w = ZyZ50002, € T*, where
(z,,2!3 3 (z,,m,), 1 <4 < n. Then it follows that
i771 i’
{ L} t *

(5,8) = (2122,..Zn,\21,..2n_1] ﬂzn) = [w,ﬂq...nn_ 1ﬂn)

implies
e *

w,S,e) b (g,e.7, .0 i1 ],

which was to be proved.

Now we come to the <f part of the lemma.
CLAIM 2.3. (w,Pa%,e) HN (e,e,m) implies (A,A) > (aXw,a’'X'm), where a'X' is equal to
oX with terminal symbols deleted.

Proof. The proof is by induction on m. Let w = ax, a ¢ T and X ¢ 7. If m = 1 then

x = €, hence w = a. In this case

§la,AuX) = [{AaXk X, X K X ...X KX 37, KoK, «osk 1,
n~-1'nn

[S20 0 R A 01 n
where
CH ( = e T o= g
XDX1"’Xn € UHKXD), Xn a, (AaXKDXD XDK1X1 Xn—ﬂknxn] €
and T = Kﬂ"°Kn is the left part parse associated with XU'; Xn. Thus,

(&, ApX,e] (e,e,KDﬂ'l implies (A,A) =»(uXXD.a’X'kGX6] el (uXa,a'X’kUﬂ'].

Now let m > 1. Let the first step be done with the transition

8 {a,Aax] = [(AQXKOXD xokqx?...xn‘ Kan]‘,kDK1=.‘Kn3,

1

where Xn = g, Then,

J— . *
(ax,AcX,e) b [X.(AOLXKDXO xokﬂxq...xn_qknxn) , KDK1"'Kn) b— (g,e,7}.



341

1 27170

0 £1 5 n, such that T = KUK1"'Knﬂnﬁn—1"'W2n1w0’ where T, =X, =€ if ki # €

(notice that in case kg # € or ki #€, 1<1<n, then AQXKDXG =g or Xi_jkixi
respectively) and such that, for those Ki's not equal €,

s ———r e s
%, % K. X.,el = (g,e,7.)
i 11 1

1i-1

and
[ Mg
(xD.AuXkDXD,e) | — [e,s,wal.

Since mG’mi < m we obtain

(X, L.% )3 Kx
-1 i

1-1"" ()

A
[
A
=

i,Kixiﬁi] 1

and

* ’ )
(AA) = (axxgxa,a X KDXDWGJ {#%)

*
Obviously there exist Xi € T*, 0 £1 < n, such that x = ann” cae XX, X, and “i e A,

=€,

Notice that the cases ki = ¢ and Ki # € can be taken together. From (%) and (%) it

follows immediately that

(A,A] 2 (axax,a’X'7). 0

Now let (w,5,e) K2 (e,e,m). The first step, with w = ax, yields

(ax,5,e) (%, (SkyXy X kX K KT aRgk

*
EITERE LI .Kn)k— (e,e,ml,

1

where, again Xn = a and the other notations are as usual. From Claim 2.3, with an

analogous partition of x and T as in its proof, we obtain
*
, .
(S,8) = {XOXD,KDXDWD], and for 1 £ 1 < n,

*
txi_?,xiwq) = [Xixi,kixiwil, hence

*
(5,8) = (ann'"X1’KOK1"'Kn“n"'ﬁ WD] = (w,m),

1

which had to be proved. ]

Now the following corollary is immediate.

CORGLLARY 2.1. Each simple chain grammar has a simple OPDT which acts as a left

part parser.



342

3. DN THE COVERING OF SIMPLE CHAIN GRAMMARS

As previously mentioned there is no transformation from the class of simple chain
grammars to the class of simple deterministic grammars such that we can obtain a

left cover or a left-to- right cover. With the results of Section 2 we can now show,
in a way analogous to the argument in [4], that each simple chain grammar G has an eg
equivalent simple deterministic (simple LL(1}]) grammar G' such that left parses with
respect to G' can be mapped on left part parses with respect to G, that is,
6'[1/1pl5. Since this result follows immediately [as a more restricted casel) from

some general results in [4] we can confine ourselves to a sketch of the proof.

THEQREM 3.1. Let G bs a simple chain grammar. Then G can be transformed to a simple

deterministic grammar G', such that G'[1/1plG.

Proof. (sketchl. For a simple chain grammar G = (N,T,P,S) we can construct, with
Construction 2.1, a simple DPDT R which acts a left part parser. It is obviocus how
to construct from R a simple deterministic grammar G' = [N',T,P’,8'J. Then, in G’
3 ;%D w Lff

W, 5.8} = (e,e.nln’)l,
where h is the cover-homomorphism defined as follows. The production of G' obtained
from a rule

8(a,Al = (XﬂX2°"xk’y}
is mapped on y.

Then it is straightforward tc show that the conditions in Definition 1.3 for a left-

to~left part cover are satisfied. i



343

4. CONCLUSIONS

The class of simple chain grammars can be considered as a generalization of the
class of strict deterministic grammars of degree 1 [8]. The strict deterministic
grammars of degree 1 form a proper subclass of the class of simple chain grammars.
Therefore, results obtained for simple chain grammars also hold for strict deter-
ministic grammars of degree 1. Although each simple chain grammar can be transformed
to a simple LL(1} grammar, this transformation is not a left or a left-to-right
cover. The main motivation for writing this paper was to provide an answer to this
"caver-problem”.

To cobtain both a positive cover result and an optimal parsing method we introduced

a new type of parse. This leads to the following observation. To obtain a more
simple parsing method (simple in the sense of the type of device which can be used,
here a simple DPDT) we have to introduce a less simple type of parse. Maybe this is
not too surprising. Anyway, the simple chain grammars and the results presented here
provide a clear illustration of such an observation.

Left part parsing, resulting in either a top-down or a bottom-up left part parse,
can be done for any (e-freel) non-left recursive context-free grammar. A straight-
forward generalization of Construction 2.1 will make this clear. The parser is then

a (nondeterministic) pushdown transducer without e-rules and with one state only.

ACKNOWLEDGEMENTS

I thank Marja Verburg for her careful typing of this paper.



344

REFERENCES

A.V. AHO and J.D. ULLMAN, The Theory of Parsing, Translation and Compiling,
Vol. 1 and 2, Prentice-Hall, Englewood Cliffs, N.J., 1872
and 1873.

D.B. BENSON, Some preservation properties of normal form grammars, Siam J.
of Comput. 8 (1877), pp. 381-402,

A.J. KORENJAK and J.E. HOPCROFT, Simple deterministic languages, in "7th
Ann. Sympes. on Sw. and Aut. Theory, IEEE 1968", pp. 36-48.

A. NIJHOLT, On the covering of parsable grammars, J. Comput. System Sci.15
(1977), pp. 98-110.

A. NIJHOLTY, 4 left part theorem for grammatical trees, IR-22, Dept. of

Mathematics, Vrije Universiteit Amsterdam, august 1877.

A. NIJHOLT, Simple chain grammars, Proceedings of the 4th Coll. on Auto-
mata, Languages and Programming 1877 (eds. A. Salomaa and
M. Steinby) pp. 352-364, Lecture Notes in Computer Science
52, Springer Verlag, Berlin.

D.J. ROSENKRANTZ and P.M. LEWIS, Deterministic left—corner parsing, in
"11th Ann, Sympos. on Sw. and Aut. Theory, IEEE 1970",
pp. 139-152.

M.A. HARRISON and I.M. HAVEL, Real—-time strict deterministic languages,
Siam J. of Comput. 4 (19723, pp+ 333-3489.



