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Abstract

Sufficient conditions to get exponential stability for the sample paths (with
probability one) of a non-linear monotone stochastic Partial Differential Equa-
tion are proved. In fact, we improve a stability criterion established in Chow [3]
since, under the same hypotheses, we get pathwise exponential stability instead
of stability of sample paths.

1 INTRODUCTION AND PRELIMINARIES

The aim of this paper is to give sufficient conditions in order to get exponential
stability for the sample paths of certain stochastic PDE of evolution type.

In fact, we consider the following equation

{

dxt = A(t, xt) dt + B(t, xt) dwt , t > 0
x0 = h

(1)

where A(t, ·) and B(t, ·) are families of (non-linear) operators in Hilbert spaces and
wt is a Hilbert Wiener process.

This equation has been studied by several authors over the last years. For in-
stance, Pardoux [7], Ichikawa [6] and Caraballo [1] (among others) have established
results on the existence and uniqueness of solutions. However, we are now interested
in the analysis of the exponential stability for the paths of the trivial solution of (1).
We can mention here that Haussmann [5] obtained pathwise exponential stability
with probability one (w.p.1) for linear A and B and, Caraballo [2] generalized these
results to the delayed case. Also, Ichikawa [6] proved similar results for the mild
solution of the semilinear case, i.e. for linear A and Lipschitz continuous B. At the



same time, Chow [3] obtained asymptotic stability for the sample paths of (1) when
A and B do not depend on t and a coercivity condition holds. Recently, Chow and
Menaldi [4] have obtained some estimates in exit probability for the strong solution
of the semilinear problem. Nevertheless, we still have not found in the literature the
study of exponential stability of paths in a more general case, i.e. for non–linear
monotone A and Lipschitz continuous B. So, we are going to analyze it in this
paper. One of our results improves Theorem 5.2 from Chow [3] since, under the
same hypotheses, we get exponential stability for the paths instead of the asymp-
totic stability that he obtains. First, we give sufficient conditions for the exponential
stability in mean square of the trivial solution of (1). Next, we obtain exponential
stability of paths (w.p.1). Our method is based in appying Itô’s formula for a suit-
able function and using a coercivity condition. Consequently, we will observe how
the coercivity condition may be regarded as a exponential stability criterion.

Now we are going to state our problem in a suitable form:
Let V be a Banach space and H,K real, separable Hilbert spaces such that

V →֒ H ≡ H ′ →֒ V ′ ,

where the injections are continuous and dense.
We denote by ‖ · ‖ , | · | and ‖ · ‖∗ the norms in V , H and V ′ respectively; by

〈·, ·〉 the duality product between V ′, V , and by (·, ·) the scalar product in H .
Let wt be a Wiener process defined on the complete probability space (Ω,F , P )

and taking values in the separable Hilbert space K , with incremental covariance
operator W . Let (Ft)t≥0 be the σ-algebra generated by {ws, 0 ≤ s ≤ t}, then wt is
a martingale relative to (Ft)t≥0 and we have the following representation of wt :

wt =
∞
∑

i=1

βi
tei,

where (ei) is an orthonormal set of eigenvectors of W , βi
t are mutually independent

real Wiener processes with incremental covariance λi > 0, Wei = λiei and tr W =
∑∞

i=1 λi (tr denotes the trace of an operator, see Pardoux [7]).
As an abuse of notation, we also use | · | for the norm in the linear continuous

operator space L(K,H) .
We denote by Ip(0, T ;V ) , for p > 1 and T > 0 , the space of V –valued

processes (xt)t∈[0,T ] (we will write xt for short) measurable (from [0, T ] × Ω in
V ), and satisfying:

1. x(t) is Ft−measurable a.e. in t (in the sequel, we will write a.e.t.)

2. E
∫ T
0 |xt|

p dt < +∞ .

It is not difficult to check that the space Ip(0, T ;V ) is a closed subspace of
Lp(Ω × [0, T ],F ⊗ B([0, T ]), dP ⊗ dt;V ) , where by B([0, T ]) we denote the Borel
σ–algebra.



For short, we shall write L2(Ω;C(0, T ;H)) instead of L2(Ω,F , dP ;C(0, T ;H)) ,
where C(0, T ;H) denotes the space of continuous functions from [0, T ] to H .

Let A(t, ·) : V → V ′ be a family of non linear operators defined a.e.t. satisfying
A(t, 0) = 0 for all t ≥ 0 , and let p > 1 . (Note that we assume A(t, 0) = 0 because
we are going to restrict ourselves to the stability analysis for the trivial solution of
(1)). We also consider a family of operators B(t, ·) : V → L(K,H) defined a.e.t.,
and satisfying:

(b.1) B(t, 0) = 0 , ∀t ≥ 0
(b.2) Lipschitz condition: There exists k1 such that

|B(t, x) − B(t, y)| ≤ k1‖x − y‖ , ∀x, y ∈ V , a.e.t.

(b.3) Measurability:

t ∈ (0, T ) → B(t, x) ∈ L(K,H) is Lebesgue–measurable ∀x ∈ V , ∀T > 0.

Since we are mainly interested in exponential stability questions, we will assume
there exists a unique process

x ∈ Ip(0, T ;V ) ∩ L2(Ω;C(0, T ;H)) , ∀T > 0 ,

which is solution of (1). In other words, xt verifies the following integral equation
in V ′:

xt = x0 +

∫ t

0
A(s, xs) ds +

∫ t

0
B(s, xs) dws , t > 0 , P − a.s. (2)

where x0 = h ∈ L2(Ω,F0, P ;H). Observe that, we can assure existence and unique-
ness of solution for equation (2) if, for instance, the following conditions hold (see
Pardoux [7])



(a.1) Coercivity: There exist α > 0 and λ, γ ∈ such that:

−2〈A(t, x), x〉 + λ|x|2 + γ ≥ α‖x‖p + ‖B(t, x)W 1/2‖2 , ∀x ∈ V , a.e.t. ,

where ‖ · ‖2 denotes the Hilbert–Schmidt norm of nuclear operators, i.e.

‖B(t, x)W 1/2‖2 = tr (B(t, x)WB(t, x)∗)

(a.2) Monotonicity:

−2〈A(t, x) − A(t, y), x − y〉 + λ|x − y|2 ≥ ‖(B(t, x) − B(t, y))W 1/2‖2 , forallx, y ∈
V, a.e.t.

(a.3) Boundedness: There exists c > 0 :

‖A(t, x)‖∗ ≤ c‖x‖p−1 , ∀x ∈ V , a.e.t.

(a.4) Hemicontinuity:

The map θ ∈ → 〈A(t, x + θy), z〉 ∈ is continuous ∀x, y, z ∈ V , a.e.t.

(a.5) Measurability:

t ∈ (0, T ) → A(t, x) ∈ V ′ is Lebesgue − measurable ∀x ∈ V , a.e.t., ∀T > 0 .

2 THE MAIN RESULTS

We note that there exists a positive constant β such that

|x| ≤ β‖x‖ ∀x ∈ V.

Now, we state the exponential stability for the second moment of xt, solution of (2).

Theorem 2.1 Assume conditions (b.1)–(b.3) and (a.1). Then, there exists r > 0
such that

E|xt|
2 ≤ E|x0|

2e−rt ∀t ≥ 0, (3)

if either one of the following hypotheses holds:

(a) λ < 0 , γ ≤ 0 (∀p > 1)

(b) λβ2 − α < 0 , γ ≤ 0 (p = 2).



Proof. We apply Itô’s formula (see Pardoux [7], Caraballo [1]) for the function
eαt| · |2 and the process xt, where r > 0 is such that r + λ < 0 in case (a) or
(r + λ)β2 − α < 0 in case (b) (we note that there exists such r since the maps
r → r + λ , r → (r + λ)β2 − α are continuous and (a) or (b) holds).

We then obtain

ert|xt|
2 − |x0|

2 = r

∫ t

0
ers|xs|

2 ds + 2

∫ t

0
ers〈xs, A(s, xs)〉 ds

+2

∫ t

0
ers〈xs, B(s, xs) dws〉

+

∫ t

0
erstr (B(s, xs)WB(s, xs)

∗) ds. (4)

Now, since
∫ ·
0 ers〈xs, B(s, xs) dws〉 is a continuous local martingale (see Caraballo [1]

and Chow [3]), it follows

E

(
∫ t

0
ers〈xs, B(s, xs) dws〉

)

= 0 .

Therefore, from (a.1) and (4) we can deduce

ertE|xt|
2 ≤ E|x0|

2 + (r + λ)

∫ t

0
ersE|xs|

2 ds

−α

∫ t

0
ersE‖xs‖

p ds + γ

(

ert − 1

r

)

. (5)

Now, if (a) holds, (5) yields

ertE|xt|
2 ≤ E|x0|

2 ,

and if we suppose (b), (5) implies

ertE|xt|
2 ≤ E|x0|

2 +
[

(r + λ)β2 − α
]

∫ t

0
ersE‖xs‖

2 ds

≤ E|x0|
2 .

So, the proof is complete.
Now, we are going to establish that the exponential stability of the second mo-

ment implies the exponential stability of the sample paths w.p.1. First, we need the
following result.



Lemma 2.1 Assume the solution xt of problem (2) satisfies (3). Then, there exist
positive constants c1, c2 such that

(a)
∫ t
τ E|B(s, xs)|

2 ds ≤ c1E|x0|
2e−rτ , 0 ≤ τ ≤ t

(b) E

(

sup
0≤t<+∞

|xt|
2

)

≤ c2E|x0|
2 .

Proof. First, applying Itô’s formula as in Theorem 2.1 we get

ertE|xt|
2 ≤ E|x0|

2 +
[

(λ + r)β2 − α
]

∫ t

0
ersE‖xs‖

2 ds , ∀t ≥ 0 . (6)

Since (λ + r)β2 − α < 0, it follows

∫ t

0
ersE‖xs‖

2 ds ≤
1

α − (λ + r)β2
E|x0|

2 , ∀t ≥ 0 .

Now, (6) and (b.2) yield

∫ t

0
ersE|B(s, xs)|

2 ds ≤
k1

α − (λ + r)β2
E|x0|

2 ≡ c1E|x0|
2 , ∀t ≥ 0

and, for 0 ≤ τ ≤ t , we get

∫ t

τ
ersE|B(s, xs)|

2 ds ≤ c1E|x0|
2

and

e−rτ
∫ t

τ
ersE|B(s, xs)|

2 ds ≤ c1E|x0|
2e−rτ , 0 ≤ τ ≤ t .

Therefore

∫ t

τ
E|B(s, xs)|

2 ds ≤

∫ t

τ
er(s−τ)E|B(s, xs)|

2 ds ≤ c1E|x0|
2e−rτ , 0 ≤ τ ≤ t ,

and hence (a) is proved. Next, Itô’s formula for |xt|
2 and the coercivity condition

imply

|xt|
2 = |x0|

2 +

∫ t

0
〈xs, A(s, xs)〉 ds + 2

∫ t

0
〈xs, B(s, xs)dws〉

+

∫ t

0
tr (B(s, xs)WB(s, xs)

∗) ds

≤ |x0|
2 + |λ|

∫ t

0
|xs|

2 ds + 2

∣

∣

∣

∣

∫ t

0
(xs, B(s, xs) , dws)

∣

∣

∣

∣

,



and so,

E

[

sup
t∈[0,T ]

|xt|
2

]

≤ E|x0|
2 + |λ|

∫ T

0
E|xt|

2 dt

+2E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0
(xs, B(s, xs) dws)

∣

∣

∣

∣

]

. (7)

Now, we estimate the terms on the right–hand side of (7).

|λ|

∫ T

0
E|xs|

2 ds ≤ |λ|

∫ T

0
e−rsE|x0|

2 ds ≤
|λ|

r
E|x0|

2 , ∀T > 0 . (8)

Using Burkholder–Davis–Gundy’s inequality we obtain:

E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0
(xs, B(s, xs) dws)

∣

∣

∣

∣

]

≤ k3E





(

tr (W )

∫ T

0
|xs|

2|B(s, xs)|
2 ds

)1/2




≤ k4E





(

∫ T

0
|xs|

2|B(s, xs)|
2 ds

)1/2




≤ k5E



 sup
s∈[0,T ]

|xs|

[

∫ T

0
|B(s, xs)|

2 ds

]1/2




≤
1

2
E

[

sup
t∈[0,T ]

|xt|
2

]

+ k6

∫ T

0
E|B(s, xs)|

2 ds

≤
1

2
E

[

sup
t∈[0,T ]

|xt|
2

]

+ k7E|x0|
2 , (9)

since (a) holds.
Finally, as k7 does not depend on T , we can obtain (b) from (7) − (9) and

Lebesgue’s theorem.

Theorem 2.2 Assume the hypotheses in Theorem 2.1. Then, there exist positive
constants ξ, η and a subset Λ ⊂ Ω with P (Λ) = 0 such that, for each ω 6∈ Λ ,
there exists a positive number T (ω) such that the following holds:

|xt(ω)|2 ≤ ηE|x0|
2e−ξt ∀t ≥ T (ω). (10)

Proof. We only sketch the proof because it is similar to the linear case one (see
Haussmann [5] and Caraballo [2], for details).

First, we apply Itô’s formula. As γ ≤ 0 and coercivity holds, we obtain:

|xt|
2 ≤ |xN |2 + |λ|

∫ t

N
|xs|

2 ds + 2

∣

∣

∣

∣

∫ t

N
(xs, B(s, xs) dws)

∣

∣

∣

∣

(11)



for t ≥ N , where N is a natural number.
Next, if IN denotes the interval [N,N + 1] we have:

sup
t∈IN

|xt|
2 ≤ |xN |2 + |λ|

∫ N+1

N
|xs|

2 ds

+2 sup
t∈IN

∣

∣

∣

∣

∫ t

N
(xs, B(s, xs) dws)

∣

∣

∣

∣

and so,

P

[

sup
t∈IN

|xt|
2 ≥ ε2

N

]

≤ P
[

|xN |2 ≥ ε2
N/3

]

+ P

[

|λ|

∫ N+1

N
|xs|

2 ds ≥ ε2
N/3

]

+P

[

2 sup
t∈IN

∣

∣

∣

∣

∫ t

N
(xs, B(s, xs) dws)

∣

∣

∣

∣

≥ ε2
N/3

]

, (12)

where εN = E|x0|e
−rN/4 .

Now, we can estimate the terms on the right–hand side of (12) using Kol-
mogorov’s inequality and (3) for the first two terms and we also use the inequalities
of Burkholder–Davis–Gundy and Holder and Lemma 2.1 for the last. We then obtain

P

[

sup
t∈IN

|xt|
2 ≥ ε2

N

]

≤ k8e
−rN/4 , (13)

and finally, Borel–Cantelli’s lemma completes the proof.
Remark. We can observe how the coercivity condition (with (a) or (b)) implies

pathwise exponential stability for the solutions of problem (2). However, Chow [3]
only obtains asymptotic stability under the same hypotheses. We also note that
assumption (iii) in [3, Theorem 5.2] never holds because from (a.1) with x = 0 it
follows γ ≥ 0. Consequently, in (a) and (b) we can set γ = 0 instead of γ ≤ 0 and
the same in Chow’s Theorem 5.2.

3 EXAMPLES

First, we note that, in the examples given in Chow [3], the trivial solution has
exponentially stable paths instead of the asymptotic stability property stated there.
Next, we are going to give a different example.

Let O be an open, bounded subset in N with regular boundary and let
2 < p < +∞. We consider the Sobolev space V = W 1,p

0 (O) , H = L2(O) with
their usual inner products, and the monotone operator A:V 7→ V ′ defined as

〈Au, v〉 = −
N
∑

i=1

∫

O

∣

∣

∣

∣

∂u(x)

∂xi

∣

∣

∣

∣

p−2 ∂u(x)

∂xi

∂v(x)

∂xi
dx −

∫

O

a(x)u(x)v(x) dx ∀u, v ∈ V ,



where a ∈ L∞(O) satisfies a(x) ≥ â > 0 , a.e. x ∈ O . We also consider B(u) =
g(u) , u ∈ V where g: 7→ is Lipschitz continuous with constant L such that L2 <
2â and g(0) = 0 . Finally, let wt be a standard real Wiener process (so, K =
and W = 1 ). Then, although condition (a.3) does not hold when ‖u‖ ≤ 1 , we
can assure there exists a unique solution of (2), for each u0 ∈ Lp(Ω,F0, P ;H) (see
Pardoux [7], Theorem 4.1, p. 126). In this case, (a.1) holds with γ = 0 , λ =
−ε < 0 , p > 2 , α = 2 , where ε > 0 is such that L2 ≤ 2â − ε . Consequently, we
get asymptotic exponential stability for the paths of the trivial solution, u , of a
problem which can be interpreted as follows:































du(t, x) =

(

N
∑

i=1

∂

∂xi

(

∣

∣

∣

∣

∂u(t, x)

∂xi

∣

∣

∣

∣

p−2 ∂u(t, x)

∂xi

)

− a(x)u(t, x)

)

dt

+g(u(t, x)) dwt , a.e. in (0,+∞) ×O
u(0, x) = u0(x) , a.e. in O
u(t, x) = 0 , a.e. in (0,+∞) × ∂O
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[7] E. Pardoux, Equations aux Dérivées Partielles Stochastiques Nonlinéaires
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