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The recent development of the study of discrete conformal groups Γ acting on the d+1-
dimensional ball IBd+1 and the associated dynamics is closely related to ideas considered
by Poincaré himself, who interpretated the interior of IBd+1 and its group of conformal
transformations as a model of the d + 1-dimensional hyperbolic space IHd+1. One of the
main tools he introduced is the series

∑
γ∈Γ

|γ′x|s of the group Γ, where |γ′x| is the linear

distortion of the Euclidean metric by the conformal transformation γ and x lies in the
interior of IBd+1 ; in particular, the critical exponent δΓ of this series plays a central role
in this theory, appearing in other guises for certain groups, as for example the Hausdorff
dimension of the limit set or the topological entropy of the geodesic flow.
At the end of the seventies, S. J. Patterson proposed, for any discrete conformal group
Γ, a geometrical construction of a family (σx)x∈IBd+1 of measures on the d-dimensional
unit sphere Sd which are δΓ-conformal. Just as the Lebesgue measure on Sd is associated
to an invariant measure for the geodesic flow on the unit tangent bundle of IHd+1, such
family (σx) determines an invariant measure µσ for the geodesic flow on the unit tangent
bundle of the manifold IHd+1/Γ. The dichotomy

∑
γ∈Γ |γ′x|δΓ finite or infinite is thus

equivalent to the Hopf dichotomy, namely complete nonrecurrence, or conservativity and
ergodicity of the geodesic flow with respect to µσ [13]. When the manifold IHd+1/Γ is
compact or has finite volume, the Poincaré series diverges at its critical exponent, the
measure σo coincides with the Lebesgue measure on Sd and µσ is nothing else than the
Liouville measure on the unit tangent bundle of IHd+1/Γ; in particular, µσ is finite since
Γ is a lattice. More generally, if Γ is geometrically finite, its Poincaré series diverges at
δΓ and the measure µσ is also finite [13].
On the other hand, there is an interrelation between the Poincaré exponent δΓ and the
square root of the lowest eigenvalue of the hyperbolic Laplacian ∆H on IHd+1/Γ ; in distinct
terms, the function Φσ : x 7→ σx(S

d) is a positive and Γ-invariant δΓ(δΓ−d)-eigenfunction
of ∆H . Furthermore, if µσ is finite, the function Φσ belongs to IL2 (for the volume form)
of IHd+1/Γ if and only if δΓ > d/2; nevertheless, when δΓ ≤ d/2, the function Φσ belongs
to the space IL2 of some relevant part of IHd+1/Γ, namely any ε-neigbourhood N ε(Γ) of
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its Nielsen core N(Γ).
In [14], D. Sullivan asked whether there are others groups besides geometrically finite ones
where Φσ belongs to IL2(IHd+1/Γ) when δΓ > d/2 or to IL2(N ε(Γ)) when δΓ ≤ d/2. Since
the square integrability of Φσ on N ε(Γ) is equivalent to the finiteness of µσ, D. Sullivan’s
problem may be formulated as follows

Does there exist non geometrically finite groups with associated Patterson-Sullivan
measure µσ of finite total mass?
In this paper, we give a positive answer to this question and describe a large class of such
non geometrically finite groups. This is of interest since recent results by Th. Roblin on
orbital functions of general discrete groups Γ have been obtained under the sole condition
of finiteness of µσ [11].

I Notations and main results

The unit ball model of the hyperbolic space IHd+1 is IBd+1 = {x ∈ IRd+1/||x|| < 1}
endowed with the hyperbolic distance (., .). A Kleinian group Γ is a discrete torsion free
group of orientation-preserving isometries of IHd+1. It acts by conformal transformations
on the sphere Sd endowed with the euclidean metric |.|. The limit set ΛΓ of Γ is the set
of accumulation points of any Γ-orbit. We will assume that Γ is non elementary which
means that ΛΓ contains infinitely many points.
Let x and y be two points in IHd+1 and s ∈ IR+. The Poincaré series of Γ is defined
by PΓ(x,y, s) =

∑
γ∈Γ

e−s(x,γ.y). The Poincaré exponent δΓ of Γ is the infimum of the set

of s such that PΓ(x,y, s) is finite; it does not depend on x and y. One says that Γ is
convergent (resp. divergent) if PΓ(x,y, δΓ) < +∞ (resp. PΓ(x,y, δΓ) = +∞).
Quotienting the hyperbolic space by a Kleinian group Γ leads to a hyperbolic manifold
M = IHd+1/Γ. The Nielsen core N(Γ) of M is the convex submanifold of M obtained
by quotienting by Γ the convex hull of ΛΓ. One says that Γ is geometrically finite when
some (and so any) ε- neighbourhood N ε(Γ) of N(Γ) in M has finite volume ; if d > 2 the
definition of a geometrically finite group with torsion requires finitely generatedness (see
[7]).
A classical way to decide whether or not a group Γ is divergent is to consider a Patterson

measure that is to say a cluster point for the weak convergence on IHd+1 of a family
of measures (σx,y,s)s>δΓ supported by the orbit Γ.y seen from the point x. By Tsuji-
Hopf-Sullivan’s theorem [13], the group Γ is divergent if and only if these measures are
supported by the radial limit set of Γ, which is the set of points ξ ∈ ΛΓ for which
there exist infinitely many distinct points of the Γ-orbit of o at a bounded distance of
the geodesic ray [o, ξ). As observed by D. Sullivan [12], a Patterson measure can be used
to construct a measure µσ on T 1M , called a Patterson -Sullivan measure , which is
invariant under the action of the geodesic flow and supported by its non-wandering set.
When Γ is geometrically finite, it is divergent and µσ is finite [13].
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We will say that two Kleinian groups G and H are in Schottky position if there exist
disjoint closed sets FG and FH in Sd such that

(S) G∗(Sd − FG) ⊂ FG and H∗(Sd − FH) ⊂ FH .

where G∗ = G − {Id} and H∗ = H − {Id}. Note that (FG, FH) is a proper interactive
pair of sets (see [8] VII, A.6 and A.9); the Klein combination theorem implies that the
group Γ generated by G and H is equal to the free product G ∗H. We have the

Theorem A - Let Γ = G ∗ H be the free product of two Kleinian groups in Schottky
position. If δΓ > max(δG, δH) then Γ is divergent and its Patterson-Sullivan measure µσ

is finite.

Remark 1- By corollary 1 in [10] one has δΓ > max(δG, δH) as soon as the subgroup G or
H of maximal critical exponent is divergent (see also ([6], Theorem 1) and more recently
([5], Proposition 2) for similar statements).
The main consequence of Theorem A is the following :

Corollary 1 -There exist non geometrically finite groups Γ with finite Patterson-Sullivan
measure.
More precisely, there exist non geometrically finite groups Γ with Poincaré exponent δΓ >
d/2 (resp. δΓ ≤ d/2) for which the positive eigenfunction Φσ belongs to IL2(IHd+1/Γ)
(resp. to IL2(N ε(Γ)).

Recently and independently, A. Ancona obtained the same result by methods based on
potential theory [1].
On the hyperbolic plane IH2, a discrete group of isometries is geometrically finite if and
only if it is finitely generated ; thus, our examples will be infinitely generated for d = 1.
When d ≥ 2, L. Bers proved that there exist finitely generated Kleinian groups which are
not geometrically finite [2]; in this case, one can thus specify D. Sullivan’s problem and
ask whether there are finitely generated groups which are not geometrically finite and
whose Patterson-Sullivan measure is finite. If d = 2, the Ahlfors conjecture states that
the limit set of a finitely generated Kleinian group Γ is either the whole sphere or has
zero area. A recent work by C.J. Bishop and P.W. Jones [3] shows that this conjecture
would imply that δΓ = 2 and µσ is infinite when Γ is a non geometrically finite group of
finite type. In higher dimension we have the following result :

Corollary 2 - If d ≥ 3 there exist non geometrically finite groups of finite type whose
Patterson-Sullivan measure is finite.

Acknowledgements : : We thank M. Babillot for her warm encouragements all along
this work and for pointing out to us the reference [14]. We thank J.P. Otal for helpfull
conversations about the geometry of Kleinian groups, E. Lesigne for some elegant remarks
in ergodic theory and the referee for a number of helpfull comments and references.
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II Coding the limit set of Schottky product groups

It has been known for a long time that the limit set (minus a countable subset) of a
classical Schottky group Γ can be identified with a subshift of finite type Σ+

A ⊂ AIN where
A = {a1, . . . , an}. Furthermore, the action of Γ on this large part of its limit set is orbit
equivalent to the one of the shift operator on Σ+

A. In this section we shall extend this
construction to general Schottky product groups.
We consider here two non elementary Kleinian groups G and H in Schottky position and
FG, FH the associated closed subsets of Sd satisfying condition (S). The group Γ generated
by G and H is Kleinian and is the free product of G and H ([8], theorem A.13)). Any
element of Γ∗ has a unique normal form γ = a1 . . . an where either every ak with even
k lies in G∗ and every ak with odd k lies in H∗ or vice versa ; the integer n is called
the length of the normal form of γ and the elements a1 and an are respectively the first
letter and last letter of γ.
The conformal factor of γ ∈ Γ at the point ξ ∈ Sd is |γ′ξ| = eBξ(γ−1o,o) where, for any
y, z ∈ IHd+1 the quantity Bξ(y, z) = limx→ξ(y,x)−(z,x) represents the algebraic distance
between the two horospheres centered at ξ and passing trought y and z. Furthermore for
any ξ, η ∈ Sd one has |γ.ξ − γ.η|2 = |γ′ξ|.|γ′η|.|ξ − η|2.
The following lemma describes the behavior on FG ∪ FH of the conformal factors of the
elements of Γ.

Lemma 1 - i) The quantity |Bξ(a
−1 · o,o) − (o, a · o)| is bounded uniformly in ξ ∈ FH

and a ∈ G∗ (resp. in ξ ∈ FG and a ∈ H).
ii) There exists n0 ≥ 1 such that the quantity Bξ(γ

−1 · o,o) is bounded from below by 1
uniformly in ξ ∈ FH and γ ∈ Γ with length of normal form ≥ n0 and last letter in G∗

(resp. ξ ∈ FG and γ ∈ Γ with last letter in H∗).

Note that the second statement does not hold in the presence of torsion.
Proof- The set {a−1 · o/a ∈ G} accumulates in FG ; since the visibility angle between FG

and FH is bounded from below, the quantity Bξ(a
−1 · o,o) − (o, a · o) is thus bounded

uniformly in ξ ∈ FH and a ∈ G∗. The first assertion of the Lemma follows letting
(o, γ · o) → +∞.
To prove the second assertion, one remarks that {γ−1 · o/γ ∈ Γ with last letter in G∗}
accumulates in FG. The quantity Bξ(γ

−1 · o,o)− (o, γ · o) is thus bounded uniformly in
ξ ∈ FH and γ ∈ Γ with last letter in G∗; one thus has Bξ(γ

−1 · o,o) ≥ 1 for all ξ ∈ FH

and all but finitely many γ with last letter in G∗.2
Lemma 1 implies that there exist 0 < r < 1 and C > 0 such that for all ξ ∈ FH (resp.
ξ ∈ FG) and all γ = a1 · · · an ∈ Γ with an ∈ G∗ (resp. an ∈ H∗), one has

(∗) |γ′ξ| ≤ Crn.

Proposition 1 - Denote by Σ+ the set of sequences a = (an)n≥1 for which each letter
an belongs to the alphabet G∗ ∪H∗ and such that no two consecutive letters belong to the

4



same group. Fix a point ξ0 in Sd − (FG ∪ FH). Then
a) For any a = (an) ∈ Σ+, the sequence (a1 · · · an · ξ0)n≥1 converges to a point π(a)

which belongs to the limit set of Γ and does not depend on ξ0 ∈ Sd − (FG ∪ FH).
b) The map π : Σ+ → ΛΓ is one-to-one.
c) The set Λ0 = π(Σ+) is included in the radial limit set of Γ.
d) The set ΛΓ − Λ0 is equal to the Γ-orbit of ΛG ∪ ΛH .

Proof. Fix a ∈ Σ+ and, for n, p ≥ 1, set ξn,p = an+1 · · · an+p · ξ0; by inequality (∗) one has
|a1 · · · an · ξ0 − a1 · · · an+p · ξ0| ≤ 2Crn−1 and so (a1 · · · an · ξ0)n≥1 is a Cauchy sequence ; a
similar argument proves that its limit π(a) does not depend on ξ0.
To prove b), we consider two sequences a and b which differ from the first time at time
n. Set ξn = lim

p→+∞
an · · · an+p · ξ0 and ξ′n = lim

p→+∞
bn · · · bn+p · ξ0. If an and bn do not belong

to the same set G∗ or H∗, the points ξn and ξ′n do not belong to the same set FG or FH ;
otherwise, the same property holds for the points a−1

n · ξn and a−1
n · ξ′n since an 6= bn. In

all the cases π(a) and π(b) are distinct.
To prove c), we use the fact that a point ξ ∈ ΛΓ is radial if and only if there exists
a sequence (γk) of distinct elements in Γ such that for any η ∈ ΛΓ − {ξ} the sequence
((γk · ξ, γk · η))k belongs to some compact subset of the complement of the diagonal in
ΛΓ × ΛΓ [4]. Actually, fix ξ = π(a) with a = (an) and a1 ∈ G∗ and set γk = a−1

k · · · a−1
1 .

The point γ2k · ξ belongs to FG and for any η ∈ ΛΓ − {ξ} and k large enough, the point
γ2k · η belongs to FH .
Let us now prove d). Fix ξ ∈ ΛΓ∩FG. Assume first that for all g ∈ G the point g−1 ·ξ be-
longs to FG. Since ξ ∈ ΛΓ there exists a sequence (γk)k in Γ such that ξ = lim

k→+∞
γk · ξ0; for

k large enough, the first letter αk of γk belongs to G∗. One can thus extract a subsequence
of (γk)(also denoted (γk)) such that the αk are all distinct (otherwise, there would exist
α ∈ G such that αk = α infinitely often and the point ξ would belong to α(FH) which con-
tradicts the hypothesis) ; without loss of generality, setting βk = α−1

k γk, one may assume
that (βk · ξ0)k converges to some η0 ∈ FH . It follows ξ = lim

k→+∞
αkβk · ξ0 = lim

k→+∞
αk · η0

which proves that ξ belongs to ΛG.
Assume now that there exists g ∈ G such that g−1 · ξ belongs to FH ; note that such a g
is unique when it exists, one thus sets a1 = g and one applies the above discussion to the
point a−1

1 · ξ. When ξ /∈ Γ · (ΛG ∪ ΛH) one may construct a sequence a = (an) ∈ Σ+ such
that ξ = lim

n→+∞
a1 · · · an · ξ0 and so ξ ∈ Λ0 = π(Σ+). 2

We now explain how to code the geodesic flow restricted to some particular subset
of its non-wandering set. For a unit vector v = (v0, ~v) in the unit tangent bundle
of the hyperbolic space T 1IHd+1, we let v−∞ and v+∞ be the endpoints on Sd of the
unique geodesic passing throught v. One associates to v the triplet (v−∞, v+∞, r) where
r = Bv+∞(o,v0) and thus identifies T 1IHd+1 with the set (Sd × Sd − diagonal) × IR
; the geodesic flow (g̃t) on T 1IHd+1 acts by translation along the third coordinate :
g̃t(ξ

−, ξ+, r) = (ξ−, ξ+, r + t) and the action of γ ∈ Γ on T 1IHd+1 is given by

γ(ξ−, ξ+, r) = (γ · ξ−, γ · ξ+, r −Bξ+(o, γ−1 · o)).
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The action of (g̃t) commutes with the action of Γ and induces the geodesic flow (gt) on
T 1M . The subset (ΛΓ × ΛΓ − diagonal) × IR of T 1IHd+1 is both invariant under Γ and
(g̃t) and its projection on T 1M coincides with the non-wandering set of the geodesic flow.
Using the coding of the set Λ0, we introduce in a natural way a (gt)-invariant subset of
(ΛΓ × ΛΓ − diagonal)× IR/Γ.

Proposition 2 - Let Σ be the set of double sided sequences a = (an)n∈ZZ for which each
letter an belongs to G∗∪H∗ and no two consecutive letters belong to the same group . Let
π be the map from Σ to ΛΓ × ΛΓ − diagonal defined by

π(a) = ( lim
n→+∞

a−1
0 · · · a−1

−n · o, lim
n→+∞

a1 · · · an · o).

Let T be the invertible map on D0 = π(Σ) induced by the shift operator on Σ and set
f(ξ+) = −Bξ+(o, a1 · o) where a1 is the first letter of ξ+. Then
a) The action of Γ on Λ0 × Λ0 − diagonal is orbit equivalent with the action of T on
D0 = π(Σ).
b) The restriction of the geodesic flow (gt) to the set (Λ0 × Λ0 − diagonal)× IR/Γ can be
represented as a special flow constructed from the automorphism T on D0 and the ceiling
function f .

Proof- Fix ξ− = π(a) and ξ+ = π(b) where a and b are two distinct sequences in Σ+, and
assume that a and b differ from the first time at time n ; the point (b1 · · · bn−1)

−1.(ξ−, ξ+)
belongs to D0 which proves that D0 is a section for the action of Γ. Furthermore if
(ξ−, ξ+) ∈ D0 and γ ∈ Γ one has γ · (ξ−, ξ+) ∈ D0 if and only if γ = (a1 · · · ak)

−1 or
γ = (b1 · · · bk)

−1 for some k ≥ 0 ; in the first case, γ · (ξ−, ξ+) = T−k(ξ−, ξ+) and in the
second case γ · (ξ−, ξ+) = T k(ξ−, ξ+). The action of Γ on (Λ0 × Λ0 − diagonal) × IR is
thus orbit-equivalent with the action of the transformation Tf on D0 × IR defined by

Tf (ξ
−, ξ+, r) = a−1 · (ξ−, ξ+, r) = (a−1 · ξ−, a−1 · ξ+, r + f(ξ+)).

This achieves the proof. 2

III The Patterson measure

Using Proposition 1, we will prove the following

Proposition 3 - Under the hypotheses of Theorem A, the Patterson measure of Γ gives
full measure to the set Λ0 and Γ is divergent.

Let us recall here the construction of the Patterson measure. By [9], there exists a non
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negative function h on IR+ such that, for any x,y in IHd+1, the series

P ′
Γ(x,y, s) =

∑
γ∈Γ

e−s(x,γ·y)h((x, γ · y))

diverges if and only if s ≤ δΓ ; if Γ is divergent one takes h = 1, otherwise the function h
is strictly increasing and satisfies the following property :

For any ε > 0, there exists rε ≥ 0 such that ∀t ≥ 0,∀r ≥ rε h(t + r) ≤ eεth(r).

For s > δΓ set σx,y,s =
1

P ′(y,y, s)

∑
γ∈Γ

e−s(x,γ·y)h((x, γ · y))εγ·y where εγ·y is the Dirac mass

at γ ·y.There exists a sequence (si) in IR+ converging to δΓ from above such that (σx,y,si
)

weakly converges to a measure σx,y with support ΛΓ ; for any x′ in IHd+1, the sequence
(σx′,y,si

) also weakly converges and its limit σx′,y is absolutely continuous with respect to

σx,y with Radon-Nikodym derivative
dσx′,y

dσx,y

(ξ) = e−δΓBξ(x′,x). Furthermore, for any γ ∈ Γ

one has γ∗σx,y = σγ−1.x,y.
Let Γ∗H be the set of γ ∈ Γ with first letter in H∗. From now on, we set G∗ = {gi, i ≥ 1}
and we enlarge FH in such a way that ΛΓ∩FH is included in the interior of FH . Consider

the open set U = IHd+1 − (Γ∗H · y ∪FH) ; for any k ≥ 1, the set Uk = U ∩ g1U ∩ · · · ∩ gkU

is also open in IHd+1 and contains all the Γ-orbit of y but the γ · y, g1γ · y, . . . , gkγ · y
with γ ∈ Γ∗H . For s > δΓ one has σx,y,s(Uk) ≤

1

P ′(y,y, s)

∑
l>k

∑
γ∈Γ∗H

e−s(x,glγ·y)h((x, glγ · y)).

Choose ε > 0 quite small such that δΓ > δG +ε and x in such a way that dist(x, Γ ·y) ≥ rε

; for l > k and γ ∈ Γ∗H one has h((x, glγ · y)) ≤ eε(x,gl·x)h((x, γ · y)). On the other hand,
since the visibility angle between FG and FH is bounded from below, there exists θ > 0
such that the angle at x between the geodesic segments [g−1 ·x,x] and [x, γ ·y] is greater
than θ for all but finitely many g ∈ G∗ and γ ∈ Γ∗H ; so there exists C > 0 such that
(x, gγ · y) ≥ (x, gx) + (x, γ · y) − C for any g ∈ G∗ and γ ∈ Γ∗H . It readily follows

σx,y,s(Uk) ≤ esCσx,y,s(IH
d+1)

∑
l>k

e(−s+ε)(x,gl·x). Letting s → δΓ along the sub-sequence (si)

leads to
σx,y(ΛG) ≤ σx,y(Uk) ≤ eδΓCσx,y(Sd)

∑
l>k

e(−δΓ+ε)(x,gl·x)

and the inequality δΓ − ε > δG implies σx,y(ΛG) = 0. Similarly σx,y(ΛH) = 0 and so
σx,y(Λ0) = σx,y(Sd). The Patterson measure thus gives full measure to the radial limit set
of Γ, which implies that Γ is divergent. Furthermore, the action of Γ on Sd is ergodic with
respect to σx,y and the measure σx,y does not depend neither on y nor on the sequence
(si) which appears in its construction; it will be denoted σx in the sequel.2
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IV Proof of Theorem A and its corrolaries

The Γ-conformality of the family (σx) implies that the measure
σo(dξ−)σo(dξ+)

|ξ− − ξ+|2δΓ
is a Γ-

invariant Radon measure on ΛΓ×ΛΓ−diagonal : this is the geodesic current cσ associated
with (σx). The measure µ̃σ = cσ ⊗ dt is invariant both under the actions of Γ and of (g̃t),
it induces on T 1M a (gt)-invariant measure µσ called the Patterson-Sullivan measure.
By Proposition 3, the set (Λ0 × Λ0 − diagonal) × IR/Γ has full measure with respect to
µσ and the geodesic flow (gt) restricted to this set can be presented as a special flow
constructed from the automorphism T on D0 and the ceiling function f .
When f is strictly positive on D0, the set {(ξ−, ξ+, r)/(ξ−, ξ+) ∈ D0, 0 ≤ r < f(ξ+)} is a
fundamental domain for the action of Tf on D0 × IR. More generally, by Lemma 1, the
function f is bounded from below and there exists n0 ≥ 1 such that Sn0f = f+f◦T+· · · f◦
T n0−1 is strictly positive on D0 ; in particular, f is semi-integrable on D0 and the sequence
(Snf(ξ+)) goes to infinity on D0. By classical technics in ergodic theory, the function f is
cohomologous to a strictly positive function F : on has f = F +h−h◦T for some measur-
able function h. The set D0

h,F = {(ξ−, ξ+, r)/(ξ−, ξ+) ∈ D0, h(ξ+) ≤ r < h(ξ+) + F (ξ+)}
is thus a fundamental domain for the action of Tf on D0 × IR.
The measure µσ can be identified with the restriction of cσ ⊗ dt to the set D0

h,F . ; in

particular µσ(T 1M) = µσ(D0
h,F ) =

∫
D0

F (ξ+)cσ(dξ− dξ+) and the measure µσ is finite if

and only if
∫
D0
|f(ξ+)|cσ(dξ− dξ+) < +∞.

Set Λ0
G = Λ0 ∩ FG and Λ0

H = Λ0 ∩ FH ; one has D0 = (Λ0
H × Λ0

G) ∪ (Λ0
G × Λ0

H). Let us
decompose Λ0

H×Λ0
G in the disjoint union of the sets Λ0

H×g.Λ0
H with g ∈ G∗. By Lemma 1,

the quantity Bξ(g
−1 · o,o)− (o, g · o) is bounded uniformly in g ∈ G∗ and ξ ∈ Λ0

H and so

σo(g · Λ0
H) =

∫
Λ0

H

e−δΓBξ(g−1·o,o)σ(dξ) � e−δΓ(o,g·o) (where a � b means that 1/K ≤ a

b
≤ K

for some constant K > 1). It follows∫
Λ0

H×Λ0
G

|f(ξ+)|cσ(dξ− dξ+) =
∑

g∈G∗

∫
Λ0

H×g·Λ0
H

|Bξ+(o, g · o)|σo(dξ−)σo(dξ+)

|ξ− − ξ+|2δΓ

�
∑

g∈G∗
d(o, g · o)e−δΓ(o,g·o)

the last estimate using the fact that the euclidean distance between the sets FG and FH is

strictly positive. A similar estimate holds for
∫
Λ0

G×Λ0
H

|f(ξ+)|cσ(dξ− dξ+) ; the inequality

δΓ > max(δG, δH) implies that these integrals are finite. 2

Remark 2- The hypothesis δΓ > max(δG, δH) is crucial in the proof of Theorem A. For
instance, let < a, b > be a classical Schottky group generated by 2 hyperbolic isometries
and let Γ be the group generated by {a−nban/n ∈ ZZ}. One has a /∈ Γ but aΓa−1 = Γ,
which implies a∗σo = σa−1·o ; so the Patterson-Sullivan measure µσ on T 1(IHd+1/Γ) is
infinite since it is invariant under the action of a. Let us now check that the hypothesis
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δΓ > max(δG, δH) is not satisfied, whatever decomposition Γ = G ∗ H with G and H in
Schottky position one takes. If anba−n ∈ G then ΛG contains anξb where ξb ∈ Sd is fixed
by b; the fact that G and H are in Schottky position implies that one of the two sub-
groups, say G, contains all the anba−n for n large enough. So Γ =

⋃
k≥0

a−kGak and since

δa−kGak = δG it follows δΓ = lim
k→+∞

δa−kGak = δG (note also that G is of convergent type by

Proposition 2 in [5]).
Proof of Corollary 1- Its suffices to find an infinitely generated classical Schottky group
which can be decomposed in a Schottky product satisfying the hypotheses of Theorem
A. Let < α, β, a, b > be a classical Schottky group generated by 4 hyperbolic isome-
tries and assume that the critical exponent of < α, β > is greater than the one of
< a, b >. Set G =< α, β > and consider the sub-group H of < a, b > generated by
. . . a−2ba2, a−1ba1, b, aba−1, a2ba−2 . . . ; one has δH ≤ δG. Since G is convex-cocompact, it
is divergent, and the remark 1 allows us to conclude.
To prove the second assertion, will use the following formula due to Th. Roblin [11] :

∫
Nε(Γ)

Φσ(x)2 dVΓ(x) = µσ(T 1M)
∫

v∈IRd

1[0,sinh−1(ε)](||v||)
(1 + ||v||2)δΓ

dv

where dVΓ denotes the volume form on IBd+1/Γ. If α, β, a, b are such that the critical ex-

ponent of the Schottky group they generate is ≤ d/2, one has
∫

Nε(Γ)
Φσ(x)2 dVΓ(x) < +∞

for any ε > 0. On the other hand, if one replaces the group G =< α, β > by a parabolic
group of rank d, one has δΓ > d/2 and the Patterson-Sullivan measure of Γ = G ∗ H is

finite. Consequently
∫

v∈IRd

dv

(1 + ||v||2)δΓ
< +∞ and so

∫
IHd+1/Γ

Φσ(x)2 dVΓ(x) < +∞ by

the previous formula. 2

Proof of Corollary 2- Consider finitely many Kleinian transformations α1, · · · , αN which
generate a non geometrically finite group in PSL(2, C ) and let G be the group of isome-
tries of IHd+1 generated by the Poincaré extension of α1, · · · , αN on IHd+1; one has δG ≤ 2
and one may choose a closed set FG ⊂ Sd such that g(Sd−FG) ⊂ FG for any g ∈ G∗. Let
H0 be a divergent group of finite type of isometries of IHd+1, whose limit set is included in
FG and such that δH0 > 2. At last consider an hyperbolic isometry α whose fixed points
belong to Sd−FG ; for n large enough there exists a closed set FH ⊂ Sd−FG such that the
group H = α−nH0α

n maps the exterior of FH in its interior. In other words, G and H are
in Schottky position. Furthermore, the divergence of H implies δG∗H > δH = max(δG, δH).
The group G ∗H is finitely generated, it is not geometrically finite by theorem C2 (xi) in
[8] (with the same proof in every dimension) and its Patterson-Sullivan measure is finite
by Theorem A. 2
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