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On the Peak-to-Average Power of OFDM
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Abstract—Orthogonal frequency-division multiplexing
(OFDM) introduces large amplitude variations in time, which can
result in significant signal distortion in the presence of nonlinear
amplifiers. In this paper, we introduce a new bound for the peak
of the continuous envelope of an OFDM signal, based on the
maximum of its corresponding oversampled sequence, that is
shown to be very tight as the oversampling rate increases. The
bound is then used to derive a closed-form probability upper
bound for complementary cumulative distribution function of the
peak-to-mean envelope power ratio of uncoded OFDM signals for
sufficiently large numbers of subcarriers. As another application
of the bound for oversampled sequences, we propose tight relative
error bounds for computation of the peak power using two main
methods: the oversampled inverse fast Fourier transform and the
method introduced for coded systems based on minimum distance
decoding of the code.

Index Terms—Bernstein inequality, orthogonal frequency-divi-
sion multiplexing (OFDM), oversampling, peak-to-average power
ratio (PAPR), peak-to-mean envelope power ratio (PMEPR).

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) is an attractive multicarrier modulation

technique for broadband wireless access due to its strong
immunity to multipath fading and high spectral efficiency.
However, OFDM signals suffer from high amplitude fluctu-
ations in time that give rise to two main issues, namely, the
required large dynamic range of the quantizer in the digital
section and the need for highly linear amplifiers in the analog
part of the transmitter. The first problem is related to maximum
value of the sampled signal, whereas, the second one is due
to peak value of the continuous signal. A major part of the
literature has proposed peak reduction schemes for the sampled
sequence [2]–[4] or used oversampling in order to simulate the
behavior of continuous signals [3], [5]–[7]. On the other hand,
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recently, several coding schemes have been proposed to reduce
the peak of the continuous signal [8]–[11]. While these codes
introduce low peak power, high minimum distance, and good
rates for small numbers of subcarriers , they significantly
reduce the rate of transmission for large values of[12].

The relationship between the peak of the continuous signal
and the maximum of its sampled sequence has recently been
addressed [2], [12], [13]. Paterson and Tarokh [12] have pro-
posed a bound based on the Nyquist-rate sampled sequence and
also for times oversampling. In this paper, we introduce a
bound for oversampling rates greater than , and we
show that the bound is accurate asincreases. Then, we use
this new perspective as a cornerstone of our study in two parts.
In the first part, we introduce a closed-form probability upper
bound for the complementary cumulative distribution function
(CCDF) of the peak-to-mean envelope power ratio (PMEPR) of
uncoded OFDM signals for sufficiently large values of. As an
immediate consequence of the probability bound, we show that
asymptotically, there exist codes with high rate and PMEPR of
less than .

In the second part, we consider methods to compute the peak
power of OFDM signals for both coded and uncoded systems.
Computation of the peak power plays a major role in peak re-
duction methods that optimize the peak power over free param-
eters, such as initial phases in conjunction with coding [1] and
partial transmit sequence (PTS) [4], [6]. Recently, Tarokh and
Jafarkhani [1] have introduced an efficient peak value computa-
tion method along with its corresponding error bound for coded
OFDM systems. On the other hand, oversampled inverse fast
Fourier transform (IFFT) has been traditionally used in simula-
tions in order to compute the envelope peak of OFDM signals
[3], [5]. In this paper, we introduce new relative error bounds
for the above two methods. Our results not only provide an an-
alytic relationship between and estimation accuracy but also
result in much tighter bounds compared to the earlier results of
[1] and [13].

This paper is organized as follows. In Section II, we define
the peak factors used to quantify the amplitude fluctuation of the
signals. Section III introduces a bound to relate the peak of the
continuous signal to the maximum of its oversampled sequence.
Based on this bound, Section IV introduces a probability upper
bound for the CCDF of PMEPR and investigates its implication
on the rate of codes with bounded PMEPR. Section V presents
tight relative error bounds in computation of the peak power.
Finally, Section VI concludes the paper.
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II. DEFINITIONS

The complex envelope of a band-limited OFDM signal with
subcarriers may be approximated as [1]

(1)

and consequently, the OFDM signal is given by

(2)

where is the subchannel spacing, is the carrier frequency,
is the symbol period, and is a vector of

complex symbols from a given-ary constellation. The admis-
sible vectors are called codewords, where the ensemble of all
possible codewords constitutes the code. Clearly, in an un-
coded system, all ’s are chosen uniformly and independently
from the -ary constellation, and so is the set of all pos-
sible codewords for uncoded systems. Since the cyclic prefix
cannot introduce any new peaks in the symbol, we assume that

. Also, for mathematical convenience, we substitute
to get

(3)

The level of amplitude fluctuation of OFDM signals is usually
measured in terms of peak factors that indicate the ratio of the
peak power to the average envelope power of the signal. More
specifically, peak-to-average power ratio (PAPR) of the transmit
signal is defined as [1]

(4)

where represents the normalized carrier frequency
and is a constant that depends on the code family

. Similarly, PMEPR is defined as [12], [13]

(5)

Obviously, PAPR measures the peak of the signal at the
analog front end, but PMEPR can be used both as a peak of
the baseband signal and as an upper bound for the peak in the
transmitter front end. In Section V, the relationship between
PAPR and PMEPR will be discussed.

III. M AXIMUM OF THE OVERSAMPLEDOFDM SIGNAL

It was recently shown that the peak of a continuous OFDM
signal can be bounded by the maximum of its oversampled se-
quence [12], [13]. In this section, we initially propose an even
tighter bound for oversampling rates greater than , and
then we discuss the tightness of the bound. We first prove the
following fundamental theorem.

Theorem 1: Let be as defined in (3), and assume that
. Then for any real value of

and for all in the interval
, we have

(6)

Proof: We may define as

(7)

where and are real numbers related to all’s. Since
is maximized at , , we may write the second-order
Taylor expansion of around the point as

(8)

where is a point between and . Taking the absolute value
from both sides, using the triangle inequality, and noting that

, we get

(9)

Using the classic inequality of [14], for any polynomial
with the form of (7) with real coefficients and , we have

. For , this

becomes

(10)

Combining (9) and (10) gives

(11)

Therefore, by comparing (6) and (11) and choosing the ap-
propriate value of , we get , for
the values of in the interval of

.
Theorem 2: Let be as defined inTheorem 1, then for

any greater than , the maximum of is bounded by
maximum of its samples on the unit circle by

(12)

Proof: Following the same statement as inTheorem 1, let
be the point on the unit circle for which

. Also assume to be the primitive roots of unity
defined as

(13)

Obviously, there exists asuch that
, therefore, using (11), we get

(14)

Consequently, rearranging (14) results in the following non-
trivial inequality for :

and maximizing over , completes the proof and leads to (12).
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Fig. 1. Error obtained for1 + e in comparison with the upper bound
in (12) and (15) as a function of oversampling rate.

Remark 1: It is worth mentioning that by using the first-
order Taylor expansion of around the point and using
Bernstein inequality, we get

By following the same statement as inTheorem 2, we get

(15)

The improvement from (15) to (12) may suggest that using
higher order Taylor expansions and Bernstein inequality may
result in finding better bounds. Unfortunately, without using
any additional information about the derivatives of , this
approach does not seem to further improve the bound in (12).

In order to investigate the tightness of the bound in (12), we
may define the error in estimating the maximum of by its

samples as . A lower

bound on can be found by considering
and its samples at , then clearly,

for large values of
. Fig. 1 compares the upper bounds onin (12) and (15)

with its lower bound. Fig. 1 implies that the bound in (12) is
accurate as increases. As an example, whenequals 4 and
16, the bound in (12) suggests maximum differences of 1.6 dB
and 0.08 dB, respectively.

IV. PROBABILITY BOUND ON PMEPR

Recently, the probability distribution of PMEPR has been
used to evaluate the performance of PMEPR reduction schemes
[13], [15], [17]. For large values of or large constellation size,
the computational effort in finding PMEPR will become prohib-
itively large [17]. In this section, we first find an upper bound
for the CCDF of PMEPR for uncoded OFDM signals. Then, we
use this bound to investigate the rate of a code constructed by
removing the codewords with high PMEPR from the set of all
codewords in the uncoded system.

In order to find the probability bound,Theorem 2can be used
to convert the maximization over the continuous variablein
(5) to a discrete form. We can then solve the discrete problem
by assuming a Gaussian distribution for each sample of,
which is valid by the virtue of the central limit theorem for large
values of and uncoded OFDM signals.

It is worth noting that the distribution of PMEPR has been
addressed in [17] by numerically computing the distribution for
small values of (i.e., ) and also a lower bound on

is introduced by considering the maximum
of samples of the signal and assuming that thesamples
have jointly Gaussian distribution which is not mathematically
rigorous. On the other hand, in [15], PMEPR distribution has
been derived under the strong assumption that the OFDM sig-
nals behave as a band-limited Gaussian process. However, we
will only use the Gaussian assumption for each sample of the
OFDM signal, and there is no further assumption on the joint
distribution of samples.

Theorem 3: Let be the set of all codewords in an uncoded
system, then, for every such that is an integer,
and for sufficiently large values of , we have

(16)

Proof: UsingTheorem 2, for every such that
is an integer, we may write

(17)

where is as defined in (13). Considering that all’s are in-
dependently and uniformly distributed in an uncoded system,
for sufficiently large , can be considered as a complex
Gaussian random variable with variance [16]. Therefore,

has the Rayleigh distribution, and by using the union
bound to calculate (17), we get

2

2

2

(18)

The theorem follows immediately from (17) and (18).
Since the bound is valid for every , we can tighten

the bound over and find the optimal by differentiating (16)
with respect to . The resulting optimum oversampling rate,

, will be given as

2
(19)

Apparently, should be an integer. Fig. 2 shows the upper
bound with is chosen for each value of from (16), and
the simulation results for with , a
quarternary phase-shift keying (QPSK) constellation, and

.
Corollary 1: Let be the set of all codewords in an

uncoded system, in which all ’s are chosen from a given
constellation with average and maximum energy and
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Fig. 2. Upper bound and simulation result for CCDF of PMEPR forN = 128

and QPSK constellation.

, respectively. Let be the set of codewords in
such that , then

asymptotically removing codewords with high PMEPR does
not have a catastrophic impact on the number of code-
words. In particular, asymptotically and

.
Proof: Using Theorem 3and considering ,

which is asymptotically optimal for large values of, we can
find a lower bound for the number of codewords inwith

as

equivalently, , which shows
that . In order to find , we can

simply find a lower bound for by considering the max-
imum power for all deleted codewords. Therefore

which shows that asymptotically . Consid-
ering that all the codewords in have maximum envelope
power of less than , we can use the def-
inition of PMEPR in (5) to get .

Although the result of this corollary seems to be promising,
currently no practically implementable method is known for

performing this process of removing bad codewords from a code
family, and existing codes with low PMEPR have a very low rate
asymptotically [11], [12].

It is worth mentioning that in [12], it is proved that the
Varsharmov–Gilbert region for minimum distance and rate of
spherical codes with PMEPR less than is the same as
the region for codes with unconstrained PMEPR. Similarly,
Corollary 1 states that almost all the-ary codewords in the
uncoded set have PMEPR of less than .

V. PMEPRAND PAPR COMPUTATION

There are several methods to reduce the peak factors by opti-
mizing PMEPR or PAPR over free parameters, such as using op-
timum phases in the PTS method [4], [6], [7], and initial phases
in conjunction with coding [1]. In order to optimize PMEPR,
oversampled IFFT of the modulating vector has been used to
compute PMEPR. On the other hand, Tarokh and Jafarkhani [1]
have recently introduced an efficient method, along with its cor-
responding error bound, for PAPR computation in coded OFDM
systems. In this section, we introduce new relative error bounds
for the above computation methods.

A. IFFT Method

Intuitively, maximum of the oversampled IFFT of the mod-
ulating vector can provide a good estimate for the peak of the
continuous modulated signal. In the following theorem, by using
the result ofTheorem 2, the relative error bound of [13] will be
significantly improved.

Theorem 4: Let be a code family and be as defined
in (3). Then, PMEPR of can be estimated by using -point
IFFT of each codeword and maximizing over all the codewords
in as

(20)

then, the relative error for is bounded by

(21)

Proof: Using Theorem 2, the continuous problem of
PMEPR computation can be converted to discrete form, and by
maximizing both sides of (12) over all the codewords, we may
write

(22)

for values of greater than . Normalizing both
sides of (22) to the average power, we get

, which directly leads to (21).
Theorem 4shows that for large values of, the relative esti-

mation error is inversely proportional to the square ofrather
than , as proposed in [13].
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B. Method of Tarokh and Jafarkhani

Recently, in [1], a novel PAPR computation method has been
introduced which is based on maximum-likelihood decoding of
the code . In this approach, the estimated value is defined as

(23)

where the inner maximization is computed fortime samples
using the efficient method of [1]. Moreover, arbitrary values of

satisfying may be used in instead of in order
to estimate . By using this method, the error in esti-
mating can be bounded as [1]

(24)

where equals the ratio of the maximum energy to the average
energy of the constellation.

It should be noted that (24) predicts a high number of time
samples is required to achieve reasonable estimation error
levels. However, as mentioned in [1], the upper bound for
the absolute value of error is not tight, and simulation results
show a much higher accuracy. In what follows, we derive a
tight relative error bound for the estimation of PAPR and
PMEPR by computing at integer values of .

Lemma 5: Let , and and be two
positive integers, then

(25)

Proof: Let , and
, where is the complex baseband en-

velope of . Therefore, we may write
. In order to bound the PAPR with its

sampled sequence, we may write as

(26)

Since (26) has the same form as (7),Lemma 5immediately fol-
lows by the application ofTheorem 2and noticing that

samples give higher accuracy than
.
In the next theorem, we develop a new relationship between

PAPR and PMEPR at integer values ofand only for the
case of .

Theorem 6: Let , , and be as defined inLemma 5. If
and can be approximated by 1, then

(27)

Proof: Let and be as defined inLemma 5. Also
assume that PMEPR (or, equivalently, ) reaches its max-
imum value at phase and with the codeword. First, we
find the distance between two neighboring pointsand in

, selected such that

and (28)

Since the carrier frequency is much greater than the highest
frequency of the baseband signal, can attain any phase
value in by a small change in [1]. Therefore, there are
several phases such as, where the phase of the complex signal

is zero. We can now prove that satisfies
(28), which may be written as

(29)

As , we may use the approximation for
in (29) in order to obtain (28). Considering

the zero phase of at and , for , we get

(30)

Now consider the two neighboring points and such
and , for which satis-

fies (28). From (30), we have

(31)

Applying Theorem 1to , we can assign the minimum
width of the peak of in the interval to be equal to

, and then find the corresponding threshold constant () in
Theorem 1. Therefore, and then,
Theorem 1implies that

(32)

Evaluating both sides of (32) at and , dividing them by ,
and using (31), we get

and (33)



SHARIF et al.: ON THE PEAK-TO-AVERAGE POWER OF OFDM SIGNALS BASED ON OVERSAMPLING 77

TABLE I
ERROR BOUND OF [1] COMPARED WITH RESULT OF THEOREM7,

WHEREN IS THE NUMBER OF SUBCARRIERS

On the other hand, it is obvious that
. Therefore,Theorem 6follows directly

from (33).
Theorem 7: Let , , and be as defined inLemma 5, and

as in Theorem 6. Then, the relative error in estimating
PAPR ( ) and PMEPR by will be given by

(34)

Proof: UsingTheorem 6, we may write

(35)

By using , we can rewrite (25) as

(36)

Using the triangle inequality, (35), and (36), we can prove
the right inequality in (34). Since , the
left-hand side of (34) is evident as well.

Table I shows the bound for absolute value of error in [1],
compared with the relative error bound derived inTheorem 7
for computation of PMEPR and PAPR () in an OFDM system
with subcarriers. It is evident from Table I that the relative
error bound of (34), in the worst case, is much tighter than
the bound of [1] as given in (24). For example, for the case of

and considered in [1], our proposed
relative error is smaller than 0.0043. Moreover, our relative error
bound applies to both PMEPR and PAPR computation.

VI. CONCLUSION

In this paper, a bound for the peak of the continuous enve-
lope of OFDM signals was proposed based on the maximum
of its corresponding oversampled sequence. It was shown that
as the oversampling rate increases, we can tightly bound the

continuous envelope by its oversampled sequence. Two prob-
lems were then addressed. First, a closed-form upper bound for
the CCDF of PMEPR of an uncoded system was derived and
an implication of the probability bound on the rate of codes
with bounded PMEPR was presented. Secondly, computation
methods of PMEPR and PAPR, using oversampled IFFT and
also the method proposed in [1], were considered and tight rela-
tive estimation errors as a function of oversampling rate for both
methods were derived.
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