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On the Peak-to-Average Power of OFDM
Signals Based on Oversampling

Masoud SharifStudent Member, IEE®Mohammad Gharavi-AlkhansaiMember, IEEEand Babak H. Khalaj

Abstract—Orthogonal  frequency-division  multiplexing  recently, several coding schemes have been proposed to reduce
(OFDM) introduces large amplitude variations in time, which can  the peak of the continuous signal [8]-[11]. While these codes

resuIF in S|gn|f|c_ant signal dls_tortlon in the presence of nonlinear introduce low peak power, high minimum distance, and good
amplifiers. In this paper, we introduce a new bound for the peak

of the continuous envelope of an OFDM signal, based on the rates for small numbers of subcarrigr¥), they significantly
maximum of its corresponding oversampled sequence, that is reduce the rate of transmission for large valued/dflL2].

shown to be very tight as the oversampling rate increases. The The relationship between the peak of the continuous signal
bound is then used to derive a closed-form probability upper

bound for complementary cumulative distribution function of the ~and the maximum of its sampled sequence has recently been
peak-to-mean envelope power ratio of uncoded OFDM signals for addressed [2], [12], [13]. Paterson and Tarokh [12] have pro-
sufficiently large numbers of subcarriers. As another application posed a bound based on the Nyquist-rate sampled sequence and

of the bound for oversampled sequences, we propose tight relative g5 for o times oversampling. In this paper, we introduce a
error bounds for computation of the peak power using two main

methods: the oversampled inverse fast Fourier transform and the Pound for oversampling rate) greater thanr/v/2, and we
method introduced for coded systems based on minimum distance Show that the bound is accurate fasncreases. Then, we use

decoding of the code. this new perspective as a cornerstone of our study in two parts.

Index Terms—Bernstein inequality, orthogonal frequency-divi- N the first part, we introduce a closed-form probability upper
sion multiplexing (OFDM), oversampling, peak-to-average power bound for the complementary cumulative distribution function

ratio (PAPR), peak-to-mean envelope power ratio (PMEPR). (CCDF) of the peak-to-mean envelope power ratio (PMEPR) of
uncoded OFDM signals for sufficiently large values\ofAs an
I. INTRODUCTION immediate consequence of the probability bound, we show that

e . . asymptotically, there exist codes with high rate and PMEPR of
O RTHOGONAL frequency-division multiplexing |aqs tharg In N +1/4.

(OFDM) is an attractive multicarrier modulation .
technique for broadband wireless access due to its stron In the second part, we consider methods to compute the peak
&Ner of OFDM signals for both coded and uncoded systems.

immunity to multipath fading and high spectral efficienc Computation of th K bower bl maior role in Kr
However, OFDM signals suffer from high amplitude fluctu- omputation ot the peax power piays a major roe in peax re-

ations in time that give rise to two main issues, namely, tr%:iuctlon methods that optimize the peak power over free param-

required large dynamic range of the quantizer in the digiteel ers, such as initial phases in conjunction with coding [1] and
y artial transmit sequence (PTS) [4], [6]. Recently, Tarokh and

i h for highly li lifiers in th | . . -
section and the n_eed or nigh'y finear amplimers in the ana %farkham [1] have introduced an efficient peak value computa-
part of the transmitter. The first problem is related to maximuim

value of the sampled signal, whereas, the second one is on method along with its corresponding error bound for coded

to peak value of the continuous signal. A major part of thﬁo DM systems. On the other hand, oversampled inverse fast

. . Hrier transform (IFFT) has been traditionally used in simula-
literature has proposed peak reduction schemes for the sam IJen in order to compute the envelo eak of OFDM sianals
sequence [2]-[4] or used oversampling in order to simulate t s Ih orde pute € pep si9

. : . , [5]. In this paper, we introduce new relative error bounds
behavior of continuous signals [3], [5]-[7]. On the other han [ .
g 31, [51-{7] oOr the above two methods. Our results not only provide an an-

alytic relationship betweeh and estimation accuracy but also
Paper approved by C. Tellambura, the Editor for Modulation and Signal Deesult in much tighter bounds compared to the earlier results of
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[l. DEFINITIONS and for allf in the interval[dy — 1/N+/(28)/(8+1),6y +
The complex envelope of a band-limited OFDM signal wittt/ v/ (28)/(5 + 1)], we have

N subcarriers may be approximated as [1 1
y be app 8 15(8)] > 1/ = Is(60)]- (6)
N-1 B+1
s(t) = Z cped2mmfot 0<t<T 1) Proof: We may definey(f) as
n=0 N-1
and consequently, the OFDM signal is given by p(9) = [s(0)]* = Z A, cosnb + by, sinnd ()
n=0

N-1 , .
_ j2m(fotnfolt < wherea,, andb,, are real numbers related to all's. Sincep(d)
G(t) = Re { Z Cn@ } ’ 0<t<T (2 is maximized a#,, p’(Ay) = 0, we may write the second-order

Taylor expansion op(6#) around the poinf, as

n=0
wheref, is the subchannel spacinf, is the carrier frequency, 1
T'is the symbol period, and = (coy. .- ,cN_l). is a vector of p(0) = p(6o) + 5(9 —00)%p" (67) (8)
complex symbols from a givegrary constellation. The admlS'w eref* is a point betweefi, andf. Taking the absolute value

Slble_vectors are called chewords, where the eqsemble Oftiim both sides, using the triangle inequality, and noting that
possible codewords constitutes the cadeClearly, in an un- p(6) > 0, we get

coded system, all;'s are chosen uniformly and independently 1
from theg-ary constellation, and s@ is the set of aly™¥ pos- p(6) > p(fy) — 5(6 —00)2|p" (6")]. 9)
sible codewords for uncoded systems. Since the cyclic prefi

cannot introduce any new peaks in the symbol, we assume t

%?g the classic inequality of [14], for any polynomigld)
Wi

the form of (7) with real coefficients,, andb,,, we have

fo = 1/T. Also, for mathematical convenience, we substitute ) . ;
T < _ T i —
§ = 2mt/T to get oax [p"(0)] < (N —1) oax |p(8)]. Forr = 2, this
N1 becomes
_ in@ /1 2
s(0) =Y cne™,  0<f<2m ©) pmax [p”(0)] < N* max |p(6)]. (10)
n=0

) , i ) Combining (9) and (10) gives
The level of amplitude fluctuation of OFDM signals is usually 2

measured in terms of peak factors that indicate the ratio of the  [s(8)|*> = p(6) > <1 - NT O 00)2> p(o)
peak power to the average envelope power of the signal. More )
specifically, peak-to-average power ratio (PAPR) of the transmit _ <1 N (- 00)2> 1s(80)2. (11)

signal is defined as [1] 2
N_1 2 Therefore, by comparing (6) and (11) and choosing the ap-
Re{ > cnej(£+n)0} propriate value of?, we get|s(0)| > /1/(8 + 1)|s(6o)|, for
PAPR(¢) = max n=0 4) the values ofl in the interval oo —1/N+/(258) /(8 + 1), 60+

L/N\/(28)/(B +1)]. o u

where ¢ represents the normalized carrier frequenty fo Theorem 2:Let s(f) be as defined iMheorem 1then for
and P,, is a constant that depends on the code famif"V* greater_tharar/\/i, the maximum ofs(6)| is bounded by
P,. = E{||g||?}. Similarly, PMEPR is defined as [12], [13] maximum of itsk N samples on the unit circle by

No1o R ke 2mp
Zo cpei™? ogflaaé);w [s(O)] < k2 —7m2/2 13122)I§N ° <kN>
PMEPR =  max _Pi ®) Proof: Following the same statement asliheorem 1let
_ Coso<z v _ e¢I% be the point on the unit circle for whichmax |s(#)| =

Obviously, PAPR measures the peak of the signal at the » ~ . o<h<en .
analog front end, but PMEPR can be used both as a peak@fo)|- Also assume’®» to be the primitivel: N roots of unity
the baseband signal and as an upper bound for the peak in4gfined as )

transmitter front end. In Section V, the relationship between 6 il 4 p€{l,2,...,kN}. 13)

PAPR and PMEPR will be discussed. . h kN
Obviously, there exists@such thatf, —6,,| < (2m)/(2kN) =

7 /(kN), therefore, using (11), we get

C,0<6<2x P,y

. (12)

Il. M AXIMUM OF THE OVERSAMPLED OFDM SGNAL

N2 /7 \2
It was recently shown that the peak of a continuous OFDM ls(Bp)1* > (1= == (77 ) ) Is(6o)I. (14)
2 \kN
signal can be bounded_by the_ maX|mt_Jr_n_of its oversampled ??6nsequently, rearranging (14) results in the following non-
quence [12], [13]. In this section, we initially propose an evet?ivial inequality fork > /v/Z:
tighter bound for oversampling rates greater thar/2, and q y T '

then we discuss the tightness of the bound. We first prove the 0 k2 0
following fundamental theorem. Og}ﬁéﬂb( )| < m|3( )]

Theorem 1:Let s(f) be as defined in (3), and assume th

|s(6o) max |s(6)|. Then for any real value of > 0

= And maximizing ovep, completes the proof and leads to (12).
T 0<6<2
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2 i ,‘ ' T - ——— In order to find th_e prob_ability bound’,heo!’em Zan b_e used
7 Usper Bound or morin Treorem2)| | to conver_t the maximization over the contmuogs variabla
(5) to a discrete form. We can then solve the discrete problem
by assuming a Gaussian distribution for each sample#,
which is valid by the virtue of the central limit theorem for large
values of N and uncoded OFDM signals.
It is worth noting that the distribution of PMEPR has been
addressed in [17] by numerically computing the distribution for
; small values ofV (i.e., N < 15) and also a lower bound on
"~ 1  Pr{PMEPR > A} is introduced by considering the maximum
S ] of N samples of the signal and assuming that Miesamples
\\\\\\\\\\\ have jointly Gaussian distribution which is not mathematically
T rigorous. On the other hand, in [15], PMEPR distribution has
been derived under the strong assumption that the OFDM sig-
nals behave as a band-limited Gaussian process. However, we

Error Bound

S

f L L | PN i

4 6 8 10 12 14 16 18 20 will only use the Gaussian assumption for each sample of the

Crersamping Rate (9 OFDM signal, and there is no further assumption on the joint

Fig. 1. Error obtained fot 4+ /(¥ —1¢ in comparison with the upper bound distribution of samples. )
in (12) and (15) as a function of oversampling rate. Theorem 3: Let C be the set of all codewords in an uncoded
system, then, for every > 7//2 such thatt NV is an integer,
Remark 1: It is worth mentioning that by using the first-and for sufficiently large values ¥, we have
order Taylor expansion gf(f) around the poind, and using Pr{PMEPR > A} < ENe—21—2%) (16)

Bernstein inequality, we get Proof: Using Theorem 2for everyk > 7/v/2 such that

|s(8)[% = p(8) >(1 — N(6 — 60))p(bo) kN is an integer, we may write

_ _ _ 2 2 2
=(1— N(8 — 6y))|s(6o)|*. PﬂPMEm1>A}<Pr{nmxﬂﬂ@ﬂ_A<1_f3>}
By following the same statement asTheorem 2we get 1<p<kN - Pyy 2k

(17)
oax ls(0)] </ 3 f £ dnax 8<%€> (15) whered,, is as defined in (13). Considering that ajls are in-
- - dependently and uniformly distributed in an uncoded system,
The improvement from (15) to (12) may suggest that usirfgr sufficiently largeN, s(6,) can be considered as a complex
higher order Taylor expansions and Bernstein inequality m@&ussian random variable with varianBe, [16]. Therefore,
result in finding better bounds. Unfortunately, without usin%(ep” has the Rayleigh distribution, and by using the union
any additional information about the derivativesygt), this bound to calculate (17), we get
approach does not seem to further improve the bound in (12). 15(6,)]2 2

In order to investigate the tightness of the bound in (12), Wé)r{lg}g)&v P > A(1 - @)}
may define the error in estimating the maximumsf) by its - * 156 e
kN samples ag = o ax |8(9)|/1§H])1%)I§N |s(0,)]- A If)wer =Pr{3i € {1,...,kN}: .. > A1 - W)}
bound ony can be found by considering(f) = 1 4 ¢/(V—1)¢ |s(6)? w2
and its samples &, = (2p — 1) /(kN), then clearly,y > < k'NPr{w > A1 — @)}
1/co§(7r(N —1)/(2kN)) =~ 1/ cos(m/2k) fqr large values of N A1-23) 18
N. Fig. 1 compares the upper bounds prin (12) and (15) =kNe . (18)

with its lower bound. Fig. 1 implies that the bound in (12) i§he theorem follows immediately from (17) and (18). =
accurate ag increases. As an example, wherequals 4 and  Since the bound is valid for evefy> 7/+/2, we can tighten
16, the bound in (12) suggests maximum differences of 1.6 die bound ovek and find the optimak by differentiating (16)

and 0.08 dB, respectively. with respect tok. The resulting optimum oversampling rate,
kopt, Will be given as
[V. PROBABILITY BOUND ON PMEPR w2 < w2 > 1 (19)
Recently, the probability distribution of PMEPR has been k2ot 2k3e) 2\

used to evaluate the performance of PMEPR reduction schemgparently k.. N should be an integer. Fig. 2 shows the upper
[13], [15], [17]. For large values oW or large constellation size, bound withk,; is chosen for each value of from (16), and
the computational effort in finding PMEPR will become prohibthe simulation results foPr{PMEPR > A} with N = 128, a
itively large [17]. In this section, we first find an upper boundjuarternary phase-shift keying (QPSK) constellation, anrd

for the CCDF of PMEPR for uncoded OFDM signals. Then, ws.

use this bound to investigate the rate of a code constructed byorollary 1: Let C be the set of all codewords in an
removing the codewords with high PMEPR from the set of alincoded system, in which all;’s are chosen from a given
codewords in the uncoded system. constellation with average and maximum enerfy, and
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10° : = performing this process of removing bad codewords from a code
— Upper Bound inﬁ,eorem\ family, and existing codes with low PMEPR have a very low rate
asymptotically [11], [12].

It is worth mentioning that in [12], it is proved that the
Varsharmov—Gilbert region for minimum distance and rate of
spherical codes with PMEPR less th@im NV is the same as
the region for codes with unconstrained PMEPR. Similarly,
] Corollary 1 states that almost all the-ary codewords in the
uncoded set have PMEPR of less tdn N + 1/4.

Pr{PMEPR>A. }
=)
;

V. PMEPRAND PAPR GOMPUTATION

There are several methods to reduce the peak factors by opti-
mizing PMEPR or PAPR over free parameters, such as using op-
timum phases in the PTS method [4], [6], [7], and initial phases

> in conjunction with coding [1]. In order to optimize PMEPR,
oversampled IFFT of the modulating vector has been used to
compute PMEPR. On the other hand, Tarokh and Jafarkhani [1]
Fig. 2.  Upper bound and simulation result for CCDF of PMEPRYo= 128 haye recently introduced an efficient method, along with its cor-
and QPSK constellation. . L
responding error bound, for PAPR computation in coded OFDM
systems. In this section, we introduce new relative error bounds
for the above computation methods.

E...x, respectively. LetC’ be the set of codewords it
such that max |s(0)> < (2InN 4+ 1/4)NE,,, then A. IFFT Method
<0<2m

asymptotically removing codewords with high PMEPR does Intuitively, maximum of the oversampled IFFT of the mod-
not have a catastrophic impact on the number of codelating vector can provide a good estimate for the peak of the
words. In particular, asymptoticalljvvlim |C’]/|C| = 1 and continuous modulated signal. Inthe following theorem, by using
PMEPR(C') < 210 N + 1/4. - the result ofTheorem 2the relative error bound of [13] will be

Proof: Using Theorem 3and considering: = |rv/2x], Significantly improved.

which is asymptotically optimal for large values df we can _ 1heorem 4:Let C be a code family and(¢) be as defined
find a lower bound for the number of codewords@hwith " (3)- Then, PMEPR of’ can be estimated by usirigV'-point
max [s(0)2 < (2In N + 1/4)NE,, as IFFT of each codeword and maximizing over all the codewords

0<0<2n in C as
C| > |C'| =|C|Pr{PMEPR < 2In N + 1/4 - 2
G121 =IC1Pr < 2N+ 14 PMEPR = max PP/EN)E (20)

1<p<kN,C Py
S ic (1_ Lm/2(21r;VN—|—1/4)J> »

then, the relative error fot > 7 //2 is bounded by

equivalently,(|C| — |C'])/|IC| < O(v/In N/N), which shows
thatNlim |C’|/IC| = 1. In order to findPMEPR/(C’), we can

simply find a lower bound foP,, (C”) by considering the max-
imum power for all deleted codewords. Therefore

< PMEPR — PMEPR 72 /2

_— < . 21
= PMEPR k2 —12/2 (1)

Proof: Using Theorem 2 the continuous problem of

o NEW|C| = NEmax(|C] = |C']) PMEPR computation can be converted to discrete form, and by
Py (C') > '] maximizing both sides of (12) over all the codewords, we may
N Euy|C] = N Ennax(C] = €] we
>
] 2 : >
N-1 ]{22 N-1 R
Emax vVin N jné R — | N
> NE., (1 - =0 ( ~ )) o< o] 2 ™| < R o 2
(22)

which shows that asymptoticall,,(C') > NEFE,,. Consid-
ering that all the codewords i6” have maximum envelope for values of k greater than 7/v/2. Normalizing both
power of less thanV E,,(2In N + 1/4), we can use the def- sides of (22) to the average power, we d&MEPR <
inition of PMEPR in (5) to gePMEPR(C’) < 2Iln N + 1/4.  ;2PMEPR/(k? — n2/2), which directly leads to (21). =
u Theorem 4hows that for large values &f the relative esti-
Although the result of this corollary seems to be promisingnation error is inversely proportional to the squaré: afither
currently no practically implementable method is known fathank, as proposed in [13].
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B. Method of Tarokh and Jafarkhani Theorem 6:Let k, L, andr be as defined irLemma 5 If

Recently, in [1], a novel PAPR computation method has bedh((" ande/27/" can be approximated by 1, then
introduced which is based on maximum-likelihood decoding of 272
the codeC. In this approach, the estimated value is defined as PMEPR > PAPR(r) > <1 _I ) PMEPR. (27)

272
Gr(§) = brelb 60} Proof: Leth(6) andh, () be as defined ihemma 5Also
N_1 2 assume that PMEPR (or, equivalently, (6)|) reaches its max-
Re{ 3 cnej(“")(’i} imum value at phase, and with the codeword. First, we
max n=0 23) find the distance between two neighboring poimfsandas in

ceC P.. [0, 27), selected such that

h(Oél) = h(ag) andlh(al) = Zh(ag) = 0. (28)

where the inner maximization is computed fotime samples

using _the_efficient method of [1]. Moreqver, arbitrar_y values forequency of the baseband signalg) can attain any phase
fc1> ZZ‘:F;Z'tgilpﬁ ¢ msy b:.:S?g.s"?nLet'QggeigeOEr:gro.;dggt._value in[0, 27) by a small change iti [1]. Therefore, there are

’ ! PAPR (£)- b ytl: ! % dl 1 ' ! “several phases suchag where the phase of the complex signal
mating (€) can be bounded as [1] h(ay) is zero. We can now prove that = «; + 27 /r satisfies
(28), which may be written as

Since the carrier frequency is much greater than the highest

2rN(N + 27 N2
PAPR(O) - Guln)] < { TR B g ey
V3¢, h(az) =h(ay + 27 /1)
N=1
where@ equals the ratio of the maximum energy to the average — pi2m Z ¢, eirtmar gi2an/r. (29)
energy of the constellation. oy

It should be noted that (24) predicts a high number of time
samples is required to achieve reasonable estimation emsrN ((r, we may use the approximatie®>™/” ~ 1 for n €
levels. However, as mentioned in [1], the upper bound fd0,1,..., N — 1} in (29) in order to obtain (28). Considering
the absolute value of error is not tight, and simulation resulise zero phase df(f) ata; andas, fori = 1,2, we get
show a much higher accuracy. In what follows, we derive a
. . L Ne N_1
tight relative error bound for the estimation of PARR and ke { Z cnej("+r)(’7}

n=0

1
PMEPR by computing7,(£1) at integer values of;. Cped (I

Lemma5: Letk > «/v/2, andr andL = 2(N +7)k be two n=0 :
positive integers, then _ Aicnej”“’ . (30)
]{52 n=0
G <PAPR(r) < ——=G . 25
£(r) < (r) k2 — w2 /2 £(r) (25) Now consider the two neighboring points and -, such
Yo = m + 2w /r and~e > a9 > 1, for which h(#) satis-
Proof: Let h(f) = Y0 c,e?™+ and h(f) = fies (28). From (30), we have
SN L e,eim?, where h, () is the complex baseband en- N1 N1
velope of h(6). Therefore, we may writeRe{h(0)} = )y ( E Jnvi
|he(8)| cos(rf + £h.(#)). In order to bound the PAPR with its Re T;) n N 1;) nt ’ (31)

sampled sequence, we may write’{1(#)} as
Applying Theorem 1o h.(#), we can assign the minimum

Re?{h(0)} = cos®(rf)Re*{h.(6)} width of the peak of...(6) in the interval[y;, v2] to be equal to
+ sin?(r0)Im>{h.(0)} 3_7;]/1», andi[r_;_in finfd th;/(;\?rreépﬂ(;r;((j[igng tlh)resgolc/i conzlgiﬁr)]wid
. eorem 1Therefore2/N ./ + 1) = 2x/r and then,
— sin(2r§)Re{he(0)}Tm{he(6)} Theorem Jimplies that
2(N4r—1)
= Z an cos(nl) + G, sin(nf).  (26) |N-1 N2 N-1
n=o Z cnel™? >\/1— ——5—% max Z cne™ ey, 7] .
= 2r 0<6<27w !

Since (26) has the same form as (Zgmma Smmediately fol- ! (32)
lows by the application offheorem 2and noticing thatl. =
2(N +r)k samples give higher accuracy thar= 2(N +r)k—  Evaluating both sides of (32) at and,, dividing them byP,.,

L. B and using (31), we get
In the next theorem, we develop a new relationship between

PAPR (r) and PMEPR at integer values ofand only for the
case ofN ((r.

2772

PAPR(7; andys) > <1 - ) PMEPR.  (33)

212
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TABLE |
ERROR BOUND OF [1] COMPARED WITH RESULT OF THEOREM7,
WHERE N IS THE NUMBER OF SUBCARRIERS

1

continuous envelope by its oversampled sequence. Two prob-
lems were then addressed. First, a closed-form upper bound for
the CCDF of PMEPR of an uncoded system was derived and
an implication of the probability bound on the rate of codes

with bounded PMEPR was presented. Secondly, computation

Error Bound of [1] | Relative Error Bound of
r L for Computation of | (34) for Computation of
PAPR(?) PMEPR and PAPR(r)
N | AN? + NP) 6.70Q n*/2N? + 12 /(2N - 1%)
N 2N+ N 6.TQ/N n?/2N* + /2N - 1Y)
N 2N +ND 670Q/N? | ®P/2N° 17 [@N® —n?)

methods of PMEPR and PAPR, using oversampled IFFT and
also the method proposed in [1], were considered and tight rela-
tive estimation errors as a function of oversampling rate for both
methods were derived.
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On the other hand, it is obvious th&®APR(y1,v2) <
PAPR(r) < PMEPR. Therefore,Theorem &ollows directly
from (33). [ |

Theorem 7:Letr, L, andk be as defined iemma 5and
N{{r as inTheorem 6 Then, the relative error in estimating
PAPR ¢) and PMEPR by, (r) will be given by

(o Gil) | | Gelr) 1]
PAPR(¢)| — PMEPR
T2 N? 72/2 2]
S o2 +k2—7r2/2' (34)
(3]
Proof. Using Theorem 6we may write "
|[PMEPR — PAPR(7)| m2N?\ 72N?
— _—_— | = 5
PMEPR < m g )T SO
6
By usingG(r) < PMEPR, we can rewrite (25) as o
5 9 [7]
[PAPR(r)—GL(r)] < k T /2 (36)
PMEPR k2 —72/2 T k2 —n2)2 -

Using the triangle inequality, (35), and (36), we can prove
the right inequality in (34). SincRAPR(¢) < PMEPR, the
left-hand side of (34) is evident as well. [ |
Table | shows the bound for absolute value of error in [1],110]
compared with the relative error bound derivedTineorem 7
for computation of PMEPR and PAPR)(n an OFDM system
with N subcarriers. It is evident from Table | that the relative
error bound of (34), in the worst case, is much tighter tharn,
the bound of [1] as given in (24). For example, for the case of
L =2(N?+ N3) andN = 48 considered in [1], our proposed
relative error is smaller than 0.0043. Moreover, our relative erroF !
bound applies to both PMEPR and PAPR computation.

(9]

[11]

[14]

VI. CONCLUSION [15]
In this paper, a bound for the peak of the continuous envelie]
lope of OFDM signals was proposed based on the maximum17
of its corresponding oversampled sequence. It was shown th%\t]
as the oversampling rate increases, we can tightly bound the

onTheorem thatimproved the bound and changed the theorem
to its present form. Thanks are also due to the anonymous re-
viewers for their constructive suggestions.
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