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§1. Introduction and Summary

This paper is a continuation of our papers ([10], [117, [12]) and is concerned
with the pattern classification related to ‘“learning with a teacher” and “learning
without a teacher”. In the problem related to “learning with a teacher”, we tried
to find an algorithm by which, for two given categories, we can construct, from a
training sequence, a sequence of linear systems of orthonormal functions to get an
approximation to a sequence of the Bayes decision functions which are optimum in
the sense of minimizing the probability of misclassification at each instant.

Now, we recall the algorithm of learning developed in [13]. In [13], the appro-
ximation to the Bayes decision functions for each fixed point of domain is nonpara-
metric and the eXistence of a training sequence from the independent random vari-
ables is assumed. However, it does not seem general enough that the patterns are:
observed from the independent random variables in the statistical pattern recogni-
tion. On this reason, we replace the above assumption by weaker one that the:
patterns are observed from the dependent random variables with certain conditions..
In the above situation, we shall try to extend the algorithm of learning developed
in [137.

Next, in the problem related to “learning without a teacher”, we pay attention
to the algorithm of learning developed in [9]. In [9], the probability density func-
tion of the patterns is the following form:

LOEDWHIOP

where g; is a priori probability of the category 6; and fi(x) is the probability den-
sity function of an observed pattern which belongs to the category 4,.

When fi(x) is known to the observer for all i, the algorithm is given for esti-
mating a priori probabilities ¢;, i=1,2, -+, s, on the basis of the unclassified ob-
served patterns. Here, we make the above situation weaker in the following two-
points: (i) the categories at each instant are from the dependent random variables
with certain conditions, (ii) the probability density function is time-variant. In this.
situation, we shall try to extend the algorithm developed in [9].

Our algorithms in both learning are an application of the method introduced by
T. Kitagawa [7] in the successive process of statistical control. This method, which
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may be called modified stochastic approximation, was investigated by V. Dupac [4]
in detail.

This paper consists of six sections. In Section 2, we shall state several lemmas
necessary for the proofs of main results of this paper. In Section 3, we shall give
the formulation of the problem in this paper. In Section 4, we shall investigate
“learning with a teacher” in the case when there are two categories. In Section 5,
we shall be concerned with “learning without a teacher” in the case when there
are many categories.

§2. Preliminaries

In this section, two lemmas are stated without proof in order to prove main
results of this paper. Let us consider an m-dimensional stochastic process {¥"}o.
and three sequences of non-negative real-valued measurable functions {U,}7o, {Va}oa
and {{,};,, where each U,, V, and {, are defined on R™. Then accordingly
AU -, Y, V(3 -, y))=r and {La(0% -+, 3™} become again three stoch-
astic processes, respectively. Let us write U,=U,(3", -+, 3, Vo= V(3 -, )
and {,={,(3" -, y) for the sake of simplicity. We denote the expected values of
three stochastic variables U,, V, and {, by E[U,], E[V,] and E[¢,]. Furthermore,
we denote the conditional expectations of three stochastic variables U,;,, V. and
Cae1 given the random variables %, 2, --, 3 by E[Upsi|¥% oo+, 3°3, ELVpaa|% <<, ¥7]
and E[{us |7, -, ¥,

In what follows, let {y,}p= and {g,}5-, be two sequences of real numbers. Now,
we introduce the fundamental conditions for three stochastic processes {U,}o.,,
{Valta= and {Co)n-r.

(A1) ETU,] and E[V,] exist,

(A2)  E[Upuly, -, 31 =Q+p)U,—7,V,+E, hold for all n,

(A Nya=c0 (=20, n=12, ),
n=1

A 3|l <eo,
(A5) there exists a sequence of positive numbers {M,}3.; such that
P, =M,]=1 for all n,
and such that g)an < oo,

The following Lemma 1 and Lemma 2 were essentially proved in [10].

LEMMA 1. Let the hypotheses for three stochastic processes {U,}r, {V.}oo, and
{Ca}r-1 be satisfied: (i) conditions (A1)~(A5) hold, (ii) lim y, =0, (iii) if there exists a
subsequence {n,}i, of a sequence {n}y., such that P[lim V,,=0]=1, then P[lim U,,

k—o0 k—oo
=0]=1. Then, it holds that

PllimU,=0]=1 and lImE[UL]=0 for al 0<B<]1.

n—00 n—oo

LEMMA 2. Suppose that a sequence of non-negative real numbers {a,}e., satisfies
the condition: there exist a positive integer n,, two sequences of non-negative real num-
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bers {yntmy and {A,}2o; such that

(21) pyy é (1—7n+1)an+An+1 f07’ all n 2 N,
2.2) Sya=00,
n=1
23) limy,=0,
(2.4) A, < oo,
n=1

Then, it holds that lim a,=0.

n—co
Next, we mention without proof the lemma given by V. Dupa& [4], a modifica-
tion of the result of K.L. Chung.
LEMMA 3. Let {a,}2-; be a sequence of non-negative real numbers. Suppose that
there exist a positive integer n,, two positive numbers A and B such that

2.5) Uiy < (A—A/n%a,+B/nt  for all n=n,,
(2.6) t real number and 0 < s<1.

Then, we have lim sup n**a, < B/A.

n—o

§3. The formulation of the problem

In the pattern classification problem in this paper, each observed pattern x is a
random sample taking value in R™ from a group, to which they belong, and each
group is called a category. Therefore, each observed pattern is drawn by a pro-
bability distribution law. Now, we consider the case when there exist s categories
8,80, -,0; and we denote a set of these categories by @. Hence, each outcome in
pattern classification is described by a pair (x, #). The element x is an observed
pattern in a pattern space R™ and # specifies the category of an observed pattern.
But, generally, 6 is unknown to the observer. For a sequence of the observed
patterns x?, x%, ---, x"*, --- we can consider a sequence:

CAY (09, (%, 0%, -, (X", 67), -
with x* € R™ and 6" € @, where 6* =90, if x* is from a specific category 0,.
For such a sequence, the result of n history is expressed by two sets:
En:(xl’ xZ’ e, xn) and anz(al’ 62’ . ‘911).

In what follows, we shall assume that, for each n, the transition probability
distribution of an outcome at instant n-+1 given a history at instant n has the den-
sity function w.r.t. Lebesgue measure and this is denoted by the following form:

(3.2 P, 67 @) = M ) fEEE (M)

where ¢™*D(§7*1|q™) is the conditional probability of a category 6"+' at instant n--1
given a history a® and f§5% (x™*) is a conditional probability density function of
the observed pattern x™*! given a category 6"*' at instant n-1.
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Now, we can consider “a posteriori” probability density function according to
the Bayes formula: after an observed pattern x"*! at instant n+1 was known, we
have the following “a posteriori” probability density function for a®0"+'=(§", 6%,
cee, Y
(3.3) Hxn“(anan-n) — H(an)q(n-x-l)(en-l-l |flz)f§if;z?l) (xn“) —,
XD @)t an) e ()

an=gn gntlice

where " =6 xOx .- XO and Il(a™) is a probability distribution on O™

Then, if all transition probability density functions at each instant are known
to the observer, the classification of an observed pattern at each instant will be
determined by the largest of the quantities I7,,;,(a,0)), I ,si(a™8y), -, I ps (a™B)).
From the statistical decision theory, it is well known that this decision rule is
optimal, because of the minimum probability of misclassification, and that it is called
the Bayes decision rule.

Hence, in the case when there are two categories, we have an optimum decision
rule:

x™*! is classified in category 8, if D*(x™*'|a™) =0,

classified in category @, if D*(x"*'|a™) <0,
where D*(x"*'|a™) = Il 1 (@0 )—1I . (a8,).
This decision rule is equivalent to the following decision rule:
x™1 is classified in category @8, if DF*(x"|a™) =0,
is classified in category 8, if D"+ a®) <0,

where Dy U(xm?|a™) = g0, | a7 () =g (0, | an F (),

§4. Learning with a teacher

In this section, we treat the case where the amount of a priori information on
the transition probability density function at each instant is small but an observer
is indicated by a teacher the category from which an observed pattern is extracted.
By a training sequence, we shall imply a sequence (x!, 8%), (x%, 6%), ---, , where 6°
is the category indicated by a teacher at instant i.

Now, when ©&={0, 6,}, we consider the problem of finding an algorithm of
approximation to the Bayes decision function at each instant, on the basis of a
training sequence. This decision which minimizes the probability of misclassification
at each instant n is the following form:

4.0 DiP(x™ a1 = g0, | @™ ) fa,(x")— g (b, | @™ ) fo(x™) .

In what follows, each f;,(x) is defined on R™ and all integrals and supremums,
unless otherwise indicated, are taken over R™
Here, let K(-) be a real-valued function on R™ satisfying the following conditions :

(K1) K(»=0 for all ye R™,
(K2) sup K(N) =K< o0,
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K3) JEGyay=1,

K4 Iy 1Ky =K*< 0,

where the norm | y(yy, Ya =+, ¥m) ”2=,§ ()

By using the above function K(-), we shall construct the following algorithm
with a sequence of positive real numbers {h,};, satisfying the condition:

“.2) 1zh=zh,= - and limh,=0.

n—oo

Firstly, using an outcome (x', %) of an observed pattern x' at instant 1 and a cate-
gory 6' to which x! belongs, indicated by a teacher, we make

43 Dy(x|x", 6")= p(6)K (x, )—(1—p(ONK(x, ),

where
Ky(x, )= hy"K[hi*(x—x")]
and
1 if =4,
o) = {
0 otherwise.
Secondly, using an outcome (x% 6% of an observed pattern x® at instant 2 and a
category 6% to which x® belongs, indicated by a teacher, we make

4.4 Dy(x|€* a®) = *%*Dl(xl &, a,>+%‘ L™Ky (x, x*)—(1—p™(0"NKy(x, x°)],

where
Ky(x, 8= hy™K [ hy'(x—x%)]
and
1 if 2=4,
,0(2)(02):
0 otherwise .
In general, using an outcome (x"*!, §"*') of an observed pattern x™*! at instant n+1
and a category 6"*!, to which i1™*! belongs, indicated bv a teacher, we make

45) Dans( 1§74, @) = L Dy (x1 8, @)1 L™ (0™ Ko, )
(L= p N K (x, 7],
where
Kpsi(x, x*) = hy i KChat(x— 2]
and

if =4,
p(n+l)(0ﬂ+l) —
0 otherwise.
The next lemma is necessary in order to prove the theorem in this section.
LEMMA 4. Let f(-) be a real-valued function on R™ satisfying a uniform Lipschitz
condition :
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[f()—fNI=Cllx—y|  for all x,y = R™
and K(-) satisfy (K1)~(K4). Then, it holds that
4.6) | fo()— f(x)| < CK*hy

where fo(x) = [ Ku(x, )£(3)dy.
PROOF.

A£G = K, ()~ f Dy
= [ K@) f(x—zhn)— f(0)|dz

<C j K(2)||hyzlldz

=CK*h,.

Then, we can prove the following theorem concerning D, (x|£"+, a®*) and D&+ (x|a™).
THEOREM 4.1. Let the following hypotheses be satisfied :

® j(foi(x))zdx< oo for all i,
(i) fa(x) and fo,(x) satisfy uniform Lipschitz condition,
(i) g:ln-lhn < oo and g n-2hym < oo,
(iv) for each i, there exist a non-negative number q; 0<q; <1, izijlqizl) and a
sequence of positive numbers {M,}., such that
n(@™@;la" ) —g.)* = M,
and such that n§1Mn < oo, Then, it holds that

PllimI,=0]1=1 and limE[I8]=0 for all 0 < B<1,
where

I = [[DW(x1€", @™~ Dy (x| a*")J*dx.

Proor. By the construction of D,.,(x|&™*!, a™*), we have
.7 Dray(x|E"H, a™)— D+ (x| a™)

1
n+

—(l—p(”“)(ﬁ"“))KnH(x, x"“)]—Df{‘“’(x | an)

= (1= D€ @t Lo (0™ K, 2

= (L= JDaxIE% @)= DPCxl )t - Lo () K, 2000
—(L P K s, ) Dr* x| )]
+ (1= LDl @)= Dio(xla]

Hence, from (4.7), we can obtain
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@8 Lu=(1-31) nt( ) 0+ () fTV e, ¥ )= D(e| @
+2( )G ) D187 @M=D @ ILY s, 54— Dy (x| a)]dx
+2(2) G ) JEDE Gl @)= D | @)LV oty 37— Dip (x| @) )dx

2
+2( ;1) JTDa(x 167, a®—Di(x| @ HILDE(x @)= D= (x| a™)]dx,
where )
q Yn_H(x’ xn+1): p(n+1)(6n +1)Kn+1(x, x"“)—-(l~p‘"*”(ﬁ"“))KnH(x, xn+1)
an
6 = [[Di(x|a™~*)— D (x| a™)Tdx .

Taking conditional expectation on both sides of (4.8), we have
A9 B8 )= (1= Tt (1) 6
+ (;jlrj)zE[f(Ynﬂ(x, X4~ D0 (x| a?))dx |7, o ]
+2(,$)(,$1)E [[(Dux1€%, a®— D x| a )Y pals, 27
—Diro(x]|a))dx|€", o]

+2(; 1) G BLI D (el @)= D (e @Y s, 1%

— D (x| a)dx| &, a* ]
12027 ELfDatx 187, an)— Dl ar )i (xa)

— Dy (xlam)dx| € @],

Then, there exist two positive numbers M,, M, such that, from Lemma 4 and (K3),

“10)  JE[(Ygulx, ™D —Dg (x| a™) €7, a]|

= UKn-l—l(x: NG00, ™) fo,(9)—a" (0, a™) fo(9)]dy— Do (x| @)

= [[K@La™ 0,1 ot a2 =00, @) o= hrs2)

—<q<"+1><01lanm,(x>—q<"+‘>(0z|an)foz(x>1dz|
< M,K*hysy
and such that, from (K2) and (K3),

@1 E[[(Falr, 2= Dt (x| am)dx| €7, o]

< 2EU(Yn+1(x, K F)2dx | €M, a"]-}—ZJ(Dé"“’(XIa"))de
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2
< 2KIRE[ { Koo, x| €7, o |+4[ 2 [(a(0)dx ]
=2Kh; 7 +4M,.
Furthermore, there exist two positive numbers M;, M, such that, from (K3),

@12)  |[Dux1gn, @D x| de| = [1Dux167, @l dwt [ 1 DCal @) dx

n

L% [Kitx, 20+ [Tg0, 1 @M ()40, a o ()1

=1

A

M,

A

and such that

(413 |fEoirar— Do (x| amldx| < M,

Noting that, for each instant =,

(4.149) 2f | DE(xfa™ ) — D+ (x| @™} | Dofx | 6", a™)— D (xfa™ 1) dx
S(+D ' L+0+1D)e™,

from (4.9), (4.10), (4.11), (4.12), (4.13) and (4.14)

n n 1 2 n 1 z —-m
@15) Ellml€" a1 (1=, ) Tt 07+ (55 @KRn+4M,)

+2( 2 D) MM 5t 2( ) ) MM K st [ (Tt i+ DO,

Since there exists a positive number M; such that, from (i) and (ii) in the theorem.

(n+1)B = MMy,
from (4.15) we can obtain

16 Ehulen @l =141 ) T ()1t (y) @Bhanam)

2, L) MM MOK iy 2M, M.
Therefore, letting U,=V,=1,, p,=(1+n)"? and
_r. 1V —m 1 *
&o= () @ERmA-4M)+2( ﬂ—I)MI(MﬁM,)K s t-2M My,

in (4.16) and using Lemma 1, it follows that
PllimI,=0]=1 and lim E[I8]=0 for all 0<B8<1.

n—00 n—0

THEOREM 4.2. Let {D,(x|&", a™)}y-, be a sequence of the decision functions ob-
tained by the above argument such that

p {li_gf[Dn(x]E", am)—DE(x|a™ ) ]Pdx = 0} =1.



On the Pattern Classification by Learning 21

Then, it holds that
P[Eglo (Ppn(-jen,a")(e)_PD(()")(~Jd"”1)(e)) =0]=1,

where Pp(e) is the probability of misclassification using a decision function D(-).
PROOF. Choose ¢ >0 and then a sufficiently large integer N such that

@.17) Pl f (Dy(x|E¥, a¥)— DY (x| a¥ - O))2dx < &*/4 f Ipn(x)dx |=1
where B¥ is a bounded set in R™ such that
J D¥GleY Y drz1—e/2
BN

and I,(x) is the indicator of A.

Define sets
(4.18) HY ={x: D¥(x|a¥*) =0}
and '
4.19) H¥={x: Dy(x|&", a™)=0}.

A20)  Poyiav-i©) =g a” | fo)lay(x)dx+ g%, @ fa(Luy(x)dx

=q™(0,|a¥ ) +f[—D6N)(x | aN—l)]]Hﬁv(x)dx

and

@21 Poncie,ank©) = 40, e )+ ([~ Dy(x] €%, a*Lyn(x)dx .

Then, from (4.20) and (4.21),

{4.22) Pp ey av€)— Pogm cla=15(€) = yD{)N)(x | OIN_I)EIHIOV(X)—IHN(x)][BN(x)dx

+f D (x| a¥ DU py(x)—Tun(x)1zv(x)dx

where BY is the complement of set BY.
It is obvious that

(4.23) f [—Dw(x1€Y, a™)lay(x)—Iun(x)}sn(x)dx = 0.

Adding (4.23) to (4.22) and recalling that D{™(x|a”') is the Bayes decision function,
we can obtain that

(4.25) 0= PDN(-\EN,nM(e)—PD‘ON)<-|aN‘1 {e)

= [IDE (x| @)= Di(x| %, @)Ly ()= Lun (] px(x)dx
+ {1 Dg (x| ¥ )| ()

< {j [DP(x|a¥ )—Dy(x| &Y, a¥)]?dx - f[BN(X)dX} v +e/2.
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Since ¢ was arbitrary, the theorem is proved.

§5. Learning without a teacher

This section is concerned with the problem of “learning without a teacher” in
statistical pattern recognition. We treat the case when there exist s categories
6., 0, -+, 05, and the case when there can not be assumed a training sequence.

In what follows, it is assumed that, for each instant n, the transition probability
density function has the following form :

5.1) PG |0 = 3 PO RGN,
where a""'=(¢", 6% ---, 6""") and each f{(x") is defined on R™

Now, we consider the problem of finding an algorithm of the estimation of the
probabilities ¢™(0;|a"""), i=1,2, ---, s, in the mixture density function p™(x"|a"™?),
when f§?(x) is known to the observer for every i and 7, on the basis of the ob-
served but unclassified patterns. Here, we reduce this problem to the problem of

finding an algorithm by which, at each instant n, we can construct, from the observed
patterns, ¢f¥, i=1,2, ---, s, which minimizes a quantity defined by

6:2) 1= [T 5 Gi= g™ @l ) Fip T+ 220 30,17,

where 1 is a Lagrange multiplier.

Differentiating I, with respect to §;, i=1, 2, ---, s, and equating the derivatives
to zero, we have

(5.3) W™Q@(a™ )= E[f ™™ |a*]—-2U,

where W™ is the matrix with elements w%’:jf},’;’(x)f},’;?(x)dx, ,7=1,2,-+,s;
ETf™(x™]a""'] is a column vector of with the i-th component equal to ELfpGamlar—1]
:ffg;’(x")p‘m(x"]a"")dx”, i=1,2,--,s; U is a column vector of s components all
equal to one and QP(a"') is a column vector with the i-th component ¢, i=1, 2,
-+, s. When det W, the determinant of W™, is not equal to zero at each instant
n, the i-th component of QP (a™') which satisfies (5.3) is

5.4 & ot s g:lj:lE[fé’}’(x")la""]W?;’—det W W
G4 =2 | EL/R @) ar ] N e

where W is the adjunct of w{ in the matrix W™. Then, we can write .4 to

the following form :

(6.5 9% = ELFP(xM)|a"],

where
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SZ i f(n)(xn)W(n) —det W(n)

s @)
Fom) = g F5 ™) — == W devtVka/ @
2

In view of the above argument, we shall construct the following algorithm with
a sequence of non-negative real numbers {y,}s-; such that

(.6) Sra=c0 and Npi<oo.
n=1

Firstly, using an observed but unclassified pattern x' at instant 1, we make for
1=1,2,-,s
(5.7 g, a)=g®+y [FPH—gf],

where g® =20 for all 7.

Secondly, using an observed but unclassified pattern x* at instant 2, we make for
1=1,2,-,s

(5.8 g2, a®)=gP(E, a)+rFP()—g®PE, al)].

In general, using an observed but unclassified pattern x"*! at instant #n+1, we make
for 1=1,2,---,s

(5.9 FEVE, a™) = gP(E", ) ralF FH (G — g (e, am)].

Then, we can prove the following theorem concerning g{**(¢"+!, a™*1) and qaty,
THEOREM 5.1. Let the jfollowing hypotheses be satisfied:
(i) for each instant n, det W™ is not equal to zero,

(ii) there exist a set of positive numbers {q;}i;, (0=<q;<1, Eq =1) and a
sequence of positive numbers {M,}3., such that, for all i,
ra'lg™Ola" N —q 1 = M,
and such that § M, < oo,
n=1
(i) {fo()}Y-1 s a set of the conditional probability density functions defined on
R™ and satisfying j‘fgi(x)fgj(x)dx <oo, for i,j=1,2 -,

(iv) there exists a sequence of positive numbers {N,}o., such that, for each n,
2
([ @ f@de—{ fo,(0 /o) = N,

and such that }mj N, < 0.
n=1
Then, it holds that, for all 1,

Pllimu®=0]=1 and lmE[u¥]=0 for all 0< B=1,

n—o n-—c0

where u® = g"(€", a®)—q%.

PROOF. By the construction g{P(§"+!, a™'), i=1,2, -+, s, we have
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(G.10)  gEOE™H, @) — gt = g (€, aM)+1un[F PO ) — g O(ER, amy]—qgt
=17 )P, @) —gE)+(L—70s: )02 — a5
F Vg [F &) — g3t ] .
The equality (5.10) can be written in terms of u{"™, ¥ and 6{® as
61D U = (L g U+ (1= DO+ s [F () — g7

where 0 =qR —q;3*.
Squareing both sides of (5.11) and then taking conditional expectation, we can
obtain, for all 7 and a sufficiently large n,

(.12 EL@{ ™) 1€", a"] = (1—7a) @) +(1—72e)*(0i")*
+2(—7na)* [u® [ 165 | +774010%

where the positive number ¢® satisfies a condition Var [F{"(x"*")|a”] < ¢® Noting
that, for i1=1,2,3, -+, s and all n,

21ufP | 1001 S P UY+ 7700
from (5.12) we have for all ¢
(5.13)  E[{™) €% a™] £ 1—71ne) @) =1 e (Y +rah (05 +(0) +rrsa0®

Then, from (ii), (iii) and (iv), there exists a positive number M such that

(.19) 7an(0Y +0) < MM, .
From (5.14), we can write (5.13) to the following form:
(5.15) E[(u@) 6% a”] < A+ i)W =7 naaw®)+ MMy + 17410

Therefore, by Lemma 1, it follows that, for all i,
P[hm u®=0]=1 and lim E[(u®)*]}=0 for all 0< A<,

Also, taking the unconditional expectation on both sides of (5.15) and using Lemma
2, it follows that, for all i,
11m E[(u(’” ¥1=0.

Thus, the proof of the theorem is completed.
Next, we have the following theorem concerning the order of mean convergence.
THEOREM 5.2. Let the following hypotheses be satisfied:
@) r.=a/n% a>0, 1/ <a< 1,
(i) Var [FP(xW|a™ ]1<¢® for all i and n,
(ii) E[@™)*]=0n"*), o> a, for all 1,
Then, it holds that
O(n~2@-2)  if w<(3/2)a

L)) =
0w i 0z@/Da,

where the notation f(n)=0(g(n)) means HTaiup [ f(n)/g(n)| < co.
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ProOOF. By (i), (ii), (iii) and (5.13), there exist a positive integer N and three
positive numbers C,, C,, C; such that, for all n= N,

616) EL(ui Y] < (1= Co/nEL@PY T+ Cafn**+-Cufne~e.
Consequently, we can obtain for w <(3/2)a

\CRY) ELu™)] = A=C/n)ELu{*)]+C,\/n*™"

and for w=(3/2)a

(.18 ETu )] =(=C/n)EL(w)* ]+ Cs/n*,

where C, and C; are some positive numbers.
Thus, an application of Lemma 3 for a,= E[(«{”)*] gives us the result of the
theorem.
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