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Abstract

In this work, the performance of a dual-hop variable gain amplify-and-forward (AF) mixed radio frequency (RF)/free space
optics (FSO) system is analyzed in details. As variable gain AF relay network is considered, processing delay results in outdated
channel state information (CSI) during amplification at the relay. For general applicability, the RF link is modeled with the
generalized Nakagami-m fading. The FSO link is modeled with the Gamma-Gamma distribution which is affected with the
atmospheric turbulence and pointing error impairments, and both the intensity modulation with direct detection (IM/DD) and
heterodyne detection are employed at the FSO receiver. In this context, analytical expressions of outage probability and ergodic
capacity are derived in terms of Meijer-G function and extended generalized bivariate Meijer-G function. For diversity order,
asymptotic outage probability expression is also derived. Further, cumulative distribution function based generalized average
symbol error rate expressions for various quadrature amplitude modulation (QAM) schemes such as hexagonal QAM, rectangular
QAM, and cross QAM are derived in terms of Meijer-G function. Furthermore, a detailed comparative study of various modulation
schemes is presented and the impact of pointing error, atmospheric turbulence, outdated CSI, and Nakagami-m parameter are
highlighted on the system performance. Finally, all the analytical results are verified through Monte-Carlo simulations.

Index Terms

Nakagami-m, Gamma-Gamma distribution, pointing errors, outdated CSI, ASER, adaptive modulation, hexagonal QAM
(HQAM), cross QAM (XQAM), rectangular QAM (RQAM).

I. INTRODUCTION

Power efficient high data-rate communication for the future wireless communication systems can be achieved by minimizing

the average transmit power for a given bit error rate (BER) or symbol error rate (SER). Typically, higher data-rates for the

available bandwidth require high transmit power for the same performance. Adaptive modulation is one such solution which

provides spectrally efficient high data-rate transmission and optimum power utilization for the future wireless communication

systems [1]. For spectrally efficient high-data rate transmission, higher order modulation techniques such as the family of

quadrature amplitude modulations (QAM) (i.e. squared QAM (SQAM), rectangular QAM (RQAM), cross QAM (XQAM),

and hexagonal QAM (HQAM)) due to their high power and bandwidth efficiency have received enhanced consideration in

present and future wireless communication systems. In SQAM, constellation points are placed at the vertexes of a squared

lattice, valid only for the constellations of even power of 2. For better adaptation of given channel conditions, higher flexibility

including odd power of 2 constellations can improve the spectral efficiency. Thus, both the even and odd (power of 2)

constellations are considered in this work. For odd power of 2 constellations, RQAM is commonly preferred. RQAM is a

versatile modulation scheme because orthogonal binary frequency shift keying (OBFSK), quadrature phase shift keying (QPSK),

multi-level amplitude shift keying (ASK), and SQAM are its special cases. However, RQAM is not a good choice for odd

power of 2 constellations, and instead a modified XQAM constellation is preferred over RQAM due to its reduced peak-to-

average-power ratio (PAPR) and improved power efficiency. XQAM constellations are obtained by removing the outer corner

points of RQAM constellations and placing them in a cross shape which minimizes the average power of the constellation [2].

The ever increasing demand for high-data rates further directs towards the formation of an optimum two dimensional

(2D) hexagonal shaped constellation which is referred to as HQAM. For a given optimum Euclidean distance between the

constellation points, HQAM consists of densest 2D packing which enables improved power efficiency with lower peak and

average powers as the constellation size (M ) increases. Hence, HQAM provides improved BER/SER performance than the

other QAM schemes [2]–[4]. On the basis of trade-off between the detection complexity and power efficiency, the HQAM

constellations are further categorized into regular and irregular HQAM structures. Although, regular HQAM has comparatively

simpler detection, its power efficiency or BER performance can further be improved for larger values of M . The irregular
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HQAM provides improved power efficiency and optimum performance, however, at the cost of increased detection complexity

[1].

Carrier recovery and automatic gain control (AGC) are required when SQAM is opted with differential coding, which are

complex to achieve in practice. There were some serious issues with carrier recovery as false locks were observed not only at

multiple of 900, but also at 26 + (l × 90) and 52 + (l × 90) degrees with l = 0, 1, 2, 3 [5]. To avoid the use of AGC and to

mitigate the false lock problem, star QAM constellation was proposed. Star QAM is a special case of circular amplitude-phase

shift keying (APSK), which outperforms the SQAM in peak power limited systems. It consists of multiple concentric PSK

circles with equal constellation points in each circle and identical phase angle between them. Amplitude and phase of the

constellation points are mutually independent, hence, differential detection can be applied successfully rather than the coherent

detection, which omits the need of accurate phase tracking and channel estimation at the receiver. Due to the above favorable

features, star QAM is adopted in various satellite communication standards [6], [7] 1.

In parallel, over the last few years, free space optics (FSO) has tremendously been studied as a substitute to the radio

frequency (RF) systems due to its low cost and easy to install system which operates in unlicensed spectrum. FSO also uses

lower power and provides larger bandwidth for more number of users as compared to RF. It is a line-of-sight (LoS) technique

which provides improved transmission security and immunity from the electromagnetic interference in a given unlicensed

spectrum. However, atmospheric turbulence fluctuates both the intensity and phase of the received signal which causes severe

performance degradation [8]. Out of the several statistical channel models proposed for the turbulence induced FSO channels,

Gamma-Gamma fading model is most commonly preferred which consists of both the small and large scale atmospheric

fluctuations. FSO systems are sensitive to weather conditions including fog, rain, aerosols etc. which significantly affects

reliability of the FSO systems. The FSO installations are affected by wind loads, earthquakes or thermal expansion which

cause the beam to deviate from its original path, thereby resulting in pointing error. Pointing error significantly deteriorates

the performance of the FSO link especially when transmitter and receiver apertures are placed on top of high rise buildings.

Cooperative relaying has emerged as one of the solutions to counter the turbulence induced fading and increasing the range

of FSO systems. Relaying takes the advantage of shorter hops to improve the performance of FSO link as well as coverage

of the system. Recently, there has been a growing interest in mixed relay systems consisting of RF and FSO links together

to improve the reliability of an FSO network. Further, mixed RF/FSO network can fill up the connectivity gap between the

last mile access networks and a backbone network, where maximum possible number of RF signals can be accumulated into

single FSO link which allows the system to achieve maximum possible capacity. Since, RF and FSO links operate at different

frequency bands, there is no interference between them and hence, RF link can be used in other applications simultaneously

when FSO link is communicating in second time phase.

A. Previous Work

In the literature, many papers on the performance analysis of a dual-hop amplify-and-forward (AF) RF/FSO system under

different fading scenarios for both the intensity modulation with direct detection (IM/DD) and heterodyne detection have

been reported. In [9], a dual-hop fixed gain asymmetric RF/FSO system with Rayleigh and Gamma-Gamma distributions,

respectively for RF and FSO links is considered and exact closed-form expression of outage probability is derived. For the

same system model, work is extended in [10] where closed-form expressions of the ergodic capacity, SER, BER, and amount

of fading are derived, and the impact of pointing error is observed on them. Outage probability expression for the fixed-gain

RF/FSO system with Rayleigh and Málaga distributions, respectively for the RF and FSO links is derived in [11]. In [12], a

dual-hop fixed gain RF/FSO system with Nakagami-m and Gamma-Gamma distributions with pointing error, respectively for

the RF and FSO links is considered; and closed-form expressions of outage probability, average BER for various modulation

schemes, higher order amount of fading, and ergodic capacity are derived. In [13], for a dual-hop fixed gain FSO/RF system

with Gamma-Gamma and Nakagami-m distributions, respectively for the FSO and RF links; closed-form expressions of outage

probability, ergodic capacity, and average BER are derived in terms of bivariate H-Fox function. In [14], performance of a

dual-hop mixed FSO/RF system with energy harvesting is analyzed over pointing error and atmospheric turbulence. For a η−µ
and M distributed mixed RF/FSO system, physical layer security is analyzed in [15] by considering the eavesdropping in RF

link. In [16], a dual-hop mixed RF/FSO system with Gamma-Gamma and Nakagami-m distributions, respectively for the FSO

and RF links and selection combining at the receiver is considered. Further, co-channel interference at both relay and receiver

is considered; outage probability and BER expression for binary modulation schemes are derived. In [17], a dual-hop mixed

RF/FSO system with η− µ and generalized K distributions, respectively for the RF and FSO links is considered; closed-form

expressions of outage probability, ergodic capacity, and BER for binary modulation schemes are derived. In [18], for a mixed

RF/FSO cognitive AF relay network with Nakagami-m and double generalized Gamma distributions, closed-form expressions

of outage and asymptotic outage probabilities are only presented.

1In this work, comparative study of various QAM constellations with a fixed separation of 2d between the constellation points is presented. However, fixed
separation of 2d between constellation points is not maintained in star QAM, and hence, its comparison with the other QAM schemes is not presented due
to the lack of common platform.
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The works presented above consider perfect knowledge of channel state information (CSI) in the RF part which is hardly

available in practice. For variable gain AF relay network, relay continuously monitors the RF link and estimates its CSI

periodically. During the estimation, an error is occurred as the estimated CSI at relay is not same as it was at the time of

transmission, due to the RF channel variations. This imperfect CSI is considered as the outdated CSI at the relay which amplifies

it in the second hop. Thus, the impact of outdated CSI is also considered for the performance analysis in the literature. In [19],

a fixed-gain dual-hop multi-relay RF/FSO system with Rayleigh and Málaga distributions, respectively for the RF and FSO

parts, is considered. Outdated CSI and pointing error are considered in the RF and FSO links, respectively, and the analytical

expressions of outage probability and ergodic capacity are derived while the symbol error probability (SEP) for BPSK scheme

is obtained in integral form only (no closed-form is provided). In [8] and [20], respectively a variable gain RF/FSO single relay

system and fixed-gain RF/FSO multi relay system with Rayleigh and Gamma-Gamma distributions are presented. Outdated

CSI in the RF part and pointing error in the FSO part are considered and closed-form expressions of the outage probability

and average BER are derived.

In the literature, average SER (ASER) analysis of various higher order QAM schemes over different fading conditions for

various relay or non-relay systems have been considered [1]–[3], [21]–[25]. In [1], generalized BER expression for the regular,

irregular, and sub-optimum triangular QAM (TQAM) schemes is derived and detection complexity is compared between them.

In [2], closed-form ASER expressions of HQAM, RQAM, XQAM, De-QPSK, and π/4-QPSK are derived for a multi-relay

system over independent and non-identically distributed (i.n.i.d.) Nakagami-m fading links. For a single relay AF network,

closed-form expressions for the outage probability, asymptotic outage probability, and ASER of HQAM and RQAM schemes

are derived in [3] over i.n.i.d. Nakagami-m fading links with imperfect CSI. In [4], a multi-relay AF system with MRC receiver

over i.n.i.d. Nakagami-m fading channels with both integer and non-integer fading parameters is considered in presence of

imperfect CSI and non-linear power amplifier at the relay, and analytical expressions of outage probability, asymptotic outage

probability, and ASER of HQAM, RQAM, and XQAM schemes are derived. In [21], for a multi-branch non-relay system,

exact ASER expressions of RQAM, differentially encoded QPSK (De-QPSK) and π/4-QPSK over i.n.i.d. Nakagami-m fading

channels are derived. For a non-relay system, generalized SEP expression for HQAM scheme is derived in [23] over Rayleigh

fading link. In [26]–[28], ASER performance of various TQAM (or HQAM) constellations is analyzed for non-relaying systems

over additive white Gaussian noise (AWGN) channel.

B. Contribution

To the best of authors’ knowledge, performance of futuristic and efficient modulation schemes on dual-hop mixed RF/FSO

AF relay system by considering Nakagami-m and Gamma-Gamma distributions for RF and FSO links, respectively has not

been considered. Along with this, practical constraint of outdated CSI in RF link and atmospheric turbulence influenced FSO

link with pointing error is not analyzed in the literature. Nakagami-m fading is considered to model the RF link due to its

generalization to model variety of fading channels with m ≥ 1/2. From this prospective, a variable-gain mixed RF/FSO AF

relay system is considered to exploit the benefits of FSO link in non-LoS (NLoS) communication between the end users.

In practice, perfect knowledge of CSI is not available at the receivers. A relay continuously monitors the RF link and

estimates its CSI periodically in the first hop. In the second hop, the estimated CSI is outdated during the amplification at the

relay. Thus, in the mixed RF/FSO system, impact of the outdated CSI on the overall system performance is also highlighted.

This is further exacerbated since CSI is estimated at the receiver. Furthermore, FSO link is influenced with the atmospheric

turbulence and pointing error. Hence, study of robustness of higher order modulation schemes in the RF/FSO system with

practical constraints is pertinent. The major contributions of this work are:

• Analytical expression of the outage probability is obtained and the impact of pointing error, atmospheric turbulence,

outdated CSI, and type of detection are observed on the outage performance.

• Outage probability expressions for the two extreme conditions when there is no correlation (ρ = 0) between the actual

CSI and outdated CSI, and when both are perfectly correlated (ρ = 1) are also obtained. Further, asymptotic outage

probability expression is derived at high SNRs to find out the diversity order of the considered system.

• Ergodic capacity expression for the considered system is derived which is expressed in terms of extended generalized

bivariate Meijer-G function (EGBMGF). Further, impact of pointing error, atmospheric turbulence, outdated CSI, and type

of detection are observed on it.

• Analytical ASER expressions for the higher order QAM techniques (specially HQAM and XQAM) for RF/FSO systems

are not available. Further, irregular HQAM constellations after the modifications in the regular HQAM structure are also

presented for the optimum SER performance. For this, cumulative distribution function (CDF) based ASER expressions

for the general order HQAM, RQAM, and XQAM schemes are derived, and the combined impact of pointing error,

atmospheric turbulence, and outdated CSI are observed on the ASER performance.

• For various regular and irregular HQAM constellations, parameters K, τ , and τc are presented in Table I. Generalized

approximated expressions for K, τ , and τc for irregular HQAM scheme in terms of M are presented for the first time.

Expressions and values of K, τ , and τc for large constellations are given in Table I.

• Comparative study between various QAM schemes for various constellation sizes (up-to 1024-ary) is also presented which

concludes irregular HQAM scheme as the optimum modulation scheme.
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The paper is organized as follows. In Section II, the system and channel models are presented. Section III consists of outage

probability analysis. Closed-form ergodic capacity expression is presented in Section IV. In Section V, generalized ASER

analysis of various QAM schemes is presented. Analytical and simulation results with important insights are presented in

Section VI. Finally, paper concludes in Section VII.

II. SYSTEM AND CHANNEL MODELS

In this work, a dual-hop mixed RF/FSO AF relay system is considered where Nakagami-m and Gamma-Gamma distributions

are assumed for the RF and FSO links, respectively. Outdated CSI in RF part and atmospheric turbulence influenced FSO link

with pointing error is considered. Transmission of data from source (S) to destination (D) takes place via single relay (R) in

two communication phases. In the first phase, received signal at R can be written as

Yr = hsrs+ nsr, (1)

where s is the transmitted signal with E[|s|2] = 1. Further, hsr represents the fading amplitude of the S − R link with

E[|hsr|2] = Ps, is considered to be Nakagami-m distributed. Here, Ps represents the transmit power at S. Also, nsr is the

AWGN with 0 mean and Ωsr variance associated to the S −R link.

In second communication phase, R amplifies the signal received from S with an amplification gain G, and forwards it to D
via FSO link. Channel parameter of S−R link is estimated at the relay during amplification which is assumed to be outdated.

The gain at R can be given as G2 = 1

|ĥsr|2+Ωsr
, where ĥsr represents the delayed version of hsr.

After subcarrier intensity modulation (SIM) application at R, RF signal is converted into optical signal as

Yopt = Pr(1 +m0GYr), (2)

where m0 represents the modulation index and Pr is the average transmitted optical power. Removing the DC bias and

converting the optical signal into RF one, signal received at D can be expressed as

Yd = hrdPrGηYr + nrd, (3)

where hrd is the fading amplitude of the FSO link which is considered to be Gamma-Gamma distributed. nrd is the AWGN

with 0 mean and Ωrd variance associated to the R−D link. Also, η represents the optical-to-electrical conversion coefficient

which is assumed to be 1 throughout the analysis. Invoking (1) in (3), we obtain

Yd = PrGηhsrhrdx+ PrGηhrdnsr + nrd. (4)

Substituting the amplification gain G in (4), and considering the medium and high SNR regime, end-to-end (e2e) instantaneous

SNR at D can be written as

γ =
γ1γ2

γ̂1 + γ2
, (5)

where γ1 = |hsr|2
Ωsr

, γ̂1 = |ĥsr|2
Ωsr

, and γ2 =
|hrd|2P2

r η2

Ωrd
.

The RF link (S−R) is characterized with the generalized Nakagami-m fading. Thus, the SNR of S−D link will be Gamma

distributed. Hence, the probability density function (PDF) and CDF of its SNR can be given as

fγ1(γ1) =
[ 1

Γ(m)

(m

γ̄1

)m

γ1
m−1e

−mγ1
γ̄1

]

,

Fγ1(γ1) =
[

1−
Γ
(

m, mγ1
γ̄1

)

Γ(m)

]

, (6)

respectively, where γ̄(·) represents the average SNR of the link. Further, the FSO link (R −D) experiences Gamma-Gamma

fading with the pointing error impairment. Thus, generalized PDF and CDF expressions of its SNR for IM/DD or heterodyne

detection can be given as [13], [29]

fγ2(γ2) =
ξ2

iγ2Γ(α)Γ(β)
G

3,0
1,3

[ ξ2αβ

ξ2 + 1

( γ2
Ωi

)1/i∣
∣
∣

ξ2+1

ξ2,α,β

]

,

Fγ2(γ2) = AG
3i,1
i+1,3i+1

[ B

Ωi
γ2

∣
∣
∣

1,µ1

µ2,0

]

, (7)

respectively, where Gm,n
p,q

[
x
∣
∣
a1,...,ap

b1,...,bq

]
represents the Meijer G-function. Here, i denotes the type of detection i.e. i = 1 represents

heterodyne detection, whereas i = 2 represents IM/DD detection. Ωi represents the average SNR of the R −D link for both

the detection cases i.e. Ω1 = ξ2

ξ2+1
γ̄2 =

ξ>>1
γ̄2 and Ω2 =

ξ>>1
γ̄2

αβξ2(ξ2+2)
(α+1)(β+1)(ξ2+1)2

, where ξ represents the ratio of equivalent

beam radius and the pointing error displacement standard deviation (jitter) at the receiver. Further, A = iα+β−2ξ2

(2π)i−1Γ(α)Γ(β)
and
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B =
(

ξ2αβ
(ξ2+1)i2

)i

, where α and β are the atmospheric turbulence influenced fading/scintillation parameters [13], [30]. Small

values of α and β correspond to the severe fading conditions. Furthermore, µ1 =
(

ξ2+1
i , · · ·, ξ2+i

i

)

comprises of i terms, and

µ2 =
(

ξ2

i , · · ·,
ξ2+i−1

i , α
i , · · ·, α+i−1

i , β
i , · · ·,

β+i−1
i

)

comprises of 3i terms.

III. OUTAGE PROBABILITY

Outage probability is defined as the probability that the e2e SNR of the considered system reaches below a predefined

threshold (γth), and is given as

Po(γth) = P
( γ1γ2
γ̂1 + γ2

≤ γth

)

= 1−
∫ ∞

0

∫ ∞

0

P
(

γ2 ≥ γthy

x

)

fγ1,γ̂1(x+ γth, y)dxdy,

= 1−
∫ ∞

0

∫ ∞

0

F̄γ2

(γthy

x

)

fγ1,γ̂1(x+ γth, y)dxdy, (8)

where F̄ (·) represents the complementary CDF (CCDF). Further, fγ1,γ̂1(x, y) represents the joint PDF of the SNR of S −R
link with its delayed replica which can be given as [31], [32]

fγ1,γ̂1(x, y) =
(m

γ̄1

)m+1 1

(1− ρ)Γ(m)

(xy

ρ

)m−1
2

e
−(x+y

1−ρ ) m
γ̄1 Im−1

( 2m
√
ρxy

γ̄1(1− ρ)

)

, (9)

where ρ represents the correlation coefficient and Iv(·) represents the vth order modified Bessel function of the first kind.

Substituting values from (7) and (9) into (8), we get

Po(γth) = 1−
∫ ∞

0

∫ ∞

0

[

1−AG
3i,1
i+1,3i+1

[Bγth
Ωi

y

x

∣
∣
∣

1,µ1

µ2,0

]]

×
[(m

γ̄1

)m+1 1

(1− ρ)Γ(m)

( ((x+ γth)y

ρ

)m−1
2

e
−(

x+γth+y

1−ρ ) m
γ̄1 Im−1

(2m
√

ρ(x+ γth)y

γ̄1(1− ρ)

)]

dxdy. (10)

Further, (10) can be represented as

Po(γth) = 1− P1 + P2, (11)

where

P1 =
(m

γ̄1

)m+1 1

(1− ρ)Γ(m)

∫ ∞

0

∫ ∞

0

( ((x+ γth)y

ρ

)m−1
2

e
−(

x+γth+y

1−ρ ) m
γ̄1

× Im−1

(2m
√

ρ(x+ γth)y

γ̄1(1− ρ)

)

dxdy, (12)

P2 =
(m

γ̄1

)m+1 A

(1− ρ)Γ(m)

∫ ∞

0

∫ ∞

0

( ((x+ γth)y

ρ

)m−1
2

e
−(

x+γth+y

1−ρ ) m
γ̄1

× Im−1

(2m
√

ρ(x+ γth)y

γ̄1(1− ρ)

)

G
3i,1
i+1,3i+1

[Bγth
Ωi

y

x

∣
∣
∣

1,µ1

µ2,0

]

dxdy. (13)

The infinite series representation of the vth order modified Bessels function of first kind can be expressed as

Iv(x) =

∞∑

j=0

( 12 )
v+2j

j!Γ(v + j + 1)
xv+2j . (14)

Using (14), P1 can be written as

P1 =
(m

γ̄1

)m+1 1

ρ
(m−1)

2 (1− ρ)Γ(m)

∞∑

j=0

( 12 )
m−1+2j

j!Γ(m+ j)

( 2m
√
ρ

γ̄1(1− ρ)

)m−1+2j

×
∫ ∞

0

∫ ∞

0

(

(x+ γth)y
)m−1+j

e
−(x+γth+y) m

(1−ρ)γ̄1 dxdy. (15)

This can be solved as

P1 = C1C
−2(m+j)
2 Γ(m+ j)Γ(m+ j, C2Gth). (16)
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where C1 =
(

m
γ̄1

)m+1
1

(1−ρ)Γ(m)

∑∞
j=0

1
j!Γ(m+j)C

m−1+2j
2 ρj and C2 = m

(1−ρ)γ̄1
. Substituting the infinite series representation

of the Iv(x) from (14), P2 can be written as

P2 =
(m

γ̄1

)m+1 A

ρ
(m−1)

2 (1− ρ)Γ(m)

∞∑

j=0

( 12 )
m−1+2j

j!Γ(m+ j)

×
∫ ∞

0

∫ ∞

0

(

(x+ γth)y
)m−1+j

e−C2(x+γth+y)G
3i,1
i+1,3i+1

[Bγth
Ωi

y

x

∣
∣
∣

1,µ1

µ2,0

]

dxdy. (17)

Further, (17) can be modified as

P2 = AC1C
−(m+j)
2 e−C2γth

m−1+j
∑

z1=0

(
m− 1 + j

z1

)

γm−1+j−z1
th

×
∫ ∞

0

xz1e−C2xG
2,3i
3i+1,i+2

[ΩiC2

Bγth
x
∣
∣
∣

(1−µ2),1

(m+j),0,(1−µ1)

]

dx. (18)

Solving the required integral with the help of [33, (7.813)], P2 can be derived as

P2 = AC1

m−1+j
∑

z1=0

(
m− 1 + j

z1

)

C
−(m+j+z1+1)
2 γm−1+j−z1

th e−C2γthG
3i+1,2
i+2,3i+2

[Bγth
Ωi

∣
∣
∣

1−(m+j),1,µ1

1+z1,µ2,0

]

. (19)

Thus, from (11), outage probability can be expressed as

Po(γth) = 1− C1

{

C
−2(m+j)
2 Γ(m+ j)Γ(m+ j, C2γth)−A

m−1+j
∑

z1=0

(
m− 1 + j

z1

)

C
−(m+j+z1+1)
2

× γm−1+j−z1
th e−C2γthG

3i+1,2
i+2,3i+2

[Bγth
Ωi

∣
∣
∣

1−(m+j),1,µ1

1+z1,µ2,0

]}

. (20)

If only a single term of summation is considered (j = 0), outage probability is approximated as

Po(γth) = 1− 1

(Γ(m))2

(m

γ̄1

)2m( 1

1− ρ

)m
{

C−2m
2 Γ(m)Γ(m,C2γth)

−A

m−1∑

z1=0

(
m− 1

z1

)

C
−(m+z1+1)
2 γm−1−z1

th e−C2γthG
3i+1,2
i+2,3i+2

[Bγth
Ωi

∣
∣
∣

1−m,1,µ1

1+z1,µ2,0

]}

. (21)

Considering two extreme cases, when the CSI is uncorrelated (ρ = 0) and when the CSI is perfectly correlated (ρ = 1).

A. Uncorrelated CSI (ρ = 0):

For uncorrelated case, substituting (ρ = 0) in (21), outage probability can be expressed as

Po(γth) = 1− 1

Γ(m)
Γ
(

m,
m

γ̄1
γth

)

− A

(Γ(m))2

(m

γ̄1

)2m m−1∑

z1=0

(
m− 1

z1

)(m

γ̄1

)−(m+z1+1)

× γm−1−z1
th e

− m
γ̄1

γthG
3i+1,2
i+2,3i+2

[Bγth
Ωi

∣
∣
∣

1−m,1,µ1

1+z1,µ2,0

]

. (22)

B. Perfectly Correlated CSI (ρ = 1):

For perfect CSI, ρ = 1, e2e SNR can be written as γ = γ1γ2
γ1+γ2

which is upper bounded as γ = min(γ1, γ2). Thus, outage

probability can be derived as

Po(γth) = 1− F̄sr(γth)F̄rd(γth),

= 1− 1

Γ(m)
Γ
(

m,
mγth
γ̄1

){

1−AG
3i,1
i+1,3i+1

[ B

Ωi
γth

∣
∣
∣

1,µ1

µ2,0

]}

. (23)
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C. Asymptotic Outage Probability

To get more insights from the outage probability, it is simplified under certain conditions by neglecting the higher order

terms of the series expansion of the modified Bessel function of first kind. This can be done by considering only a single

term of the summation (j=0), which is shown in (21). However, this is valid only when the argument of I0(·) tends to

zero at high SNRs or the ρ is small enough. Accuracy of approximation further depends on the FSO channel condition. As

Gamma-Gamma distribution is considered for FSO channel, Meijer-G function plays an important role in outage probability

expression. Approximation (21) is not accurate when atmospheric turbulence is strong or the argument of Meijer-G Function

is large (average SNR of FSO channel is low). Thus, more number of summation terms are required for better accuracy [8].

Now considering the high SNR approximation, the Meijer-G function presents in (20) can be expressed in basic elementary

function terms as [34, (07.34.06.0001.01)]

G
3i+1,2
i+2,3i+2

[Bγth
Ωi

∣
∣
∣

µ3

µ4

]

=

3i+1∑

k=1

(Bγth
Ωi

)µ4,k

∏3i+1
l=1
l 6=k

Γ(µ4,l − µ4,k)
∏2

l=1

Γ(1− µ3,l + µ4,k)

∏i+2

l=3

Γ(µ3,l − µ4,k)
∏3i+2

3i+2

Γ(1− µ4,l + µ4,k)
, (24)

where µ3 = [1 − (m + j), 1, µ1] and µ4 = [1 + z1, µ2, 0]. From (24), the dominant term in the asymptotic expression of

meijer-G function is min( ξ
2

i ,
α
i ,

β
i ). Substituting (24) in (20), asymptotic outage probability expression at high SNR can be

given by

Pasym
o (γth) = 1− C1

{

C
−2(m+j)
2 Γ(m+ j)Γ(m+ j, C2γth)−A

m−1+j
∑

z1=0

(
m− 1 + j

z1

)

C
−(m+j+z1+1)
2 γm−1+j−z1

th

× e−C2γth

3i+1∑

k=1

(Bγth
Ωi

)µ4,k

∏3i+1
l=1
l 6=k

Γ(µ4,l − µ4,k)
∏2

l=1

Γ(1− µ3,l + µ4,k)

∏i+2

l=3

Γ(µ3,l − µ4,k)
∏3i+2

3i+2

Γ(1− µ4,l + µ4,k)

}

. (25)

As a mixed RF/FSO system is considered, the diversity order is given by min(m, ξ2

i ,
α
i ,

β
i ), where m is the fading coefficient

of the RF link and ξ2

i ,
α
i ,

β
i are the dominant terms of the FSO link.

IV. ERGODIC CAPACITY

In this Section, ergodic capacity of the considered RF/FSO system is derived. Generalized ergodic capacity expression (in

bits/sec/Hz) can be computed as

Ce =
∫ ∞

0

log2(1 + γ)fγ(γ)dγ, (26)

where fγ(γ) represents the PDF of the e2e SNR. Ergodic capacity given in (26), can be modified in CDF form as

Ce =
1

ln(2)

∫ ∞

0

1

1 + γ
(1− Po(γ))dγ, (27)

where Po(γ) represents the outage probability or the CDF of the e2e SNR. Representing the identity (1 + l1γ)
−l2 =

1
Γ(l2)

G
1,1
1,1

[
l1γ|1−l2

0

]
, (27) can be written as

Ce =
1

ln(2)

∫ ∞

0

G
1,1
1,1

[
γ|00

]
(1− Po(γ))dγ, (28)

Substituting (20) in (28), we obtain

Ce =
1

ln(2)
C1

{

C
−2(m+j)
2 Γ(m+ j)

∫ ∞

0

G
1,1
1,1

[
γ|00

]
Γ(m+ j, C2γ)dγ −A

m−1+j
∑

z1=0

(
m− 1 + j

z1

)

× C
−(m+j+z1+1)
2

∫ ∞

0

γm−1+j−z1
th e−C2γthG

1,1
1,1

[

γ
∣
∣
0

0

]

G
3i+1,2
i+2,3i+2

[Bγth
Ωi

∣
∣
∣

1−(m+j),1,µ1

1+z1,µ2,0

]

dγ

}

. (29)
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Representing the upper incomplete Gamma function in its series form and exponential function in terms of Meijer-G

function, ergodic capacity for the considered system can be expressed in terms of extended generalized bivariate Meijer-G

function (EGBMGF) as 2

Ce =
1

ln(2)
C1

{

C
−2(m+j)
2 Γ(m+ j)

m+j−1
∑

j1=0

Cj1
2

j1!
G

1,2
2,1

[ 1

C2

∣
∣
−j1,0

0

]

−A

m−1+j
∑

z1=0

(
m− 1 + j

z1

)

C
−(m+j+z1+1)
2

( B

Ωi

)−C3

G
2,3i+1:1,0:1,1
3i+2,i+2,:0,1:1,1

[C2Ωi

B
,
Ωi

B

∣
∣
∣

−(C3+z1),1−C3−µ2,1−C3

−C3+m+j,−C3,1−C3−µ1

∣
∣
∣

−

0

∣
∣
∣

0

0

]}

, (30)

where C3 = (m+ j − z1).

V. ASER ANALYSIS

Based on the CDF of the e2e instantaneous SNR, for any digital modulation technique, generalized ASER expression is

given as

Pe = −
∫ ∞

0

P ′

s(e|γ)Po(γ)dγ, (31)

where P ′

s(e|γ) represents the first order derivative of the conditional SEP
(
Ps(e|γ)

)
for the received SNR.

A. Hexagonal QAM

For M-ary HQAM scheme, conditional SEP expression for AWGN channel can be given as

PH
s (e|γ) = Q(

√

Kγ)

[

τ − 2τcQ
(
√

Kγ

3

)]

+
2

3
τcQ

2
(
√

2Kγ

3

)

, (32)

where K, τ , and τc are constants, and their different values are used to select various HQAM constellations.

TABLE I: Different parameters for the various regular and irregular HQAM constellations over the AWGN channel.

Regular HQAM Irregular HQAM (optimum)

M K τ τc K τ τc

4 1 5
2

3
2

1 5
2

3
2

8 2
6

7
2

21
8

32
69

7
2

21
8

16 2
9

33
8

27
8

8
35

33
8

27
8

32 8
71

75
16

33
8

512
4503

75
16

33
8

64 2
37

161
32

147
32

8
141

163
32

75
16

128 2
72

339
64

159
32

2
70.56

343
64

81
16

256 2
149

705
128

675
128

2
141

711
128

171
32

512 2
289.06

2895
512

5619
1024

200
28217

2911
512

5667
1024

1024 2
597

2945
512

2883
512

100
28227

2955
512

1449
256

For an M -ary HQAM constellation

τ =
1

M

M−1∑

i=0

τ(i), τc =
1

M

M−1∑

i=0

τc(i),K =
N0

Es

( d

2σ

)2

=
N0

4σ2
× d2

Es
, (33)

where τ(i) and τc(i) represent the nearest neighborhoods (NNs) and couple of NNs, respectively for symbol s(i). Further, d
is the minimum distance between the constellation points and σ is the standard deviation of the AWGN. For a well connected

HQAM, τc = 3T/M , where T represents the number of equilateral triangles with sides of length d, and τ = 2
[
τc
3 +1− 1

M

]

[23].

For a regular HQAM structure with constellation of even power of 2, K = 24
7M−4 , τ = 2

(
3− 4√

M
+ 1

M

)
and τc = 6

(

1− 1√
M

)2

.

However, for the constellations with arbitrary power of 2, no such pattern can be found in the literature for different values of

K, τ and τc for both regular and irregular HQAM schemes.
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Fig. 1: Generation of an irregular HQAM constellation (M=64)

Algorithm 1 Irregular HQAM generation

1: Inputs:

M=number of constellation points

2: Initialize:

Generate regular HQAM, set counter l = 1.

3: if M 6= 8 then

Shift one row of the generated regular HQAM to X-axis.

4: else

Shift one row of the generated regular HQAM to
√
3/4 distance above X-axis.

5: end if

6: Generate rows on both sides of the x-axis with dvs =
√
3.

7: Identify center point of the constellation.

8: Calculate energy (Ec) of all probable constellation points and store it in an array Ec.

9: while {l <= M} do

10: Find min
︸︷︷︸

1≤j≤M

Ec(j), and place the constellation point at the coordinates of jth index.

11: l = l + 1
12: end while

Irregular HQAM Constellations: Algorithm 1 illustrates generation of the irregular HQAM (optimum) constellation (Fig.

1). Here, dvs represents the vertical spacing, Ec represents the energy of a constellation point, and Ec represents the array of

constellation points energies.

Various irregular HQAM constellations are shown in Fig. 2, and different values of K, τ , and τc for various regular and

irregular HQAM constellations are calculated manually which are summarized in Table I. A detailed study on various HQAM

or TQAM constellations3can be seen in [1], [23], [26]–[28], [36]. Further, solving the equations given for K, τ , and τc,

generalized approximate values of K, τ , and τc, for a well connected M -ary irregular HQAM can be given as

K =
7

2M − 1
,

τ = 6.07− 6.733M−0.456,

τc = 3
[τ

2
− 1 +

1

M

]

. (34)

Substituting the Gaussian Q-function Q(z) = 1
2

[
1− erf( z√

2
)
]

in (32) and using [37, (7.1.21)], first order derivative of (32)

can be expressed as [2], [3]

2Mathematica implementation of extended generalized bivariate Meijer-G function is given in [35].
3Placement of the constellation points on the 2D plane is similar for both the HQAM and TQAM schemes. If the constellation is termed as HQAM, the

constellation points are placed at the center of a hexagon and separated with the neighboring point hexagon with 2d distance. However, if the constellation is
termed as TQAM, each constellation point is placed on the vertex of well connected equilateral triangles of side-length 2d. However, the decision boundaries
will be in hexagon shape.
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(a)

(b) (c)

Fig. 2: Various irregular HQAM (optimum) constellations.

P ′H

s (e|γ) = γ−1/2
[1

2

√

K

2π
(τc − τ)e−

Kγ
2 − τc

3

√

K

3π
e−

Kγ
3 +

τc
2

√

K

6π
e−

Kγ
6

]

+
2τcK

9π
e−

2K
3 γ

1F1

(

1;
3

2
;
K

3
γ
)

− τcKe−
2K
3 γ

2
√
3π

[

1F1

(

1;
3

2
;
K

2
γ
)

+ 1F1

(

1;
3

2
;
K

6
γ
)]

. (35)

Substituting P ′H

s (e|γ) and Po(γ), respectively from (35) and (20) in (31), and after solving the required integrals with the help

of [33, (3.351.3), (6.455.1), (7.813.1)], the generalized expression for ASER for both regular and irregular HQAM scheme is

given as
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TABLE II: Various functions used in analytical expressions with their values.

Function Value

C3
∑∞

z=0
(1)z

z!(1.5)z

[

2τcK
9π

(

K
3

)z
−

(

τcK

2
√

3π

((

K
2

)z
+

(

K
6

)z))]

F

(

θ, φ
)

Γ(θ)φ−θ

G

(

θ, φ
)

C
m+j
2 Γ(m+j+θ)

θ(C2+φ)m+j+θ 2F1

[

1,m+ j + θ; θ + 1; φ
φ+C2

]

H

(

θ, φ
)

(C2+φ)−(m−1+j−z1+θ)G
3i+1,3
i+3,3i+2

[

B
Ωi(C2+φ)

∣

∣

∣

−(m−1+j−z1+θ−1),1−(m+j),1,µ1

1+z1,µ2,0

]

C4
a0b0p0q0

π

∑∞
z=0

(1)z
z!(1.5)z

[(

a20
2

)z
+

(

b20
2

)z]

PH
e =

[1

2

√

K

2π
(τc − τ)F

(1

2
,
K

2

)

− τc
3
F

(1

2
,
K

3

)

+
τc
2

√

K

6π
F

(1

2
,
K

6

)

+ C3F

(

z + 1,
2K

3

)]

− C1C
−2(m+j)
2 Γ(m+ j)

[
1

2

√

K

2π
(τc − τ)G

(1

2
,
K

2

)

− τc
3
G

(1

2
,
K

3

)

+
τc
2

√

K

6π
G

(1

2
,
K

6

)

+ C3G

(

z + 1,
2K

3

)]

+AC1

m−1+j
∑

z1=0

(
m− 1 + j

z1

)

C
−(m+j+z1+1)
2

[1

2

√

K

2π
(τc − τ)H

(1

2
,
K

2

)

− τc
3
H

(1

2
,
K

3

)

+
τc
2

√

K

6π
H

(1

2
,
K

6

)

+ C3H

(

z + 1,
2K

3

)]

, (36)

where C3, F(θ, φ), G(θ, φ), and H(θ, φ) are given in Table II.

B. Rectangular QAM

For MI ×MQ-ary QAM scheme, generalized conditional SEP expression (PR
s (e|γ)) and its first order derivative (P ′R

s (e|γ))
for AWGN channel are given in [4, (41)] and [4, (42)], respectively, where p0 = 1 − (1/MI), q0 = 1 − (1/MQ), a0 =
√

6/((M2
I − 1) + (M2

Q − 1)λ2), b0 = λa0, and λ = dQ/dI represents the ratio of quadrature and in-phase decision distances.

Also, MI and MQ represent respectively the in-phase and quadrature phase constellation points.

Substituting P ′R

s (e|γ) and Po(γ) from [4, (42)] and (20), respectively in (31), and after some mathematical computations,

analytical ASER expression for the general order RQAM can be given as

PR
e =

[a0p0(1− q0)√
2π

F

(1

2
,
a20
2

)

+
b0(1− p0)q0√

2π
F

(1

2
,
b20
2

)

+ C4F

(

z + 1,
a20 + b20

2

)]

− C1C
−2(m+j)
2 Γ(m+ j)

×
[a0p0(1− q0)√

2π
G

(1

2
,
a20
2

)

+
b0(1− p0)q0√

2π
G

(1

2
,
b20
2

)

+ C4G

(

z + 1,
a20 + b20

2

)]

+AC1

m−1+j
∑

z1=0

(
m− 1 + j

z1

)

× C
−(m+j+z1+1)
2

[a0p0(1− q0)√
2π

H

(1

2
,
a20
2

)

+
b0(1− p0)q0√

2π
H

(1

2
,
b20
2

)

+ C4H

(

z + 1,
a20 + b20

2

)]

. (37)

C. Cross QAM

The conditional SEP of general order XQAM constellation in AWGN channel can be given as [38]

PX
e (e|γ) =

[

g1Q(
√

2χγ) +
4

M
Q(2

√
χγ)− g2Q

2(
√

2χγ)− 16

M

v−1∑

t=1

Q(
√

2χγ, α+
t )

− 8

M

v−1∑

t=1

Q(2t
√
χγ, β+

t ) +
8

M

v∑

t=2

Q(2t
√
χγ, β−

t )
]

, (38)

where χ = 48
31M−32 , g1 = 4− 6√

2M
, g2 = 4− 12√

2M
+ 12

M ,

α+
t = arctan( 1

2t+1 ), for t = 1, ..., v − 1

and β±
t = arctan( t

t±1 ), for t = 1, ..., v.

Further, v = 1
8

√
2M decides the XQAM constellations, i.e. v = 1 for M = 32, v = 2 for M = 128 and so on. Also, Q(x, φ)

is related to the 1D and 2D Gaussian Q-functions as

Q(x, φ) =
1

π

∫ φ

0

exp
(

− x2

2 sin2θ

)

dθ for x ≥ 0. (39)
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For the ASER analysis, first order derivative is required and hence, taking the first order derivative of (38), we get

P ′X

s (e|γ) = −
[
(g1 − g2)

2

√
χ

π

e−χγ

√
γ

+
4

M

√
χ

2π

e−2χγ

√
γ

+ g2
χ

π
e−2χγ

1F1

(

1;
3

2
;χγ

)

+
16

M

v−1∑

t=1

1

π

∫ α+
t

0

− χ

sin2θ
exp

( −χγ

sin2θ

)

dθ +
8

M

v−1∑

t=1

1

π

∫ β+
t

0

− 2χ

sin2θ
exp

(−2χγ

sin2θ

)

dθ

− 8

M

v−1∑

t=1

1

π

∫ β−
t

0

− 8χ

sin2θ
exp

(−8χγ

sin2θ

)

dθ

]

. (40)

Substituting (40) along with (20) in (31), generalized XQAM expression in integral form can be written as

PX
e =

[ (g1 − g2)

2

√
χ

π
F

(1

2
, χ

)

+
4

M

√
χ

2π
F

(1

2
, 2χ

)

+ g2
χ

π

∞∑

z=0

(1)zχ
z

z!(1.5)z
F

(

z + 1, 2χ
)]

− C1C
−2(m+j)
2 Γ(m+ j)

×
[ (g1 − g2)

2

√
χ

π
G

(1

2
, χ

)

+
4

M

√
χ

2π
G

(1

2
, 2χ

)

+ g2
χ

π

∞∑

z=0

(1)zχ
z

z!(1.5)z
G

(

z + 1, 2χ
)]

+AC1

m−1+j
∑

z1=0

(
m− 1 + j

z1

)

× C
−(m+j+z1+1)
2

[ (g1 − g2)

2

√
χ

π
H

(1

2
, χ

)

+
4

M

√
χ

2π
H

(1

2
, 2χ

)

+ g2
χ

π

∞∑

z=0

(1)zχ
z

z!(1.5)z
H

(

z + 1, 2χ
)]

+
16

M

v−1∑

t=1

[
1

π

∫ ∞

0

{(

1− C1C
−2(m+j)
2 Γ(m+ j)Γ(m+ j, C2γ) + C1A

m−1+j
∑

z1=0

(
m− 1 + j

z1

)

C
−(m+j+z1+1)
2

γm−1+j−z1e−C2γG
3i+1,2
i+2,3i+2

[Bγ

Ωi

∣
∣
∣

1−(m+j),1,µ1

1+z1,µ2,0

])∫ α+
t

0

− χ

sin2θ
e

−χγ

sin2θ dθ

}

dγ

]

+
8

M

v−1∑

t=1

[
1

π

∫ ∞

0

{(

1− C1C
−2(m+j)
2 Γ(m+ j)Γ(m+ j, C2γ) + C1A

m−1+j
∑

z1=0

(
m− 1 + j

z1

)

C
−(m+j+z1+1)
2

γm−1+j−z1e−C2γG
3i+1,2
i+2,3i+2

[Bγ

Ωi

∣
∣
∣

1−(m+j),1,µ1

1+z1,µ2,0

])∫ β+
t

0

− 2χ

sin2θ
e

−2χγ

sin2θ dθ

}

dγ

]

− 8
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. (41)

Considering the limiting case of generalized XQAM for M = 32, (v = 1), only the starting 3 terms of conditional SEP

expression (38) are considered as last 3 terms will be zero for v = 1. Hence, closed-form ASER expression for 32-XQAM is

derived as

PX
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(
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. (42)

VI. THEORETICAL AND SIMULATION RESULTS

In this Section, theoretical result are numerically evaluated and validated through simulations. RF link is modeled with

Nakagami-m distributions and m = 1, 2 are considered to show the impact of fading on system’s performance. FSO link

is modeled with the atmospheric turbulence influenced Gamma-Gamma distribution with pointing error. Both IM/DD and

heterodyne detection are employed at the FSO receiver [13]. For analysis, atmospheric turbulence parameters α = 2.1, β = 3.5
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are considered. ξ = 1 for severe pointing error and ξ = 6.7 for negligible pointing error are considered. Outdated CSI is

considered at the relay, and various values of correlation coefficient ρ are considered for the analysis.

As an infinite series presents in the derived analytical outage probability, ergodic capacity, and ASER results, the infinite

summation series j is truncated to 100 summation terms for better numerical accuracy with considerable implementation

complexity [8]. Summation terms may be further reduced for lower value of ρ.
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Fig. 3: Theoretical and simulation results of outage probability for α = 2.1 and β = 3.5.
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Fig. 4: Theoretical and simulation results of outage probability for α = 2.1 and β = 3.5.

In Fig. 3 and Fig. 4, theoretical (Theo.) and simulation (Sim.) results of outage probability for m = 1 and m = 2, respectively

are compared for various values of ρ (ρ = 0, 0.2, 0.8, 1) and ξ = 6.7. Both the corner cases, i.e. ρ = 0 (uncorrelated CSI)

and ρ = 1 (perfectly correlated) are also considered. With the increase in ρ from 0 to 1, improvement in outage performance

is observed. Further, heterodyne detection provides better outage performance than IM/DD detection. This improvement is

due the fact that the turbulence effects are better handled by heterodyne technique [13]. However, this can be achieved with

increased implementation complexity as compared to the IM/DD technique. Simulation results match well with the theoretical

results and also validate the correctness of the derived expressions. For the perfect CSI case (ρ = 1), upper-bound of e2e SNR

is considered and hence, lower-bound of the outage probability is obtained. Thus, theoretical results are slightly below the

simulation results, matches perfectly in medium and high SNR regime.

In Fig. 5, outage probability is compared for severe pointing error (ξ = 1) and negligible pointing error (ξ = 6.7) cases

while various values of m and both the IM/DD and heterodyne detections are considered. It can be observed, for both the

detection techniques, outage performance is significantly deteriorated for ξ = 1 as compared to ξ = 6.7 and comparatively less
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Fig. 5: Theoretical and asymptotic results of outage probability for α = 2.1 and β = 3.5.

improvement in outage performance in observed with the increase in m. Asymptotic outage curves (Asym.) are also shown

in Fig. 5, which matches well at high SNRs for all the investigated cases and validate the high SNR analysis. As a mixed

RF/FSO system is considered, the diversity order of the considered system is min(m, ξ2

i ,
α
i ,

β
i ), which depends on the fading

severity of RF link m, pointing error ξ, and turbulence parameters α and β. This can also be validated through the results

shown in Fig. 5, that the diversity order varies with ξ. Further, correlation coefficient ρ have no impact on the diversity order

of the considered system. The slope of the outage curves remain same with the change in ρ as illustrated in Fig. 3 and Fig.

4, however, considerable SNR improvement is observed with the increase in ρ.
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Fig. 6: Comparison of theoretical and simulation results of ergodic capacity for α = 2.1, β = 3.5 and ρ = 0.2.

In Fig. 6, theoretical and simulation results of ergodic capacity are presented for both the IM/DD and heterodyne detection

under severe pointing error (ξ = 1) and negligible pointing error (ξ = 6.7) cases. For analysis, fixed values of α = 2.1, β = 3.5
and ρ = 0.2 are considered. It can be described that the ergodic capacity decreases considerably when ξ = 1 is considered as

compared to ξ = 6.7 for both the detection techniques. Heterodyne detection provides improved performance than IM/DD for

both the severe and negligible pointing error cases despite its detection complexity. Further, ergodic capacity improves with

the increase in m, however, slightly less improvement is observed in IM/DD than in heterodyne detection.

In Fig. 7, theoretical and simulation results of ASER of 16-HQAM are presented for different values of ρ with heterodyne

detection. For analysis, fixed values of α = 2.1, β = 3.5 and ξ = 6.7 are considered. From Fig. 7, it is observed that the

simulation results validate correctness of the theoretical results. Further, ASER results improves as ρ increases from 0 to

1 (uncorrelated to perfectly correlated case). Furthermore, significant ASER performance improvement is achieved with the

increase in m from 1 to 2.
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Fig. 7: Comparison of theoretical and simulation results of 16-HQAM for α = 2.1, β = 3.5 and different values of ρ.
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Fig. 8: Comparison of theoretical results of HQAM and SQAM schemes for constellations of even power of 2 with α = 2.1, β = 3.5.

In Fig. 8, Fig. 9, and Fig. 10, theoretical ASER results of HQAM are presented which are compared with various QAM

techniques. For the analysis, ρ = 0.2, ξ = 6.7 and m = 1 are considered. In Fig. 8, only the even power of 2 constellations are

considered and HQAM results are compared with the SQAM results. To achieve ASER of 10−2, 4-SQAM provides around

0.065 dB gain over the 4-HQAM schemes. However, for increasing values of M, HQAM outperforms the SQAM scheme as

can be seen from Fig. 8. To achieve 10−2 ASER, respective gain of around 0.475 dB, 0.612 dB and 0.664 dB are achieved

for HQAM scheme over the SQAM scheme for 16, 64 and 256 constellation points. We observe that the slope difference in

HQAM and SQAM schemes for various constellations are approximately same after 10−1 ASER, hence, SNR gain for 1024

points constellations of HQAM over SQAM scheme is achieved at 10−1 ASER. It can be observed that the SNR gains of

around 0.89 dB is achieved in HQAM over the SQAM scheme for 1024 points constellations. This justifies the superiority

of HQAM over the SQAM schemes and gain improves further for increasing constellation orders. In Fig. 9, odd power of

2 constellations are considered. Theoretical results of HQAM scheme for 8, 32, 128 point constellations are presented and a

comparative study with 4 × 2-RQAM, 8 × 4-RQAM, 32-XQAM, 16 × 8-RQAM and 128-XQAM schemes is presented for

m = 1 and m = 2. For the analysis, fixed values of α = 2.1, β = 3.5, ρ = 0.2 and ξ = 6.7 are considered. From Fig. 9, it is

observed that to achieve 10−2 ASER for m = 2, around 1 dB gain is received for 8-HQAM over 4×2-RQAM scheme. Further,

32-HQAM provides around 1.2 dB and 0.13 dB gains over 8 × 4-RQAM and 32-XQAM schemes, respectively. Similarly,

128-HQAM provides around 1.30 dB and 0.20 dB gains over 16 × 8-RQAM and 128-XQAM schemes, respectively. From

this, it can be concluded that irregular HQAM is the optimum modulation scheme which provides considerable SNR gain over
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Fig. 9: Comparison of theoretical results of HQAM, XQAM and RQAM schemes for constellations of odd power of 2 with α = 2.1,
β = 3.5.
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Fig. 10: Comparative study of ASER results of various HQAM constellations for exact and approximate values of K, τ and τc.

the other modulation schemes, and this gain improves further for the increasing constellation orders. In (34), generalization

for K, τ , and τc is performed and Fig. 10 illustrates a comparative study of ASER results of various HQAM constellations

for exact and approximate values of K, τ , and τc as given in Table I and (34), respectively. For analysis, α = 2.1, β = 3.5,

ξ = 6.7, ρ = 0.2 and m = 1 are considered. It is observed that the approximate results match well with the exact ones for all

the HQAM constellations up to 1024 which validates the generalization of K, τ , and τc as given in (34).

VII. CONCLUSIONS

In this work, performance of a variable gain dual-hop AF mixed RF/FSO system for both the IM/DD and heterodyne detection

has been analyzed. Outdated CSI in the RF part and atmospheric turbulence influenced FSO link with pointing error have been

considered. Exact analytical expressions of outage probability and ergodic capacity in terms of Meijer-G function and EGBMGF

have been derived, and impact of outdated CSI, pointing error, fading parameter and type of detection have been shown. It has

been concluded that despite detection complexity, heterodyne detection provides better outage performance, and ergodic capacity

than IM/DD. Asymptotic outage probability has also been derived to find out the diversity order of the considered system.

Various higher order optimum irregular HQAM constellations have been presented and CDF based exact ASER expressions

of general order HQAM, XQAM, and RQAM schemes in terms of Meijer-G function have been derived. A comparative study

of various QAM schemes has been presented which illustrates the superiority of irregular HQAM constellations over the other

QAM schemes.
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