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   § 1. Introduction and Summary 

   This paper is a continuation of our papers ([10], [11], [12]) and is concerned 
with the pattern classification related to "learning with a teacher" and "learning 

without a teacher". In the problem related to "learning with a teacher", we  tried. 

to find an algorithm by which, for two given categories, we can construct, from a. 

training sequence, a sequence of linear systems of orthonormal functions to get an. 

approximation to a sequence of the Bayes decision functions which are optimum in 

the sense of minimizing the probability of misclassification at each instant. 

   Now, we recall the algorithm of learning developed in [13]. In [13], the appro-

ximation to the Bayes decision functions for each fixed point of domain is nonpara-

metric and the existence of a training sequence from the independent random vari-

ables is assumed. However, it does not seem general enough that the patterns are 

observed from the independent random variables in the statistical pattern recogni-

tion. On this reason, we replace the above assumption by weaker one that the. 

patterns are observed from the dependent random variables with certain conditions_ 
In the above situation, we shall try to extend the algorithm of learning developed. 

in [13]. 

   Next, in the problem related to "learning without a teacher", we pay attention 
to the algorithm of learning developed in [9]. In [9], the probability density func-

tion of the patterns is the following form : 

                        p(x) = E qifi(x), 

where qi is a priori probability of the category Oi and fi(x) is the probability den-

sity function of an observed pattern which belongs to the category 8i. 

   When f,(x) is known to the observer for all i, the algorithm is given for esti-

mating a priori probabilities qi, i= 1, 2, • • • , s, on the basis of the unclassified ob-

served patterns. Here, we make the above situation weaker in the following two• 

points : (i) the categories at each instant are from the dependent random variables-
with certain conditions, (ii) the probability density function is time-variant. In this. 

situation, we shall try to extend the algorithm developed in [9]. 

   Our algorithms in both learning are an application of the method introduced by 

T. Kitagawa [7] in the successive process of statistical control. This method, which 
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may be called modified stochastic approximation, was investigated by V.  Dupa6 [4] 

in detail. 

   This paper consists of six sections. In Section 2, we shall state several lemmas 
necessary for the proofs of main results of this paper. In Section 3, we shall give 

the formulation of the problem in this paper . In Section 4, we shall investigate 
"learning with a teacher" in the case when there are two categories. In Section 5, 
we shall be concerned with "learning without a teacher" in the case when there 

are many categories.

    § 2. Preliminaries 

    In this section, two lemmas are stated without proof in order to prove main 
results of this paper. Let us consider an m-dimensional stochastic process { Yn};7=1 

and three sequences of non-negative real-valued measurable functions {U.}77--1, { 

and fC.M1, where each U., V. and C7, are defined on Rnm. Then accordingly 

{Un(Yi, ••• , y791,7,, { V n(yl, Yn)}7z=1 and {C,,(3,', ••• , Yn)}n=, become again three stoch-
astic processes, respectively. Let us write U.= U.(y1, ••• yn), Vn= Vn( y1, ••• , y1) 

and C„, Cn(y' , • • • , yn) for the sake of simplicity. We denote the expected values of 

three stochastic variables U,, V. and In by E[Un], EC V„] and E[C,i]. Furthermore, 

we denote the conditional expectations of three stochastic variables Un+i, Vn+, and 

(n4.1 given the random variablesy1,y2,yn by E[Un+1, yn], E[Vn+11y1,•, yn] 
and EC(.4-11Y1, ••• Yni• 

   In what follows, let frOZ=1 and itin1;7=1 be two sequences of real numbers. Now, 

we introduce the fundamental conditions for three stochastic processes {Un}Z=1, 
 VnIZ=1 and {(.M-1. 

   (A1) E[U1] and E[V1] exist, 
   (A2) E[Un+i I , (1+ pn)un—rnyn+C. hold for all n, 

   (A3) E rn = co (rn �. 0, n= 1, 2, ...), 
                 n=1 

   (A4) Elf-enl< 00, 
                  n=1 

   (A5) there exists a sequence of positive numbers {Mn}yz°-1 such that 

                      P[C.�Mni =1 for all n , 

and such that E Mn < 00. 
                     n=1 

   The following Lemma 1 and Lemma 2 were essentially proved in [10]. 

   LEMMA 1. Let the hypotheses for three stochastic processes {Un}Z=1, {Vyi}Z:=1 and 

1(07,°=1 be satisfied: (i) conditions (A1),-,,(A5) hold, (ii) lim 0, (iii) if there exists a 
                                                                                                         n•o. 

subsequence {nk}i:=1 of a sequence {n}7,=1 such that P[lim Vn, = 0]= 1, then P[lim U nk 
                                                                              k—o. 

=   0] = 1. Then, it holds that 

          P[lim Un= 0] =1 and lim EEuej =_ 0 for all 0 < j3 < 1. 

   LEMMA 2. Suppose that a sequence of non-negative real numbers an}Z=1 satisfies 
.the condition: there exist a positive integer no, two sequences of non-negative real num-
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bers  frn17,=1 and {An}7,=1 such that 

(2.1)an+1_(1--rn+1)an-1-An÷1 for all n�-no, 

(2.2)Ern-00, 
                                             n--=1 

(2.3)lim rii= 0 , 

(2.4)E A„<00 . 
                                    n-=1 

Then, it holds that lim an=- 0. 

   Next, we mention without proof the lemma given by V. Dupa6 [4], a modifica-

tion of the result of K.L. Chung. 

   LEMMA 3. Let { an}n_, be a sequence of non-negative real numbers. Suppose that 

there exist a positive integer n„ two positive numbers A and B such that 

(2.5)an+1�(1—Ains)an+B/nt for all n no, 

(2.6)t real number and 0 < s < 1. 

Then, we have lirn sup n`-san�B/A. 
                          71-.3

   § 3. The formulation of the problem 

   In the pattern classification problem in this paper, each observed pattern x is a 

random sample taking value in Rni from a group, to which they belong, and each 

group is called a category. Therefore, each observed pattern is drawn by a pro-
bability distribution law. Now, we consider the case when there exist s categories 

Op 02, • • • , OS and we denote a set of these categories by e. Hence, each outcome in 

pattern classification is described by a pair (x, 0). The element x is an observed 

pattern in a pattern space R7Th and 0 specifies the category of an observed pattern. 
But, generally, 0 is unknown to the observer. For a sequence of the observed 

patterns x1, x2, ••• , xn, ••• we can consider a sequence : 

(3.1)(x1, 01), (x2, 02), (xn, On), 

with xn E Rm and On E e, where On =0, if xn is from a specific category O. 

   For such a sequence, the result of n history is expressed by two sets : 

                en = (xl, x2, x.) and an =(01, 02, , On) 

   In what follows, we shall assume that, for each n, the transition probability 

distribution of an outcome at instant n+1 given a history at instant n has the den-

sity function w.r.t. Lebesgue measure and this is denotedby the following form : 

(3.2)p(xn+i, On+1an)= gcn+i)(en+i an)ronnv (xn+1) 

where q(n+i)(on+i an) is the conditional probability of a category On÷' at instant n+1 

given a history an and ronn++11 (en is a conditional probability density function of 
the observed pattern xn÷1 given a category 0n÷1 at instant n+1.
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   Now, we can consider "a posteriori" probability density function according to 
the Bayes  formula  : after an observed pattern x71+1 at instant n+1 was known, we 
have the following "a posteriori" probability density function for eV"' = (82, 02,   

9 enn 
                     H (3.3)zn+i(an On+9 = (an)q(n+1)(071+1 I an)f(onn++1? (xn+i) 

                             EEMart)q(n +1) (gn+1)f2,24-1)(e+i) 7                                                                                                                  On-1-1                                     c7nEen 

where en =exex ••• x e and //(an) is a probability distribution on en. 
   Then, if all transition probability density functions at each instant are known 

to the observer, the classification of an observed pattern at each instant will be 
determined by the largest of the quantities Hxn."(an01), 1Izn+1(an02), ••• ,.11„,_,(an0s). 
From the statistical decision theory, it is well known that this decision rule is 
optimal, because of the minimum probability of misclassification, and that it is called 
the Bayes decision rule. 

   Hence, in the case when there are two categories, we have an optimum decision 
rule : 

             e+1 is classified in category 01 if D*(xn+1 I an)� 0 , 

                  classified in category 82 if D*(xn+1 I an) < 0 , 

where D*(xn+1 I an) = 1 sn+ i(cen — 1 xn+i(an 0 2) 
   This decision rule is equivalent to the following decision rule : 

             xn+1 is classified in category 01 if Dr"(xn+1 I an)� 0 , 

                 is classified in category 82 if Dr')(xn+11 an) < 0 , 

whereDo4-1)(xn+1 I an) = q(n-1-1)(01an)A+1)(xn+1)_q(n1-1)(02 I an)./A+1)(xn+i). 

   § 4. Learning with a teacher 

   In this section, we treat the case where the amount of a priori information on 
the transition probability density function at each instant is small but an observer 
is indicated by a teacher the category from which an observed pattern is extracted. 
By a training sequence, we shall imply a sequence (x1, 01), (x2, 02), „ where 0i 
is the category indicated by a teacher at instant i. 

   Now, when e {01, 02}, we consider the problem of finding an algorithm of 
approximation to the Bayes decision function at each instant, on the basis of a 
training sequence. This decision which minimizes the probability of misclassification 
at each instant n is the following form : 

(4.1)Dr(xn an_1) (10*(5 an_i)foi(xn)— goz)(0, an_1)f02(xn) 

   In what follows, each foi(x) is defined on Rm and all integrals and supremums , 
unless otherwise indicated, are taken over Rm. 

   Here, let KO be a real-valued function on Rm satisfying the following conditions : 

  (K1)K(y)� 0 for all y ER7' , 

  (K2)sup K(y)= K < co ,
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  (K3) f  K(y)dy  =  1  , 

  (K4)fil y ilK(y)dy K* < 00 , 
where the norm II y(y1, y2, • • • ym) 112 = E 

                                                       i=1 

   By using the above function KO, we shall construct the following algorithm 

with a sequence of positive real numbers {127,}7,-1 satisfying the condition : 

(4.2)1� hi 12.2� •-• and lim h,,, = 0 . 

Firstly, using an outcome (x', 01) of an observed pattern x1 at instant 1 and a cate-

gory 01 to which x1 belongs, indicated by a teacher, we make 

(4.3)Di(xIxi, 01)= tl)(01)K,(x, x1)—(1— p(1)(01))K1(x, , 

where 

                        K1(x, x') = hi-m.K[hT1(x—x')] 
and 

                              1 if 01= 01 
                         po.)(01)=                                 0 

otherwise . 

Secondly, using an outcome (x2, 02) of an observed pattern x2 at instant 2 and a 

category 02, to which x2 belongs, indicated by a teacher, we make 

(4.4) D2(x I e2, a') = 21 D,(x 11, a')+-21--Cp(2)(02)K2(x, x2)—(1—p(2)(02))1C2(x, x2)i 

where 

                       K2(x, x2) = 1274K[h271(x—x2)] 

and 

                             1 if 02 = 0, 
                        p(2)(02)=                                 0 

otherwise . 

In general, using an outcome (xn-", 0n+1) of an observed pattern xn+1 at instant n+1 

and a category 0n+1, to which A"' belongs, indicated by a teacher, we make 

(4.5)         D,i+,(x 4-1 a')= Dn(xlen1                                                        wn÷i)(on+vn+xx,                 n+1'' n+1 

                            —(1— p(11+1)(0"1))&4-1(x, x".1)] 

where 

                        Kn÷,(x, x--.)=h77÷-,K[h771+,(x—xn+1)] 

and 

                          { 1 if On +1 = 0                      p(n+1)(60+1) —                          1 
otherwise . 

   The next lemma is necessary in order to prove the theorem in this section. 

   LEMMA 4. Let f(.) be a real-valued function on R7Th satisfying a uniform Lipschitz 
condition:
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 f(x)—  AY)  I  Cllx—Yll for all x, y E Rim 

and K(.) satisfy (K1)'—(K4). Then, it holds that 

(4.6)I fn(x)— f(x) I CK*hn 

where fn(x)= fKn(x, y)f(y)dy. 
    PROOF. 

              

I fn(x)— f (x) I = IfKn(x, Y)(f(Y)— f(x))dY1 
                           K(z) I f(x—zhn)— f(x) I dz 

                      �CS K(z)Ilhnzildz 
                              =CK*hn 

Then, we can prove the following theorem concerning Dn÷i(xlen an+1) and Dr1)(xjan). 

   THEOREM 4.1. Let the following hypotheses be satisfied : 

    (i) (foi(x))2dx < 00 for all i, 

   (ii) foi(x) and f02(x) satisfy uniform Lipschitz condition, 

        E n'h„ < 00 and E n-2h,77. < CO, 
   n=1n=1 

                                                                                     2 

   (iv) for each i, there exist a non-negative number q, (0qiE                                                      _� 1, qi=1) and a 
                                                                                                              i=1 

sequence of Positive numbers{Mn177-1 such that 

                           n(q(n)(0,an-1)— qi)2Mn 

and such that E Mn < 00. Then, it holds that 
                    n=1 

          P[lim in= 0] =1 and lim E[Iin = 0 for all 0 < p <1, 
                       n-00 

where 

                           [Dn(x I en, an)— D(092)(x I an-1)i2dx 

   PROOF. By the construction of Dn4-1(xlen+1, ann, we have 

(4.7) Dn+i(x I en+1, ann — DP+1)(x I an) 

           = (11 n+1)Dn(x I en'an)+1n+1[p(n,..i)(Bn+vn+i(x,e+i) 
             _(1 p(n+i)on+wc+I(x , en] p(g,i+i)(x I an) 

           = (1— n+1 )(D(xI en' an) Dr(xan-1»+ n+1Ep(n+ion+i)Km+xx,en 
              —(1—poi÷1)on."Dic n÷1(x, xn+1)—DP+1)(x I an)] 

             d-(1— 71_14_1 )ED,p) (x I an-i)_Ap+i)(x I an)] 
Hence, from (4.7), we can obtain
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(4.8)In+,=(1 —n +1021,,(n +111)2e(n)+(n +11)2f1Y.+1(x,ei-1)—DO'(x an)]2dx 

      +2(n ± 1)(n+1  1) Sip .(x I en, an).___Dp)(x an-TE ynax, en_ lyn+i)(x                                                    6an)1dx 

      +2(n dn1)(n+11)                   filyn°                               )(x an--1)____Drl) (xan)jEy nax,en_ An+1)(x.an)] dx 

          +2(n+-1)2ED .(x I en, all) An) (x an_i)] 'Dv (x I an-1) Dp+1)(x I an)] dx 
where 

         Ynax, xn+1).=p'÷1)(Onfi)Knax, xn+1) —(1— p(n+1)(en+1))Knax, xn÷1) 
and 

                  e(n)Erv)(x I an_i) Dr1)(x an)]2dx 

Taking conditional expectation on both sides of (4.8), we have 

(4.9) EUn+ I en, an)= (1—n +11)2/7,+(41)2e(n) 

         (n+102E[f(yn+I(x, xn+i) Drixx anvdx I en, an] 

        + 2(n +n 1)(n 0E[s(D n(x I en, an)— )(xI(x an-i))(ynax, xn+1) 
                                            — DP+1)(x I an))dx I en, an] 

        +2(n +n1)(n_14_1)E[f(OP) (xan -1)Dp+1) (x I an))(y flax,.+1) 
                                        — DV)(x I an))dx I en, an] 

        +2(n±n E[f n(x I en, an)—D0n)(X a'1))(DO)(x l an-1) 
                                           —DP +1)(x I an)) d x I en, an] • 

Then, there exist two positive numbers M1, M2 such that, from Lemma 4 and (K3), 

(4.10) 1 E E(Yn+1(X, en— Dru(x I an)) I en, an] 

           = K „ax Y)Eq(n+1)(81 I an) fo 1( y)—q(n+1)(0, I an)fe2(Y)iclY — An+1)(x I an) I 
           = I f K(z)[e+1)(01 an)fo1(x—h„+1z)—q(n+1)(01 I an)fo 2(x — hn+,z) 

               (q(n+1)(0 an.) f 0 i(x)__ gcn+1)(6) 2 an)fo2(x)]dzI 
                MiK*hn+i 

and such that, from (K2) and (K3), 

(4.11) E[f (IT flax, — DP+1)(x I an))2dx I en, an] 

            2E[f (177,4.1(x, xn+1))2dx I en, an]-1-2S(DP+1)(x I an))2dx
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         -�2Khji1E[f Kn+i(x, endx1 en, al+4{ E (foi(x))2dx] 
                                                                              i=1 

            =2Kh;,-7,+4M, . 

Furthermore, there exist two positive numbers M3, M4 such that, from (K3), 

(4.12) I f [D,i(xlen, an)—DOn)(x I an-l)iddC f I D,,,(xl , an) i dx+ f I Do )(x I an-1) I dx-

              nKi(x, xi)dx+ f[q(""(Oilan)foi(x)+q(n+1)(02I_a-re                                                  2(x)]dx 

and such that 

(4.13)I [D0 )(x I an-)—DOn'(x I an)]dx1 M4 
Noting that, for each instant n, 

(4.14)2flDr(x1 an-1) Dri)(X an)I I D.(x I en, an)—Do(xl an-1) I dx 

                   (n-1-1)-1in+(n+i)0(n) , 

from (4.9), (4.10), (4.11), (4.12), (4.13) and (4.14) 

(4.15) E[In+1I en, an] (1—n+1 02/7,--1-em+(n+12(21Ch; .771+ 4M2) 

         +2(n+1 i)MIM3K*h.÷1+2(n+1i)M1M41(*h.4-1-1(n+11)/n,+(n+l)e(n)]. 

Since there exists a positive number M5 such that, from (i) and (ii) in the theorem. 

                          (n+1)e.)� 11151117,4-1, 
from (4.15) we can obtain 

(4.16) E[I.+1 I en, an] [1+(n+1 021in (n1 i)/n+(n+1 1)2(21Ch;71+4M2) 

                   +2(41)Mi(M3-FM4)K*h.+1+2111,M,i+, 
Therefore, letting Un= Vn =1n, /In= (1+n)-2 and 

        C.-=(n+11)2(2KIC71+4M2)+2(n+11)MI(M3+M4)1(*h.+1+2M5M.+1 

in (4.16) and using Lemma 1, it follows that 

         P[lim 0]= 1 and lim E[If] = 0 for all 0 <13 <1. 
                      n-00 

   THEOREM 4.2. Let {D,(xien, an)};=1 be a sequence of the decision functions ob-

tained by the above argument such that 

             PIlim f [Dn(x I en, an)—Dr(xIan-1)12dx = 0} = 1 . 
                              n o0
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Then, it holds that 

                  P[lim  (P  Dit(.1E.,an)(e)—  P  Dr  (.,„...1)(e)) = 0] = 1 , 
                                      n—oc. 

where PD(.)(e) is the probability of misclassification using a decision function DO. 
   PROOF. Choose s> 0 and then a sufficiently large integer N such that 

(4.17)P[f(DN(xleN, aN)—DAx I aN-1))2dx <62/ 4$ BN(X)dX]= 1 
where BN is a bounded set in Rni such that 

                      BN(xj aN -1)1 dx1—s/2 

and IA(x) is the indicator of A. 
   Define sets 

(4.18)1-17= {x: DAxlaN-1).� 0} 

and 

(4.19)HN = {x: DN(xieN, aN)� 0} 

(4.20) p D6v (.IaN-1)(e) qN(01laN-1).f fo1(x)111(x)dx-EqN(02 I aN-1)(' fe,(x)/q(x)dx 
                 = q(N)(011aN-1) +SE_ DSN)(xaN                                             -1)il

iliov(x)dx 

and 

(4.21)PDN(.1eN,aN)(e)=q(N)(0,1aN')+5[—DN(x1EN, aN)1IHN(x)dx. 
Then, from (4.20) and (4.21), 

(4.22) PDN(.1sN,«N)(e)— Ppen (.1,N-1)(0= S DON)(x I aN -1)E1 47(x)— IBN(x)]IBN(x)dx 

                       -FS DSN)(xlaN-1)1IH20v(x)—IHN(x)M-3N(x)dx , 
where BN is the complement of set BN. 

   It is obvious that 

(4.23)f [—DN(x I eN, aN)][1.11(x)—IBN(x)11-BN(x)dx.?_ 0 . 
Adding (4.23) to (4.22) and recalling that DPn(xlaN-1) is the Bayes decision function, 

we can obtain that 

(4.25) 0 -� P DNC•IPT ,aN)(e)— P D(oN) (.1aN -1 )(e) 

             IDON)(x I aN-1)—DN(xl eN, aN)][1.1q(x)—IHN(x)11-BN(x)dx              

I DON)(x I aN -1)1 IiiN-(x)dx 

                                                                    112          -_-{f[DON)(xl aN-1)—DN(xIEN, aN)]2dxf/BN(x)dx} .
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Since 6 was arbitrary, the theorem is proved.

   § 5. Learning without a teacher 

   This section is concerned with the problem of "learning without a teacher" in 
statistical pattern recognition. We treat the case when there exist s categories 

01, 02, • , 0s, and the case when there can not be assumed a training sequence . 
   In what follows, it is assumed that, for each instant n , the transition probability 

density function has the following form : 

(5.1)p(n)(xn I an-1) = E q(n)(l01 I anf(Xn) y 
                                                                                     i--=1 

where an' = (01, 02, • • • , 6n-1) and each f (e) is defined on R' . 
   Now, we consider the problem of finding an algorithm of the estimation of the 

probabilities qm (0i Ian') , i= 1, 2, •-• , s, in the mixture density function p(n)(xn I an-1), 
when f4)(x) is known to the observer for every i and n, on the basis of the ob- 
served but unclassified patterns. Here, we reduce this problem to the problem of 
finding an algorithm by which, at each instant n, we can construct, from the observed 
patterns, qa, i= 1, 2, •-• , s, which minimizes a quantity defined by 

(5.2)In = E C4i-4(n)(ei I an-1))f 4)(e)12dxn +22[ Li 4,;-1] ,     i=1i=1 

where is a Lagrange multiplier. 
   Differentiating In with respect to 4i, 1, 2, ••• , s, and equating the derivatives 

to zero, we have 

(5.3)W (n)Qr (a') = (n)(Xn) an-1]-2 U , 

where Wu') is the matrix with elements w4) f(01)(x)f(07(x)dx, i, j = 1, 2, • , s; 
   (n)(xn)jan-41 is a column vector of with the i-th component equal to E f (eni) (xn) I aTt 

= nni)(xn)p(n)(xn la')dxn , i= 1, 2, ••• , s; U is a column vector of s components all 
equal to one and Q47,1) (a') is a column vector with the i-th component e42, i= 1, 2, ••• , s. When det W (n), the determinant of W (n', is not equal to zero at each instant 
n, the i-th component of Qr (a') which satisfies (5.3) is 

                                  s s 

                           E Efir;(e)1 an-1]W(h)—det W (n) (5
.4) q=EEfon2(Xn) an-11/=-1 j=1H1,7 

 k=--1)                      s sdet W (n) 
                                         E W (j1' 

                                                        1=1 j =1 

where W (IP is the adjunct of w(i7) in the matrix W (n'. Then, we can write (5.4) to 
the following form : 

(5.5) = F ?')(xn) an-1] , 

where
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 Is s 
                          EEf(oni(xn)W—det W(n)                                                                         7,(,',0  

      Fin)(f), E fg(xn) 1=1 j="1  s  s(n)                                               det W .         k=1EEW(11) 
                                                          1=1j=1 

   In view of the above argument, we shall construct the following algorithm with 
a sequence of non-negative real numbers fr.17,--, such that 

(5.6)E rn, 00 and E < • 
        n=1n=1 

Firstly, using an observed but unclassified pattern x' at instant 1, we make for 

i= 1, 2, ••• , s 

(5.7)8-11)(el, al) = g r (xl) g 

where gr) = 0 for all i. 

Secondly, using an observed but unclassified pattern x' at instant 2, we make for 
i= 1, 2, , s 

(5.8)gi2)(e2, a2), gil)(ely al)±r2[F Nx2)gp)(el, al)] • 

In general, using an observed but unclassified pattern xn+i at instant n+1, we make 

for i= 1, 2, ••• , s 

(5.9)gin+i)(en+i, con gmr, an)±rn+i[Fin+i)(xn+i)_gp)(en, an)] 

Then, we can prove the following theorem concerning gP+I)(en+1, ann and q17,1,-"). 
   THEOREM 5.1. Let the following hypotheses be satisfied: 

    (i) for each instant n, det W(n) is not equal to zero, 

   (ii) there exist a set of positive numbers {gi}l, (0 qi.� 1, E qi = 1) and a 
                                                                                                                  Z_1 

sequence of positive numbers{Mn17,1 such that,for all i, 

                           ri,157(m)(9i I an -1)—qi]2 < Mn 

and such that E Mn < co. 
                    n=1 

   (iii) fei(x)}i_i is a set of the conditional probability density functions defined on 

Rm and satisfying fei(x)fol(x)dx < oo, for i, j =1, 2, ••• , s. 

   (iv) there exists a sequence of positive numbers {Nn}z,s, such that, for each n, 

              ri71(f f(x) fen;(x) dx—f foi(x) fo i(x))2 Nn 

and such that E Nn<co. 
                    n=1 

   Then, it holds that, for all i, 

          P [lim Uln) = 01 = 1 and lim E[un= 0 for all 0 <(3 1 , 
                      n-09 

where 74n)= gin)(n, an)-4. 

    PROOF. By the construction gr1)(en+1, an+1), i=1, 2, , s, we have
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 (5.10) gin-")(en+1, an+1)—qiir”ga.n)(en,TTi+1)(xn+3.)___gin)(n, an)j                                               )/n+1L. 

                        (1— rm.,)(e)(e. , an)— 00+ (1— rn+,)(qa —0,74+1)) 

                             d-rn+1[Fr1)(xn+1)-44+1)]. 

The equality (5.10) can be written in terms of ur1), uP) and OP) as 

(5.11) ltin+1) = (1— rn+i)Ur (1 —rn+i)8r + rn+i[Fin+1)(en—eV)] , 

where Op)=4—qv). 
   Squareing both sides of (5.11) and then taking conditional expectation, we can 

obtain, for all i and a sufficiently large n, 

(5.12)Eauri.))2 I en, an] < 

                             +2(1—rno2luin'lle4n'+162, 

where the positive number a2 satisfies a condition Var [Fin+i)(enIcin]< 0.2. Noting 
that, for i= 1, 2, 3, •-• , s and all n, 

                 21Win)11 Or 15 rn+i(ur)2+r,V140P))2 , 

from (5.12) we have for all i 

(5.13) EC(ur"))2Iran] 5(i_rizi.,)2(uln))2_rn+i(uin))2±nuoin))2+(e))2+11,+10.2 

Then, from (ii), (iii) and (iv), there exists a positive number M such that 

(5.14)r41(6qn))2±(0in))2 Mx. 

From (5.14), we can write (5.13) to the following form : 

(5.15) E[(14n+1))21sn, an] (1+11+1)(147'T— rn+i(UP))2+ 

Therefore, by Lemma 1, it follows that, for all 1, 

        P[lim = 0] = 1 and lirriEE(uin))2491 = 0 for all 0 < R < 1. 
                            n--cc. 

Also, taking the unconditional expectation on both sides of (5.15) and using Lemma 

2, it follows that, for all i, 

                        lim EE(itin))2J = 0 . 
                                  n—. 

Thus, the proof of the theorem is completed. 
   Next, we have the following theorem concerning the order of mean convergence. 

   THEOREM 5.2. Let the following hypotheses be satisfied: 

    (i) rn = a/na, a> 0, (1/2) < a < 1, 

   (ii) Var [Fr(e)i an-1] 62 for all i and n, 

   (iii) E [(Oin))2] = 0(n-2w), w> a, for all i, 
Then, it holds that 

                          0(n 2(w-")) if w< (3/2)a 
              Eaur)23= 

                          0(n-a) if w _� (3/2)a , 

where the notation f(n) = O(g(n)) means lim sup I f(n)Ig(n)I <00,
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   PROOF. By (i), (ii), (iii) and (5.13), there exist a positive integer N and three 

positive numbers C1, C2,  C3 such that, for all n N, 

(5.16)E[(1111'1))2]-(1-Ciln")EC(uin))2J+C,/n2ad-C3/n2--a 

Consequently, we can obtain for w < (3/2)a 

(5.17)E[(tri-1)2]�- (1-C1/n")E[(ur)2]+C4/n' 

and for co� (3/2)a 

(5.18)E[(uP+1))2]-(1-Cilna)EC(14;'))21+Can2" , 

where C4 and C5 are some positive numbers. 

   Thus, an application of Lemma 3 for an = EE(ur)21 gives us the result of the 
theorem.
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