# ON THE PERFECT MATCHING INDEX OF BRIDGELESS CUBIC GRAPHS 

J.L. FOUQUET AND J.M. VANHERPE


#### Abstract

If $G$ is a bridgeless cubic graph, Fulkerson conjectured that we can find 6 perfect matchings $M_{1}, \ldots, M_{6}$ of $G$ with the property that every edge of $G$ is contained in exactly two of them and Berge conjectured that its edge set can be covered by 5 perfect matchings. We define $\tau(G)$ as the least number of perfect matchings allowing to cover the edge set of a bridgeless cubic graph and we study this parameter. The set of graphs with perfect matching index 4 seems interesting and we give some informations on this class.


## 1. Introduction

The following conjecture is due to Fulkerson, and appears first in 6.
Conjecture 1.1. If $G$ is a bridgeless cubic graph, then there exist 6 perfect matchings $M_{1}, \ldots, M_{6}$ of $G$ with the property that every edge of $G$ is contained in exactly two of $M_{1}, \ldots, M_{6}$.

If $G$ is 3-edge-colourable, then we may choose three perfect matchings $M_{1}, M_{2}, M_{3}$ so that every edge is in exactly one. Taking each of these twice gives us 6 perfect matchings with the properties described above. Thus, the above conjecture holds trivially for 3 -edge-colorable graphs. There do exist bridgeless cubic graphs which are not 3 -edge-colourable (for instance the Petersen graph), but the above conjecture asserts that every such graph is close to being 3-edge-colourable.

If Fulkerson's conjecture were true, then deleting one of the perfect matchings from the double cover would result in a covering of the graph by 5 perfect matchings. This weaker conjecture was proposed by Berge (see Seymour [12]).

Conjecture 1.2. If $G$ is a bridgeless cubic graph, then there exists a covering of its edges by 5 perfect matchings.

Since the Petersen graph does not admit a covering by less that 5 perfect matchings (see section (3), 5 in the above conjecture can not be changed into 4 and the following weakening of conjecture 1.2 (suggested by Berge) is still open.

Conjecture 1.3. There exists a fixed integer $k$ such that the edge set of every bridgeless cubic graph can be written as a union of $k$ perfect matchings.

Another consequence of the Fulkerson conjecture would be that every bridgeless cubic graph has 3 perfect matchings with empty intersection (take any 3 of the 6 perfect matchings given by the conjecture). The following weakening of this (also suggested by Berge) is still open.

[^0]Conjecture 1.4. There exists a fixed integer $k$ such that every bridgeless cubic graph has a list of $k$ perfect matchings with empty intersection.

For $k=3$ this conjecture is known as the Fan Raspaud Conjecture.
Conjecture 1.5. [3] Every bridgeless cubic graph contains perfect matching $M_{1}$, $M_{2}, M_{3}$ such that

$$
M_{1} \cap M_{2} \cap M_{3}=\emptyset
$$

While some partial results exist concerning conjecture 1.5 (see [17]), we have noticed no result in the literature concerning the validity of Conjecture 1.1 or Conjecture 1.4 for te usual classes of graphs which are examined when dealing with the 5 -flow conjecture of Tutte [15] or the cycle double conjecture of Seymour 11 and Szekeres [13. Hence for bridgeless cubic graphs with oddness 2 (a 2 -factor contains exactly tow odd cycles) it is known that the 5 -flow conjecture holds true as well as the cycle double conjecture (see Zhang [18] for a comprehensive study of this subject).

Let $G$ be a bridgeless cubic graph, we shall say that the set $\mathcal{M}=\left\{M_{1}, \ldots M_{k}\right\}$ $(k \geq 3)$ of perfect matchings is a $k$-covering when each edge is contained in at least one of theses perfect matchings. A Fulkerson covering is a 6 -covering where each edge appears exactly twice. Since every edge of a bridgeless cubic graph is contained in a perfect matching (see [10]) the minimum number $\tau(G)$ of perfect matchings covering its edge set is well defined. We shall say that $\tau(G)$ is the perfect matching index of $G$. We obviously have that $\tau(G)=3$ if and only if $G$ is 3-edge-colourable.

## 2. Preliminaries Results

Proposition 2.1. let $G$ be a cubic graph with a $k$-covering $\mathcal{M}=\left\{M_{1}, \ldots, M_{k}\right\}$ ( $k \geq 3$ ) then $G$ is bridgeless.

Proof Assume that $e \in E(G)$ is an isthmus, then the edges incident to $e$ are not covered by any perfect matching of $G$ and $\mathcal{M}$ is not a $K$-covering, a contradiction.
2.1. 2 -cut connection. Let $G_{1}, G_{2}$ be two bridgeless cubic graph and $e_{1}=u_{1} v_{1} \in$ $E\left(G_{1}\right), e_{2}=u_{2} v_{2} \in E\left(G_{1}\right)$ be two edges. Construct a new graph $G=G_{1} \odot G_{2}$

$$
G=\left[G_{1} \backslash\left\{e_{1}\right\}\right] \cup\left[G_{2} \backslash\left\{e_{2}\right\}\right] \cup\left\{u_{1} u_{2}, v_{1} v_{2}\right\}
$$

Proposition 2.2. Let $G_{1}$ be a cubic graph such that $\tau\left(G_{1}\right)=k \geq 3$ and let $G_{2}$ be any cubic bridgeless graph, then $\tau\left(G_{1} \odot G_{2}\right) \geq k$

Proof Let $G=G_{1} \odot G_{2}$. Assume that $k^{\prime}=\tau(G)<k$ and let $\mathcal{M}=\left\{M_{1}, \ldots, M_{k^{\prime}}\right\}$ be a $k^{\prime}$-covering of $G$ Any perfect matching of $G$ must intersect the 2-edge cut $\left\{u_{1} v_{1}, u_{2} v_{2}\right\}$ in two edges or has no edge in common with that set. Thus any perfect matching in $\mathcal{M}$ leads to a perfect matching of $G_{1}$. Hence we should have a $k^{\prime}$-covering of the edge set of $G_{1}$, a contradiction.
2.2. 3-cut connection. Let $G_{1}, G_{2}$ be two bridgeless cubic graph and $u \in V\left(G_{1}\right)$, $v \in V\left(G_{2}\right)$ be two vertices with $N(u)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Construct a new graph $G=G_{1} \otimes G_{2}$

$$
G=\left[G_{1} \backslash\{u\}\right] \cup\left[G_{2} \backslash\{v\}\right] \cup\left\{u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}\right\}
$$

It is well known that the resulting graph $G_{1} \otimes G_{2}$ is bridgeless. The 3-edge cut $\left\{u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}\right\}$ will be called the principal $3-$ edge cut.

Proposition 2.3. Let $G_{1}$ be a cubic graph such that $\tau\left(G_{1}\right)=k \geq 3$ and let $G_{2}$ be any cubic bridgeless graph. Let $k^{\prime}=\tau\left(G_{1} \otimes G_{2}\right)$ and let $\mathcal{M}=\left\{M_{1}, \ldots, M_{k^{\prime}}\right\}$ be a $k^{\prime}$-covering of $G_{1} \otimes G_{2}$. Then one of the followings is true
(1) $k^{\prime} \geq k$
(2) There is a perfect matching $M_{i} \in \mathcal{M}(1 \leq i \leq k)$ containing the principal 3-edge cut

Proof Assume that $k^{\prime}<k$. Any perfect matching of $G_{1} \otimes G_{2}$ must intersect the principal 3-edge cut in one or three edges. If none of the perfect matchings in $\mathcal{M}$ contains the principal 3 -edge cut, then any perfect matching in $\mathcal{M}$ leads to a perfect matching of $G_{1}$ and any edge of $G_{1}$ is covered by one of these perfect matchings. Hence we should have a $k^{\prime}$-covering of the edge set of $G_{1}$, a contradiction.

## 3. On graphs with perfect matching index 4

A natural question is to investigate the class of graphs for which the perfect matching index is 4 .

Proposition 3.1. Let $G$ be a cubic graph with a 4 -covering $\mathcal{M}=\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ then
(1) Every edge is contained in exactly one or two perfect matchings of $\mathcal{M}$.
(2) The set $M$ of edges contained in exactly two perfect matchings of $\mathcal{M}$ is a perfect matching.
(3) If $\tau(G)=4$ then $\forall i \neq j \in\{1,2,3,4\} \quad M_{i} \cap M_{j} \neq \emptyset$.

Proof Let $v$ be any vertex of $G$, each edge incident with $v$ must be contained in some perfect matching of $\mathcal{M}$ and each perfect matching must be incident with $v$. We have thus exactly one edge incident with $v$ which is covered by exactly two perfect matchings of $\mathcal{M}$ while the two other edges are covered by exactly one perfect matching. We get thus immediately Items 1 and 2

When $\tau(G)=4, G$ is not a 3 -edge colourable graph. Assume that we have two perfect matchings with an empty intersection. These two perfect matchings lead to an even 2 -factor and hence a a 3 -edge colouring of $G$, a contradiction.
In the following the edges of the matching $M$ described in item 2 of Proposition 3.1 will be said to be covered twice.

Proposition 3.2. Let $G$ be a cubic graph such that $\tau(G)=4$ then $G$ has at least 12 vertices

Proof Let $\mathcal{M}=\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ be a covering of the edge set of $G$ into 4 perfect matchings. From Proposition 3.1 we must have at least 6 edges in the perfect matching formed with the edges covered twice in $\mathcal{M}$. Hence, $G$ must have at least

12 vertices as claimed.
From Proposition 3.2, we obviously have that the Petersen graph has a perfect matching index equal to 5 .

Proposition 3.3. Let $G$ be a cubic graph such that $\tau(G)=4$ and let $\mathcal{M}=$ $\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ be a covering of its edge set into 4 perfect matchings then for each $j(j=1 \ldots 4) \mathcal{M}-M_{j}$ is a set of 3 perfect matchings satisfying the Fan Raspaud conjecture.

Proof Obvious since, by Item 1 of Proposition 3.1 any edge is contained in exactly one or two perfect matchings of $\mathcal{M}$.

Let $G$ be a cubic graph with 3 perfect matchings $M_{1}, M_{2}$ and $M_{3}$ having an empty intersection. Since such a graph satisfy the Fan Raspaud conjecture, when considering these three perfect matchings, we shall say that $\left(M_{1}, M_{2}, M_{3}\right)$ is an $F R$-triple. When a cubic graph has a FR-triple we define $T_{i}(i=0,1,2)$ as the set of edges that belong to precisely $i$ matchings of the FR-triple. Thus $\left(T_{0}, T_{1}, T_{2}\right)$ is a partition of the edge set.

Proposition 3.4. Let $G$ be a cubic graph with 3 perfect matchings $M_{1}, M_{2}$ and $M_{3}$ having an empty intersection. Then the set $T_{0} \cup T_{2}$ is a set of disjoint even cycles. Moreover, the edges of $T_{0}$ and $T_{2}$ alternate along these cycles.

Proof Let $v$ be a vertex incident to a edge of $T_{0}$. Since $v$ must be incident to each perfect matching and since the three perfect matchings have an empty intersection, one of the remaining edges incident to $v$ must be contained into 2 perfect matchings while the other is contained in exactly one perfect matching. The result follows.

Let $G$ be a bridgeless cubic graph and let $C$ and $C^{\prime}$ be distinct odd cycles of $G$. Assume that there are three distinct edges namely $x x^{\prime}, y y^{\prime}$ and $z z^{\prime}$ such that $x, y$ and $z$ are vertices of $C$ while $x^{\prime}, y^{\prime}, z^{\prime}$ are vertices of $C^{\prime}$ which determine on $C$ and on $C^{\prime}$ edge-disjoint paths of odd length then we shall say that $\left(x x^{\prime}, y y^{\prime}, z z^{\prime}\right)$ is a good triple and that the pair of cycles $\left\{C, C^{\prime}\right\}$ is a good pair.

Theorem 3.5. Let $G$ be a cubic graph which has a 2 -factor $F$ whose odd cycles can be arranged into good pairs $\left\{C_{1}, D_{1}\right\},\left\{C_{2}, D_{2}\right\}, \ldots,\left\{C_{k}, D_{k}\right\}$. Then $\tau(G) \leq 4$.

Proof For each good pair $\left\{C_{i}, D_{i}\right\}$ let $\left(c_{i}^{1} d_{i}^{1}, c_{i}^{2} d_{i}^{2}, c_{i}^{3} d_{i}^{3}\right)$ be a good triple of $C_{i}$ and $D_{i}, c_{i}^{1}, c_{i}^{2}, c_{i}^{3}$ being vertices of $C_{i}$ while $d_{i}^{1}, d_{i}^{2}$ and ${ }_{i}^{3}$ are on $D_{i}$. In order to construct a set $\mathcal{M}=\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ of 4 perfect matchings covering the edge set of $G$ we let $M_{1}$ as the perfect matching of $G$ obtained by deleting the edges of the $2-$ factor.

Let $A_{j}$ be the set of edges $\left\{c_{i}^{j} d_{i}^{j} \mid i=1 \ldots k\right\}$. We construct a perfect matching $M_{j}$ $(j=2,3,4)$ of $G$ such that $M_{1} \cap M_{j}=A_{j}$. For each good pair $\left\{C_{i}, D_{i}\right\}(i=1 \ldots k)$, we add to $A_{j}$ the unique perfect matching contained in $E\left(C_{i}\right) \cup E\left(D_{i}\right)$ when the two vertices $c_{i}^{j}$ and $d_{i}^{j}$ are deleted. We get hence 3 matchings $B_{j}(j=2,3,4)$ where each vertex contained in a good pair is saturated. If the 2 -factor contains some even cycles, we add first a perfect matching contained in the edge set of these even cycles to $B_{2}$. We obtain thus a perfect matching $M_{2}$ whose intersection with $M_{1}$ is reduced to $A_{2}$. The remaining edges of these even cycles are added to $B_{3}$ and to
$B_{4}$, leading to the perfect matchings $M_{3}$ and $M_{4}$. Let us remark that each edge of these even cycles are contained in $M_{2} \cup M_{3}$.

We claim that each edge of $G$ is contained in at least one of $\mathcal{M}=\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$. Since $M_{1}$ is the perfect matching which complements in $G$ the 2 -factor $F$, the above remark says that we have just to prove that each edge of each good pair is covered by some perfect matching of $\mathcal{M}$. By construction, no edge is contained in $M_{1} \cup M_{2} \cup M_{3}$ which means that $\left(M_{1}, M_{2}, M_{3}\right)$ is an FR-triple. In the same way, $\left(M_{1}, M_{3}, M_{4}\right)$ and $\left(M_{1}, M_{2}, M_{4}\right)$ are FR-triples. The edges of $T_{0} \cup T_{2}$ induced by the FR-triple $\left(M_{1}, M_{2}, M_{3}\right)$ on each good pair $\left\{C_{i}, D_{i}\right\}$ is the even cycle $\Gamma_{i}$ using $c_{i}^{1} d_{i}^{1}$ and $c_{i}^{2} d_{i}^{2}$, the odd path of $C_{i}$ joining $c_{i}^{1}$ to $c_{i}^{2}$ and the odd path of $D_{i}$ joining $d_{i}^{1}$ to $d_{i}^{2}$. In the same way, edges of $T_{0} \cup T_{2}$ induced by the FR-triple ( $M_{1}, M_{3}, M_{4}$ ) on each good pair $\left\{C_{i}, D_{i}\right\}$ is the even cycle $\Lambda_{i}$ using $c_{i}^{2} d_{i}^{2}$ and $c_{i}^{3} d_{i}^{3}$, the odd path of $C_{i}$ joining $c_{i}^{2}$ to $c_{i}^{3}$ and the odd path of $D_{i}$ joining $d_{i}^{2}$ to $d_{i}^{3}$. It is an easy task to see that these two cycles $\Gamma_{i}$ and $\Lambda_{i}$ have the only edge $c_{i}^{2} d_{i}^{2}$ in common. Hence each edge of $\Gamma_{i} \cap T_{0}$ is contained into $M_{4}$ while each edge of $\Lambda_{i} \cap T_{0}$ is contained into $M_{2}$. The result follows.
3.1. On balanced matchings. A set $A \subseteq E(G)$ is a balanced matching when we can find 2 perfect matchings $M_{1}$ and $M_{2}$ such that $A=M_{1} \cap M_{2}$. Let $B(G)$ be the set of balanced matchings of $G$, we define $b(G)$ as the minimum size of a any set $A \in B(G)$, we have:

Proposition 3.6. Let $G$ be a cubic graph such that $\tau(G)=4$ then $b(G) \leq \frac{n}{12}$.
Proof Let $\mathcal{M}=\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ be a covering of the edge set of $G$ into 4 perfect matchings and let $M$ be the perfect matching of edges contained in exactly two perfect matchings of $\mathcal{M}$ (Iem 2 of Proposition ??). Since $M_{i} \cap M_{j} \neq \emptyset \forall i \neq$ $j \in\{1,2,3,4\}$ by Proposition ??, these 6 balanced matchings partition $M$. Hence, one of them must have at most $\frac{|M|}{6}=\frac{n}{12}$ edges.

In [14] Kaiser, Král and Norine proved
Theorem 3.7. Any bridgeless cubic graph contains 2 perfect matchings whose union cover at least $\frac{9 n}{10}$ edges of $G$.

From Theorem 3.7, we can find two perfect matchings with an intersection having at most $\frac{n}{10}$ edges in any cubic bridgeless graph. It can be proved (see [4) that for any cyclically 4 -edge connected cubic graph $G$, either $b(G) \leq \frac{n}{14}$ or any perfect matching contains an odd cut of size 5 .
3.2. On classical snarks. As usual a snark is a non 3-edge colourable bridgeless cubic graph. In Figure 1 is depicted one of the two the Blanuša snarks on 18 vertices [1]. In bold we have drawn a 2 -factor (each cycle has length 9 ) and the dashed edges connect the triple $(x, y, z)$ of one cycle to the triple $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ of the second cycle. It is a routine matter to check that $\left(x x^{\prime}, y y^{\prime}, z z^{\prime}\right)$ is a good triple and Theorem 3.5 allows us to say that this graph has perfect matching index 4 . In the same way the second Blanuša snark on 18 vertices depicted in Figure 2 can be covered by 4 perfect matchings by using Theorem 3.5.

For an odd $k \geq 3$ the Flower Snark $F_{k}$ intoduced by Isaac (see [8]) is the cubic graph on $4 k$ vertices $x_{0}, x_{1}, \ldots x_{k-1}, y_{0}, y_{1}, \ldots y_{k-1}, z_{0}, z_{1}, \ldots z_{k-1}, t_{0}, t_{1}, \ldots t_{k-1}$


Figure 1. Blanuša snark \#1


Figure 2. Blanuša snark \#2
such that $x_{0} x_{1} \ldots x_{k-1}$ is an induced cycle of length $k, y_{0} y_{1} \ldots y_{k-1} z_{0} z_{1} \ldots z_{k-1}$ is an induced cycle of length $2 k$ and for $i=0 \ldots k-1$ the vertex $t_{i}$ is adjacent to $x_{i}, y_{i}$ and $z_{i}$. The set $\left\{t_{i}, x_{i}, y_{i}, z_{i}\right\}$ induces the claw $C_{i}$. In Figure 3 we have a representation of $F_{5}$, the half edges (to the left and to the right in the figure) with same labels are identified.


Figure 3. $J_{5}$

Theorem 3.8. $\tau\left(F_{k}\right)=4$.
Proof Let $k=2 p+1 \geq 3$ and let $C=x_{0} x_{1} \ldots x_{2 p}, D=y_{0} t 0 z_{0} z_{1} t_{1} y_{1} \ldots$ $y_{2 i} t_{2 i} z_{2 i} z_{2 i+1} t_{2 i+1} y_{2 i+1} \ldots y_{2 p} t_{2 p} z_{2 p}(0 \leq i \leq)$ be the odd cycles of lengths $2 k+1$ and $3 \times(2 k+1)$ respectively which partition $F_{k}$ (in bold in Figure3, It is a routine matter to check that the edges $x_{0} t_{0}, x_{1} t_{1}$ and $x_{2} t_{2}$ form a good triple (dashed edges
in Figure (3). Hence $(C, D)$ is a 2 -factor of $G$ and it is a good pair. The result follows from Theorem 3.5.

Let $H$ be the graph depicted in Figure 4


Figure 4. $H$
Let $G_{k}$ ( $k$ odd) be a cubic graph obtained from $k$ copies of $H\left(H_{0} \ldots H_{k-1}\right.$ where the name of vertices are indexed by $i$ ) in adding edges $a_{i} a_{i+1}, c_{i} c_{i+1}, e_{i} e_{i+1}, f_{i} f_{i+1}$ and $h_{i} h_{i+1}$ (subscripts are taken modulo $k$ ).

If $k=5$, then $G_{k}$ is known as the Goldberg snark. Accordingly, we refer to all graphs $G_{k}$ as Goldberg graphs. The graph $G_{5}$ is shown in Figure 5. The half edges (to the left and to the right in the figure) with same labels are identified.


Figure 5. Goldberg snark $G_{5}$

Theorem 3.9. $\tau\left(G_{k}\right)=4$.
Proof Let $k=2 p+1 \geq 3$ and let $C=a_{0} a_{1} \ldots a_{2 p}, D=e_{0} d_{0} b_{0} g_{0} f_{0} e_{1} d_{1} b_{1} g_{1} f_{1}$ $\ldots e_{i} d_{i} b_{i} g_{i} f_{i} \ldots e_{2 p} d_{2 p} b_{2 p} g_{2 p} f_{2 p}(0 \leq i \leq)$ be the odd cycles of lengths $2 k+1$ and $5 \times(2 k+1)$ respectively and $E=c_{0} h_{0} c_{1} h_{1} \ldots c_{i} h_{i} \ldots c_{2 p} h_{2 p}$ the cycle of length $4 k$ of $G_{k}$. This set of 3 cycles is a 2 -factor of $G_{k}$ (in bold in Figure (5). At last, $a_{0} b_{0}$, $a_{1} b_{1}$ and $a_{2} b_{2}$ are edges of $G$ (dashed edges in Figure 5). Then $\left(a_{0} b_{0}, a_{1} b_{1}, a_{2} b_{2}\right)$ is a good triple. Hence $(C, D, E)$ is a 2 -factor of $G$ where $(C, D)$ is a good pair . The result follows from Theorem 3.5.
3.3. On permutation graphs. A cubic graph $G$ is called a permutation graph if $G$ has a 2 -factor $F$ such that $F$ is the union of two chordless cycles $C$ and $C^{\prime}$. Let $M$ be the perfect matching $G-F$. A subgraph homeomorphic to the Petersen graph with no edge of $M$ subdivided is called a $M-P_{10}$. Ellingham [2] showed that a permutation graph without any $M-P_{10}$ is 3 -edge colourable.


Figure 6. The cycle on 8 vertices described in Lemma 3.11
In general, we do not know whether a permutation graph distinct from the Petersen graph is 3 -edge colourable or not. It is an easy task to construct a cyclically 4-edge connected permutation graph which is a snark (consider the two Blanusa snarks on 18 vertices for exemple) and Zhang [18] conjectured:
Conjecture 3.10. Let $G$ be a 3-connected cyclically 5 -edge connected permutation graph. If $G$ is a snark, then $G$ must be the Petersen graph.

Let us consider a permutation graph $G$ with a 2 -factor $F$ having two cycles $C$ and $C^{\prime}$. Two distinct vertices of $C$ say $x$ and $y$ determine on $C$ two paths with $x$ and $y$ as end-points. In order to be unambiguous when considering those paths from their end-points we give an orientation to $C$. Thus $C(x, y)$ will denote in the following the path of $C$ that starts with the vertex $x$ and ends with the vertex $x$ according to the orientation of $C$. The notation $C^{\prime}\left(x^{\prime}, y^{\prime}\right)$ is defined similarly when $x^{\prime}$ and $y^{\prime}$ are vertices of $C^{\prime}$.

In order to determine which permutation graphs have a perfect matching index less than 4 we state the following tool (see Figure 6) :
Lemma 3.11. Let $G$ be a permutation graph with a 2 -factor containing precisely two odd cycles $C$ and $C^{\prime}$. Assume that $\chi^{\prime}(G)=4$ and that $\left(C, C^{\prime}\right)$ is not a good pair. Let ab be an edge of $C$ such that the odd path determined on $C^{\prime}$ with the neighbors of $a$ and $b$, say $a^{\prime}$ and $b^{\prime}$ respectively, has minimum length. Assume that $C$ and $C^{\prime}$ have an orientation such that $C(a, b)$ is an edge and $C^{\prime}\left(a^{\prime}, b^{\prime}\right)$ has odd length.
Then there must exist 4 additional vertices $c$ and $d$ on $C$ and their neighbors on $C^{\prime}$, say $c^{\prime}$ and $d^{\prime}$ respectively, verifying :

- the paths $C^{\prime}\left(a^{\prime}, d^{\prime}\right), C^{\prime}\left(b^{\prime}, c^{\prime}\right)$ and $C(d, c)$ are edges.
- the path $C(b, d)$ is odd and the path $C^{\prime}\left(d^{\prime}, b^{\prime}\right)$ is even.

Proof Observe first that $a^{\prime}$ and $b^{\prime}$ are not adjacent otherwise the cycle obtained with the paths $C(b, a)$ and $C^{\prime}\left(b^{\prime}, a^{\prime}\right)$ together with the edges $a a^{\prime}$ and $b b^{\prime}$ would be hamiltonian, a contradiction since it is assumed that $\chi^{\prime}(G)=4$.

Since the path $C^{\prime}\left(a^{\prime}, b^{\prime}\right)$ is odd there must be a neighbor of $b^{\prime}$ on $C^{\prime}\left(b^{\prime}, a^{\prime}\right)$, say $c^{\prime}$. Let $c$ be the neighbor of $c^{\prime}$ on $C$. The path $C(b, c)$ has even length, otherwise ( $a a^{\prime}, b b^{\prime}, c c^{\prime}$ ) would be a good triple and $\left(C, C^{\prime}\right)$ a good pair, a contradiction.

It follows that the vertex $c$ has a neighbor, say $d$ on $C(b, c)$ and $C(b, d)$ has odd length.

Let $d^{\prime}$ be the neighbor of $d$ on $C^{\prime}$. It must be pointed out that $d^{\prime}$ is a vertex of $C^{\prime}\left(a^{\prime}, b^{\prime}\right)$. As a matter of fact if on the contrary $d^{\prime}$ belongs to $C^{\prime}\left(c^{\prime}, a^{\prime}\right)$ we
would have a good triple with $\left(d d^{\prime}, c c^{\prime}, b b^{\prime}\right)$ when $C^{\prime}\left(c^{\prime}, d^{\prime}\right)$ has odd length and with $\left(a a^{\prime}, b b^{\prime}, d d^{\prime}\right)$ when $C^{\prime}\left(c^{\prime}, d^{\prime}\right)$ is an even path; a contradiction in both cases.

But now by the choice of the edge $a b$ the length of $C^{\prime}\left(a^{\prime}, b^{\prime}\right)$ cannot be greater than $C^{\prime}\left(d^{\prime}, c^{\prime}\right)$, thus $d^{\prime}$ is adjacent to $a^{\prime}$ and the path $C^{\prime}\left(d^{\prime}, b^{\prime}\right)$ has even length.

We have :
Theorem 3.12. Let $G$ be a permutation graph then $\tau(G) \leq 4$ or $G$ is the Petersen graph.

Proof Let $C$ and $C^{\prime}$ the 2-factor of chordless cycles which partition $V(G)$ and We can assume that $G$ is not 3 -edge colourable otherwise $\tau(G)=3$ and there is nothing to prove. Hence, $C$ and $C^{\prime}$ have both odd lengths. In addition we assume that $\left(C, C^{\prime}\right)$ is not a good pair, otherwise we are done by Theorem 3.5.

Let $x_{1} x_{2}$ be an edge of $C$ such that the odd path determined on $C^{\prime}$ with the neighbors of $x_{1}$ and $x_{2}$, say $y_{1}$ and $y_{2}$ respectively, has minimum length.

We choose to orient $C$ from $x_{1}$ to $x_{2}$ and to orient $C^{\prime}$ from $y_{1}$ to $y_{2}$. Thus $C\left(x_{1}, x_{2}\right)$ is an edge and $C^{\prime}\left(y_{1}, y_{2}\right)$ is an odd path.

By Lemma 3.11 we must have two vertices $x_{3}$ and $x_{4}$ on $C$ and their neighbors $y_{3}$ and $y_{4}$ on $C^{\prime}$ such that $C\left(x_{4}, x_{3}\right), C^{\prime}\left(y_{1}, y_{4}\right), C^{\prime}\left(y_{2}, y_{3}^{\prime}\right)$ are edges, $C\left(x_{2}, x_{4}\right)$ being an odd path while $C^{\prime}\left(y_{4}, y_{2}\right)$ has even length.

Claim 1. The vertices $y_{1}$ and $y_{3}$ are adjacent.
Proof Assume not.
The odd path $C^{\prime}\left(y_{4}, y_{3}\right)$ having the same length than $C^{\prime}\left(y_{1}, y_{2}\right)$ we may apply Lemma 3.11 on the edge $x_{4} x_{3}\left(x_{4}=a, x_{3}=b\right)$. Thus there is edges; say $x_{5} y_{5}$ and $x_{6} y_{6}, x_{5}$ and $x_{6}$ being vertices of $C, y_{5}$ and $y_{6}$ vertices of $C^{\prime}$, the paths $C\left(x_{6}, x_{5}\right), C^{\prime}\left(y_{4}, y_{6}\right)$ and $C^{\prime}\left(y_{3}, y_{5}\right)$ having length 1 . Moreover the paths $C\left(x_{3}, x_{6}\right)$ and $C^{\prime}\left(y_{6}, y_{2}\right)$ are odd. Since it is assumed that $y_{1}$ and $y_{3}$ are independent we have $y_{5} \neq y_{1}$ and $x_{5} \neq x_{1}$.

Observe that the paths $C^{\prime}\left(y_{1}, y_{2}\right)$ and $C^{\prime}\left(y_{6}, y_{5}\right)$ have the same length, thus we apply Lemma 3.11 again with $a=x_{6}$ and $b=x_{5}$.

Let $y_{7}$ be the neighbor of $y_{5}$ on $\left.C^{\prime} y_{5}, y_{1}\right)$ and $x_{7}$ be the neighbor of $y_{7}$ on $C$. We know that $x_{7}$ is a vertex of $C\left(x_{5}, x_{1}\right)$ at even distance of $x_{5}$. The vertex $x_{8}$ being the neighbor of $x_{7}$ on $C\left(x_{5}, x_{7}\right)$ and $y_{8}$ the neighbor of $x_{8}$ on $C^{\prime}$, we have that $y_{8}$ is the neighbor of $y_{6}$ on $C^{\prime}\left(y_{6}, y_{2}\right)$.

The path $C^{\prime}\left(y_{8}, y_{2}\right)$ has even length, hence there must be on this path a neighbor of $y_{8}$ distinct from $y_{2}$, say $y_{9}$. Let $x_{9}$ be the neighbor of $y_{9}$ on $C$.

The vertex $x_{9}$ belongs to $C\left(x_{7}, x_{1}\right)$. Otherwise when $x_{9}$ is on $C\left(x_{2}, x_{4}\right)$; if the path $C\left(x_{2}, x_{9}\right)$ is odd we can find a good triple, namely $\left(x_{8} y_{8}, x_{9} y_{9}, x_{2} y_{2}\right)$ on the other case we have the good triple $\left(x_{9} y_{9}, x_{4} y_{4}, x_{1} y_{1}\right)$. A contradiction in both cases.

We get a similar contradiction if $x_{9}$ belongs to $C\left(x_{3}, x_{6}\right)$ by considering the triples $\left(x_{5} y_{5}, x_{9} y_{9}, x_{8} y_{8}\right)$ or $\left(x_{9} y_{9}, x_{4} y_{4}, x_{2} y_{2}\right)$.

Finally, when $x_{9}$ is a vertex of $C\left(x_{5}, x_{8}\right)$ a contradiction occurs with the triple $\left(x_{5} y_{5}, x_{9} y_{9}, x_{7}, y_{7}\right)$ if $C\left(x_{5}, x_{9}\right)$ is odd and with the tripe $\left(x_{8} y_{8}, x_{9} y_{9}, x_{6} y_{6}\right)$ otherwise.


Figure 7. Situation at the end of Claim 2

Observe that the path $C\left(x_{7}, x_{9}\right)$ must be odd or $\left(x_{9} y_{9}, x_{7} y_{7}, x_{8} y_{8}\right)$ would be a good triple, a contradiction.

But now $\left(x_{9} y_{9}, x_{5} y_{5}, x_{4} y_{4}\right)$ is a good triple, a contradiction which proves the Claim (see Figure 7).

From now on we assume that $y_{3} y_{1}$ is an edge.
The path $C\left(x_{1}, x_{3}\right)$ being odd there must be a neighbor of $x_{3}$ on $C\left(x_{3}, x_{1}\right)$ distinct from $x_{1}$, let $x_{5}$ be this vertex. It's neighbor on $C^{\prime}$, say $y_{5}$, must be on $C^{\prime}\left(y_{4}, y_{2}\right)$. Moreover the length of $C^{\prime}\left(y_{4}, y_{5}\right)$ is odd otherwise the edges $x_{5} y_{5}, x_{3} y_{3}$ and $x_{1} y_{1}$ would form a good triple, a contradiction.

Claim 2. The paths $C^{\prime}\left(y_{4}, y_{5}\right)$ and $C^{\prime}\left(y_{5}, y_{2}\right)$ are reduced to edges.
Proof Assume in a first stage that the neighbor of $y_{4}$ on $C^{\prime}\left(y_{4}, y_{5}\right)$ is distinct from $y_{5}$, let $y_{6}$ be this vertex and $x_{6}$ be its neighbor on $C$.

The vertex $x_{6}$ cannot belong to $C\left(x_{5}, x_{1}\right)$, otherwise we would have a good triple $\left(x_{3} y_{3}, x_{6} y_{6}, x_{4} y_{4}\right)$ when $C\left(x_{5}, x_{6}\right)$ is an even path and the good triple $\left(x_{4} y_{4}, x_{6} y_{6}, x_{2} y_{2}\right)$ if it's an odd path, contradictions.

Similarly the vertex $x_{6}$ cannot belong to $C\left(x_{2}, x_{4}\right)$. On the contrary we would have a good triple with the edges $x_{2} y_{2}, x_{6} y_{6}$ and $x_{1} y_{1}$ when the path $C\left(x_{2}, x_{6}\right)$ is odd and another good triple with the edges $x_{4} y_{4}, x_{6} y_{6}$ and $x_{1} y_{1}$.

On the same manner we can prove that the path $C^{\prime}\left(y_{5}, y_{2}\right)$ has length 1.
It comes from Claim 2 that $C^{\prime}$ has only 5 vertices. Since both cycles $C$ and $C^{\prime}$ have the same length $C$ has 5 vertices too and $G$ is the Petersen graph.

In [16] Watkins proposed two families of generalized Blanuša snarks using the blocks $B, A_{1}$ and $A_{2}$ described in Figure 8. The generalized Blanuša snarks of type 1 (resp. of type 2 ) are obtained by considering a number of blocks $B$ and one block $A_{1}$ (resp. $A_{2}$ ), these blocks are arranged cyclically, the semi-edges $a$ and $b$ of one block being connected to the semi-edges $a, b$ of the next one. Recently generalized Blanuša snarks were studied in terms of circular chromatic index (see [9, 7]).

The generalized Blanuša snarks are permutation graphs, hence :
Corollary 3.13. Let $G$ be a generalized Blanuša snarks then $\tau(G)=4$.


Figure 8. Blocks for the construction of generalized Blanuša snarks.

## 4. On graphs with $\tau \geq 5$

It is an easy task to construct cubic graphs with perfect matching index at least 5 with the help of Proposition 2.2. Take indeed the Petersen graph $P$ and any bridgeless cubic graph $G$ and apply the construction $P \odot G$.

Proposition 4.1. Let $G$ be bridgeless cubic graph with perfect matching index at least 5 and let $H$ be a connected bipartite cubic graph. Then $G \otimes H$ is bridgeless cubic graph with perfect matching index at least 5.

Proof Assume that $\tau(G \otimes H)=4$ and let $\mathcal{M}=\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ be a covering of its edge set into 4 perfect matchings. Let $\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\}$ (with $a, b$ and $c$ in $G$ and $a^{\prime}, b^{\prime}$ and $c^{\prime}$ in $H$ ) be the principal 3 -edge cut of $G \otimes H$. From Item 2 of Proposition 2.3 there is perfect matching $M_{i} \in \mathcal{M}$ such that $\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\} \subseteq M_{i}$. This is clearly impossible since the set of vertices of $H$ which must be saturated by $M_{i}$ is partitioned into 2 independent sets whose size differs by one unit.

Let us consider the following construction. Given four cubic graphs $G_{1}^{x_{1}}, G_{2}^{x_{2}}$, $G_{3}^{x_{3}}, G_{4}^{x_{4}}$ together with a distinguished vertex $x_{i}(i=1,2,3,4)$ whose neighbors in $G_{i}^{x_{i}}$ are $a_{i}, b_{i}$ and $c_{i}$, we get a 3 -connected cubic graphs in deleting the vertices $x_{i}$ ( $i=1,2,3,4$ ) and connecting the remaining subgraphs as described in Figure 9 In other words we define the cubic graphs denoted $K_{4}\left[G_{1}^{x_{1}}, G_{2} x_{2}, G_{3}^{x_{3}}, G_{4}^{x_{4}}\right]$ whose vertex set is

$$
\bigcup_{i \in\{1,2,3,4\}} V\left(G_{i}^{x_{i}}\right)-\bigcup_{i \in\{1,2,3,4\}}\left\{x_{i}\right\}
$$

while the edge set is

$$
\bigcup_{i \in\{1,2,3,4\}} E\left(G_{i}^{x_{i}}\right)-\bigcup_{i \in\{1,2,3,4\}}\left\{a_{i} x_{i}, b_{i} x_{i}, c_{i} x_{i}\right\} \bigcup\left\{a_{1} c_{3}, b_{1} a_{4}, c_{1} c_{2}, b_{2} c_{4}, a_{2} c_{3}, b_{3} b_{4}\right\}
$$

For convenience $G_{i}(i \in\{1,2,3,4\})$ will denote the induced subgraph of $G_{i}^{x_{i}}$ where the vertex $x_{i}$ has been deleted.
Proposition 4.2. Let $G_{1}^{x_{1}}, G_{2}^{x_{2}}, G_{3}^{x_{3}}$ and $G_{4}^{x_{4}}$ be 3 -connected cubic graphs such that $\tau\left(G_{1}^{x_{1}}\right) \geq 5, \tau\left(G_{2}^{x_{2}}\right) \geq 5, G_{4}$ is reduced to a single vertex, say $x$. Then $\tau\left(K_{4}\left[G_{1}^{x_{1}}, G_{2}^{x_{2}}, G_{3}^{x_{3}}, G_{4}^{y_{2}}\right]\right) \geq 5$.

Proof Let us denote $G=K_{4}\left[G_{1}^{x_{1}}, G_{2}^{x_{2}}, G_{3}^{x_{3}}, G_{4}^{x_{4}}\right]$. Observe that $a_{4}=b_{4}=c_{4}=x$.
If $\tau(G)=3$ the graph $G$ would be 3 -edge colourable, but in considering the 3 -edge cut $\left\{a_{1} a_{3}, b_{1} a_{4}, c_{1} c_{2}\right\}$ we would have $\chi^{\prime}\left(G_{1}^{x_{1}}\right)=3$, a contradiction. Hence


Figure 9. $K_{4}\left[G_{1}^{x_{1}}, G_{2}^{x_{2}}, G_{3}^{x_{3}}, G_{4}^{x_{4}}\right]$
$\tau(G) \geq 4$. Assume that $\tau(G)=4$ and let $\mathcal{M}=\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ be a covering of its edge set into 4 perfect matchings.

From Item 2 of Proposition 2.3 there is perfect matching $M_{i} \in \mathcal{M}$ such that $\left\{a_{1} a_{3}, b_{1} a_{4}, c_{1} c_{2}\right\} \subseteq M_{i}$. For the same reason, there is perfect matching $M_{j} \in \mathcal{M}$ such that $\left\{c_{1} c_{2}, x b_{2} c_{3} a_{2}\right\} \subseteq M_{j}$. We certainly have $i \neq j$, otherwise the vertex $x$ is incident twice to the same perfect matching $M_{i}$. Without loss of generality, we suppose that $i=1$ and $j=2$. Hence $c_{1} c_{2} \in M_{1} \cap M_{2}$. If we consider the 3 -edge cut $\left\{a_{1} a_{3}, b_{1} a_{4}, c_{1} c_{2}\right\}$, since each perfect matching must intersect this cut in an odd number of edges we must have one of the edges $a_{1} a_{3}$ or $b_{1} x$ in $M_{3}$ while the other must be in $M_{4}$. The same holds with the 3 -edge cut $\left\{c_{1} c_{2}, x b_{2} c_{3} a_{2}\right\}$ and the edges $b_{2} x$ and $a_{2} c_{3}$. Hence, we can suppose that $a_{1} a_{3} \in M_{1} \cap M_{3}$ and $b_{1} x \in M_{1} \cap M_{4}$ as well that $b_{2} x \in M_{2} \cap M_{3}$ and $a_{2} c_{3} \in M_{2} \cap M_{4}$, a contradiction since the set of edges contained into 2 perfect matchings of $\mathcal{M}$ is a perfect matching by Item 2 of Proposition 3.1 and $x$ is incident to two such edges.

We do not know any cyclically 4-edge connected cubic graph, distinct from the Petersen graph, having a perfect matching index at least 5 and we propose as an open problem:

Problem 4.3. Is there any cyclically 4-edge connected cubic graph distinct from the Petersen graph with a perfect matching index at least 5?

## 5. Technical tools.

In fact Theorem 3.5 can be generalized. Let $M$ be a perfect matching, a set $A \subseteq E(G)$ is a $M$-balanced matching when we can find a perfect matchings $M^{\prime}$ such that $A=M \cap M^{\prime}$. Assume that $\mathcal{M}=\{A, B, C\}$ are 3 pairwise disjoint
$M$-balanced matchings, we shall say that $\mathcal{M}$ is a good family whenever the two following conditions are fulfilled:
i Every odd cycle $C$ of $G \backslash M$ has exactly one vertex incident with one edge of each subset of $\mathcal{M}$ and the three paths determined by these vertices on $C$ are odd.
ii For every even cycle of $G \backslash M$ there are at least two matchings of $\mathcal{M}$ with no edge incident to the cycle.

Theorem 5.1. Let $G$ be a bridgeless cubic graph together with a good family $\mathcal{M}$. Then $\tau(G) \leq 4$.

Sketch of the proof Let us denote $M_{A}$ (resp. $M_{B}, M_{C}$ ) a perfect matching such that $M_{A} \cap M=A$ (resp. $M_{B} \cap M=B, M_{C} \cap M=C$ ).

Let $\mathcal{C}$ be a cycle of the 2 -factor $G-M$.
When $\mathcal{C}$ is an even cycle, there are precisely two matchings on $\mathcal{C}$, namely $M_{\mathcal{C}}$ and $M_{\mathcal{C}}^{\prime}$ such that $M_{\mathcal{C}} \cup M_{\mathcal{C}}^{\prime}$ covers all the edge-set of $\mathcal{C}$. Since there are at least two matchings in $\left\{M_{A}, M_{B}, M_{C}\right\}$ that are not incident to $\mathcal{C}$, say $M_{A}$ and $M_{B}$, up to a redistribution of the edges in $M_{A} \cap \mathcal{C}$ and $M_{B} \cap \mathcal{C}$ we may assume that $M_{\mathcal{C}} \subset M_{A}$ and $M_{\mathcal{C}}^{\prime} \subset M_{B}$.

If $\mathcal{C}$ is an odd cycle we know that $\mathcal{C}$ has precisely one vertex which is incident to $A$ say $a$, one vertex which is incident to $B$ say $b$, one vertex which is incident to $C$ say $c$. Without loss of generality we may assume that there is an orientation of $\mathcal{C}$ such that the path $\mathcal{C}(a, b)$ has odd length and the vertex $c$ in $\mathcal{C}(b, a)$. We know that the path $\mathcal{C}(b, c)$ is odd thus the edge-set of $\mathcal{C}$ is covered with $M_{A} \cup M_{B} \cup M_{C}$.

In the same manner we can obtain a theorem insuring the existence of a 5covering.

Assume that $\mathcal{M}=\{A, B, C, D\}$ are 4 pairwise disjoint $M$-balanced matchings, we shall say that $\mathcal{M}$ is a ice family whenever the two following conditions are fulfilled:
i Every odd cycle $C$ of $G \backslash M$ has exactly one vertex incident with one edge of each subset of $\mathcal{M}$ and at least two disjoint paths determined by these vertices on $C$ are odd.
ii For every even cycle of $G \backslash M$ there are at least two matchings of $\mathcal{M}$ with no edge incident to the cycle.

Theorem 5.2. Let $G$ be a bridgeless cubic graph together with a nice family $\mathcal{M}$. Then $\tau(G) \leq 5$.

Proof Let us denote $M_{A}$ (resp. $M_{B}, M_{C}, M_{D}$ ) a perfect matching such that $M_{A} \cap M=A\left(\right.$ resp. $\left.M_{B} \cap M=B, M_{C} \cap M=C, M_{D} \cap M=D\right)$.

Let $\mathcal{C}$ be a cycle of the 2 -factor $G-M$.
When $\mathcal{C}$ is an even cycle, there is at least two matchings in $\left\{M_{A}, M_{B}, M_{C}, M_{D}\right\}$ that are not incident to $\mathcal{C}$, say $M_{1}$ and $M_{2}$. As in Theorem5.1 we may assume that the edge-set of $\mathcal{C}$ is a subset of $M_{1} \cup M_{2}$.

If $\mathcal{C}$ is an odd cycle we know that $\mathcal{C}$ has precisely one vertex which is incident to $A$ say $a$, one vertex which is incident to $B$ say $b$, one vertex which is incident to $C$ say $c$, one vertex which is incident to $D$ say $d$. Without loss of generality we may assume that there is an orientation of $\mathcal{C}$ such that the path $\mathcal{C}(a, b)$ has odd length and the vertices $c$ and $d$ are in this order in $(b, a)$. We can suppose that the path
$(b, c)$ is even otherwise the edge-set of $\mathcal{C}$ would be covered with $M_{A} \cup M_{B} \cup M_{C}$. But now, since $\mathcal{C}$ is an odd cycle the path $\mathcal{C}(d, a)$ has odd length and the edge-set of $\mathcal{C}$ is a subset of $M_{A} \cup M_{B} \cup M_{D}$ and $\left(M, M_{A}, M_{B}, M_{C}, M_{D}\right)$ is a 5 -covering.

In a forthcoming paper [5] we shall give an analogous theorem insuring the existence of a Fulkerson covering and some applications.

## 6. OdD OR EVEN COVERINGS.

A covering of a bridgeless cubic graph being a set of perfect matchings such that every edge is contained in at least one perfect matching, we define an odd covering as a covering such that each edge is contained in an odd number of the members of the covering. In the same way, an even covering is a covering such that each edge is contained in an even number (at least 2 ) members of the covering. The size of an odd (or even) covering is its number of members. As soon as a covering is given an even covering is obtained by taking each perfect matching twice.

Proposition 6.1. Let $G$ be bridgeless cubic graph such that $\tau(G)=4$. Then $G$ has an odd covering of size 5.
Proof Let $G$ be a cubic graph such that $\tau(G)=4$ and let $\mathcal{M}=\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ be a covering of its edge set into 4 perfect matchings. Let $M$ be the perfect matching formed with the edges contained in exactly two perfect matchings of $\mathcal{M}$. Then we can check that $\left\{M, M_{1}, M_{2}, M_{3}, M_{4}\right\}$ cover every edge of $G$ either one time or three times.

Proposition 6.2. Let $G$ be a bridgeless cubic graph together with an odd covering $\mathcal{M}$ of size $k$. Then either $G$ has an odd covering of size $k-2$ or $\forall M, M^{\prime} \in \mathcal{M}$ we have $M \neq M^{\prime}$.

Proof Assume that there are two identical perfect matchings $M$ and $M^{\prime}$ in $\mathcal{M}$. Each edge $e$ covered by $M$ (and thus $M^{\prime}$ ) must be covered by at least another perfect matching $M_{e}$ and the set $\mathcal{M}-\left\{M, M^{\prime}\right\}$ is still an odd covering. The result follows.

Proposition 6.3. The Petersen graph has no odd covering.
Proof Let $\mathcal{M}$ be an odd covering of the Petersen graph with minimum size. Then, by Proposition $6.2 \mathcal{M}$ must be a set of distinct perfect matchings. The Petersen graph has exactly 6 distinct perfect matchings (inducing a Fulkerson covering, that is an even covering) and it is an easy task to check that any subset of 5 perfect matchings is not an odd covering. Since $\tau($ Petersen $)=5$, the result follows.

Seymour ( $[12]$ ) remarked that the edge set of the Petersen graph is not expressible as a symmetric difference $(\bmod 2)$ of its perfects matchings.

Problem 6.4. Which bridgeless cubic graph can be provided with an odd covering?
We remark that 3 -edge-colorable cubic graphs as well as bridgeless cubic graph with perfect matching index 4 have an odd covering (with size 3 and 5 respectively).
Proposition 6.5. Let $G$ be bridgeless cubic graph without any odd covering and let $H$ be a connected bipartite cubic graph. Then $G \otimes H$ has no odd covering.

Proof Assume that $G \otimes H$ can be provided with an odd covering $\mathcal{M}$. Let $\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\}$ (with $a, b$ and $c$ in $G$ and $a^{\prime}, b^{\prime}$ and $c^{\prime}$ in $H$ ) be the principal 3-edge cut of $G \otimes H$. None of the perfect matchings of $\mathcal{M}$ can contain the principal 3-edge cut since the set of vertices of $H$ which must be saturated by such a perfect matching is partitioned into 2 independent sets whose size differs by one unit. Hence every perfect matching of $M \in \mathcal{M}$ contains exactly one edge in $\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\}$ and leads to a perfect matching $M^{\prime}$ of $G$. The set $\mathcal{M}^{\prime}$ of perfect matchings so obtained is an odd covering of $G$, a contradiction.

Proposition 6.6. Let $G_{1}^{x_{1}}$ and $G_{2}^{x_{2}}$ be cubic graphs with distinguished vertices $x_{1}$ and $x_{2}$ such that $\tau\left(G_{i}^{x_{i}}\right) \geq 5(i=1,2)$ and $\tau_{\text {odd }}\left(G_{i}^{x_{i}}\right) \neq 5(i=1,2)$. Let $G_{4}^{x^{\prime}}$ and $G_{3}^{y^{\prime}}$ be two copies of the cubic graph on two vertices and $G=K_{4}\left[G_{1}^{x_{1}}, G_{2}^{x_{2}}, G_{3}^{y^{\prime}}, G_{4}^{x^{\prime}}\right]$, then $\tau(G) \geq 5$ and if $\tau_{\text {odd }} G$ is defined then $\tau_{\text {odd }}(G) \neq 5$.

Proof Let $x$ and $y$ be respectively the unique vertex of $G_{4}, G_{3}$ (see Figure 9 where $G_{4}$ is reduced to a single vertex $x$ and $G_{3}$ is reduced to $y$ ). We know by Proposition 4.2 that $\tau(G) \geq 5$. Assume that $\tau_{o d d}(G)=5$ and let $\mathcal{M}=\left\{M_{1}, M_{2}, M_{3}, M_{4}, M_{5}\right\}$ be an odd 5 -covering. The perfect matchings of $\mathcal{M}$ are pairwise distinct otherwise by Proposition 6.2 either $G_{1}^{x_{1}}$ or $G_{2}^{x_{2}}$ would be 3-edge colorable, a contradiction. Observe that each vertex is incident to one edge that belongs to precisely three matchings of $\mathcal{M}$, the two other edges being covered only once. Moreover, the set of edges that belong to 3 matchings of $\mathcal{M}$ is a perfect matching itself.

The 3-edge cut $\left\{a_{1} y, b_{1} x, c_{1} c_{2}\right\}$ must be entirely contained in some matching of $\mathcal{M}$, say $M_{i}$ otherwise we would have a 5 - odd covering of $G_{1}^{x_{1}}$, a contradiction. Similarly there is a perfect matching in $\mathcal{M}$, say $M_{j}$ that contains the edges $c_{1} c_{2}$, $b_{2} x, a_{2} y$. Thus the edge $c_{1} c_{2}$ must belong to 3 matchings of $\mathcal{M}$. Without loss of generality we assume that $i=1, j=2$ and $c_{1} c_{2} \in M_{1} \cap M_{2} \cap M_{3}$.

If $y a_{1} \in M_{3}$, since a perfect matching intersects any odd cut in an odd number of edges we have $x b_{1} \in M_{3}$, it follows that the edge $y a_{1}$ must be a member of a third matching of $\mathcal{M}$ as well as the edge $x b_{1}$. If for some $k$ we have $y a_{1} \in M_{k}$ and $x b_{1} \in M_{k}, k \in\{2,4,5\}, k$ being obviously distinct from $2 M_{k}$ intersects the 3 -edge cut in an even number of edges, a contradiction. Hence we may assume that $y a_{1} \in M_{4}$ and $x b_{1} \in M_{5}$. But now the edge $x y$ is covered by none of the matchings of $\mathcal{M}$, a contradiction. Consequently $y a_{1} \notin M_{3}$, similarly $x b_{1} \notin M_{3}$.

If $y a_{1} \in M_{4}$ this edge must belong to a third matching of $\mathcal{M}$ which is $M_{5}$. Since the set of edges that are covered 3 times is a perfect matching $x b_{1} \in M_{4} \cap M_{5}$. But in this case the edge $c_{1} c_{2}$ would belong to $M_{4}$ and $M_{5}$, a contradiction.

It follows that $y a_{1}$ as well as $x b_{2}$ are covered only once and the edge $x y$ belongs to 3 matchings of $\mathcal{M}$, that is $x y \in M_{3} \cap M_{4} \cap M_{5}$. But now, neither $M_{4}$ nor $M_{5}$ intersect the edge-cut $\left\{y a_{1}, x b_{1}, c_{1} c_{2}\right\}$ a contradiction since a perfect matching must intersect every odd edge-cut in an odd number of edges.

The graph $G$ depicted in Figure 10 is an example of cubic graphs with a 7 -odd covering and a perfect matching index equals to 5 . We know by Proposition 6.6


Figure 10. A graph $G$ such that $\tau(G)=5$ and $\tau_{o d d}(G)=7$.
that $\tau_{o d d}(G) \geq 7$. As a matter of fact, this graph has 20 distinct perfect matchings and among all the 7 -tuples of perfect matchings (77520) 64 form an odd-covering. Let us give below such a 7 -tuple.

$$
\begin{aligned}
& \{0-10,1-5,2-9,3-13,4-8,6-7,11-15,12-19,14-18,16-17\} \\
& \{0-1,2-8,3-4,5-9,6-7,10-12,11-15,13-14,16-18,17-19\} \\
& \{0-1,2-10,3-13,4-5,6-8,7-9,11-15,12-19,14-18,16-17\} \\
& \{0-1,2-10,3-13,4-8,5-9,6-7,11-16,12-18,14-15,17-19\} \\
& \{0-11,1-5,2-9,3-13,4-8,6-7,10-12,14-15,16-18,17-19\} \\
& \{0-11,1-5,2-9,3-13,4-8,6-7,10-12,14-18,15-19,16-17\} \\
& \{0-11,1-6,2-10,3-7,4-8,5-9,12-19,13-17,14-15,16-18\}
\end{aligned}
$$

Moreover the following perfect matchings form a 5 -covering.
$\{0-1,2-10,3-13,6-8,7-9,4-5,12-19,16-17,14-18,11-15\}$
$\{2-9,1-6,7-9,4-5,3-13,0-11,10-12,14-15,16-18,17-19\}$
$\{1-6,7-9,2-8,5-4,0-10,12-18,17-19,14-15,11-15,3-13\}$
$\{0-1,2-8,6-7,5-9,3-4,10-12,13-17,14-18,15-19,11-16\}$
$\{1-6,5-9,4-8,3-7,2-10,0-11,12-18,13-14,15-19,16-17\}$

We do not know any example of graph $G$ for which $\tau_{o d d}$ is defined and with $\tau(G)=\tau_{\text {odd }}(G)=5$. We just observe that in such a graph every vertex would be incident to an edge belonging to 3 perfect matchings and to precisely two edges covered only once. The set of edges covered by 3 perfect matchings being a perfect matching itself.

Problem 6.7. Is it true that every bridgeless cubic graph has an even covering where each edge appears twice or 4 times?

The answer is yes for 3 -edge-colorable cubic graphs and for bridgeless cubic graphs with perfect matching index 4 since such graphs have an even covering of size 8.

## References

1. D. Blanuša, Problem ceteriju bora (The problem of four colors), Hrvatsko Prirodoslovono Društvo Glasnik Mat-Fiz. Astr. 1 (1946), 31-42.
2. M. Ellingham, Petersen subdivisions in some regular graphs, Congre. Numer. 44 (1984), 3340.
3. G. Fan and A. Raspaud, Fulkerson's conjecture and circuit covers, J. Comb. Theory Ser. B 61 (1994), 133-138.
4. J.L. Fouquet and J.M. Vanherpe, On a conjecture from Kaiser and Raspaud on cubic graphs, Tech. report, LIFO, september 2008.
5. 
6. D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming 1 (1971), no. 69, 168-194.
7. M. Ghebleh, Circular Chromatic Index of Generalized Blanuša Snarks., The Electronic Journal of Combinatorics (2008).
8. R. Isaacs, Infinite families of non-trivial trivalent graphs which are not Tait colorable, Am. Math. Monthly 82 (1975), 221-239.
9. J. Mazák, Circular chromatic index of type 1 Blanuša snarks, J. Graph Theory 59 (2008), no. 2, 89-96.
10. T. Schönberger, Ein Beweis des Peterschen Graphensatzes, Acta Sci. Math. Szeged 7 (1934), 5157.
11. P.D. Seymour, Graph theory and related topics, pp. 342-355, J.A. Bondy and U.S.R. Murty, eds., Academic Press, 1979.
12. -_, On Multi-Colourings of Cubic graphs, and Conjectures of Fulkerson and Tutte, Proceedings of the London Mathematical Society 38 (1979), no. 3, 423-460.
13. G. Szekerès, Polyhedral decompositions of cubic graphs, Bull. Austral. Math. Soc. 8 (1973), 367-387.
14. S. Norine T. Kaiser, D. Král, Unions of perfect matchings in cubic graphs, Electronic Notes in Discrete Mathematics 22 (2005), 341-345.
15. W.T. Tutte, A contribution on the theory of chromatic polynomial, Canad. J. Math 6 (1954), 80-91.
16. J. J. Watkins, Graph theory and its applications, ch. Snarks, New York Acad. Sci., 1989.
17. R. X.Hao, J. B Niu, X. F. Wang, C. Q Zhang, and T. Y. Zhang, A note on bergefulkerson coloring, Discrete Mathematics In Press (2009).
18. C-Q Zhang, Integer flows and cycle covers of graphs, Pure and Applied Mathematics, Dekker, 1997.
L.I.F.O., Faculté des Sciences, B.P. 6759 Université D'Orléans.

[^0]:    1991 Mathematics Subject Classification. 035 C.
    Key words and phrases. Cubic graph; Perfect Matchings;

