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Abstract—The limitations of the currently existing pan-
sharpening quality indices are analyzed: the absolute difference
between pixel values, mean shifting, and dynamic range change
is frequently used as spatial fidelity measurement, but they may
not correlate well with the actual change of image content; and
spectral angle is a widely used metric for spectral fidelity, but the
spectral angle remains the same if two vectors are multiplied by
two individual constants, which means the average spectral angle
between two multispectal images is zero even if pixel vectors are
multiplied by different constants. Therefore, it is important to
evaluate the quality of a pan-sharpened image under a task of
its practical use and to assess spectral fidelity in the context of
an image. In this letter, three data analysis techniques in linear
unmixing, detection, and classification are applied to evaluate
spectral information within a spatial scene context. It is demon-
strated that those old but simplest approaches, i.e., Brovey and
multiplicative (or after straightforward adjustment) methods, can
generally yield acceptable data analysis results. Thus, it is neces-
sary to consider the tradeoff between computational complexity,
actual improvement on application, and hardware implementation
when developing a pan-sharpening method.

Index Terms—Classification, detection, linear unmixing, multi-
spectral (MS) image, pan sharpening, performance evaluation.

I. INTRODUCTION

PAN SHARPENING is a typical approach to integrating
the spatial details of a high-resolution panchromatic (pan)

image and the spectral information of a low-resolution multi-
spectral (MS) image to produce a high-resolution MS image.
Many pan-sharpening methods have been developed [1], [2],
[7]. The major pan-sharpening methods are reviewed below.

Intensity–Hue–Saturation (IHS) Transform-Based Methods:
Three bands of an MS image are considered as three compo-
nents in a color image. An IHS transform is conducted, which
separates the intensity from the two color components. The pan
image replaces the intensity component. Then, a pan-sharpened
image can be generated via the inverse IHS transform [3]. The
drawback of this method is that it is only suitable to a three-
band MS image. Tu et al. proposed a generalized approach
that can apply the IHS-based pan sharpening to four-band MS
images [4]. However, its performance relies on the choice of an
empirical data-specific parameter controlling the contributions
of blue and green bands to the fused image, and the near
infrared band is prone to be distorted.
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Principal Component Analysis (PCA)-Based Methods: PCA
is another commonly used technique. PCA is applied to the
original image. Then, the first principal component (PC) image
is replaced by the pan image [5]. Here, it is assumed that the
first PC image with the largest variance contains the major in-
formation in the original image. However, it is known that data
information is distributed among several PCs. So obviously, this
method brings about spectral distortion.

Brovey Method: In the Brovey method, the ith band is
sharpened by Fused Band i = K ∗ Pan ∗ Band i/(Band 1 +
Band 2 + · · · + Band K), where K is the number of bands in an
MS image [6]. The computation is on the pixel-by-pixel base.
The angle from the Spectral Angle Mapper (SAM) between
the original (after up-sampling) and pan-sharpened MS images
is 0◦. This is because the operation of multiplication only
changes the norm of a spectral vector.

Multiplicative Method: It is similar to the Brovey method
[7]. The only difference is that the multiplication result is
not normalized, i.e., Fused Band i = Pan ∗ Band i. As in the
Brovey method, the SAM value between the original (after up-
sampling) and pan-sharpened MS images is 0◦. Due to the lack
of normalization term, the dynamic range of pixel values is
significantly changed.

Wavelet-Based Methods: A wavelet-based method includes
three steps: forward transform; coefficient combination; and
backward transform. Many different ways are proposed to fuse
the wavelet coefficients of the original MS image and the pan
image. It remains as the most active research area.

In addition, a technique based on Gram–Schmidt (GS) or-
thogonalization in the ENVI package is well known [8]; and
Zhang’s approach that utilizes the least squares technique to
adjust the contribution of individual MS bands to the fusion
result is available in the PCI Geomatica software [1].

It is necessary to quantitatively evaluate the performance
of these methods [9]–[11]. Current performance evaluation is
mainly focused on absolute pixel value change. For instance,
frequently used metrics for spatial similarity are the mean
squared error (MSE), root mean squared error (RMSE), etc.
When spatial resolution is improved, it is still necessary to
evaluate the spectral fidelity. The SAM is frequently used to
compare the spectral similarity pixel-by-pixel. Another way
to qualitatively evaluate the spectral fidelity is to display a three-
band color combination using the original and pan-sharpened
MS image and compare the color tone [1]. In our research, we
evaluate the quality of a pan-sharpened image under a task of
its practical use. In other words, we focus on its performance in
the following data analysis. In this way, the spatial and spectral
quality of the fused image can be jointly evaluated.
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In this letter, the PCA, Brovey, multiplicative, GS, and
Zhang’s methods are selected for evaluation due to their
maturity and easy access in commercial software.

II. QUANTITATIVE EVALUATION METRICS

A. Review of Quality Indices

Quantitative evaluation of pan-sharpened images has been
investigated since this technique was developed [9]–[11]. One
focus is the spatial fidelity, i.e., comparing the spatial similarity
of a band before and after sharpening. Another focus is the
spectral fidelity, i.e., comparing the spectral similarity of a pixel
vector before and after sharpening. The frequently used quality
metrics are reviewed as below.

MSE and RMSE: MSE and RMSE are frequently used to
compare the difference between the original and pan-sharpened
MS images by directly calculating the changes in pixel
values [12].

SAM (θ): SAM is widely used in measuring spectral fidelity
[13]. It calculates the angle between two pixel vectors. If the
angle is 0◦, this means no spectral change. It is performed on a
pixel-by-pixel base.

Correlation Coefficient (ρ): The correlation coefficient is
the most popular similarity metric in measuring spatial fidelity
[10]. A value close to one means that two images are similar.
It is insensitive to mean shifting and the change of dynamic
range after mean removal and variance normalization.

Relative Dimensionless Global Error in Synthesis (ERGAS):
The ERGAS value is defined as [14]

ERGAS = 100
h

l
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where h/l is the ratio between pixel sizes of pan and original
MS images, and RMSE(k) and µ(k) are the RMSE and mean
of the kth band, respectively. It considers sensor specification.
A small ERGAS means good image quality. It is sensitive to
mean shifting and dynamic range change.

Universal Image Quality Index (Q): The difference between
image A and B can be quantified as
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where σA and σB are the standard deviations of image A and B,
respectively. In (2), the first term is the correlation coefficient,
the second term is about mean shifting, and the third term is
about contrast similarity [15]. A Q value close to one means
good quality.

Quaternions Theory Based Quality Index (Q4): The Q in-
dex can be generalized to Q4 for a four-band MS image
using the theory of quaternions. Then, the comparison can be
conducted on the entire MS image instead of one band after
another. Detailed development can be found in [16].

B. Limitations of Existing Quality Indices

When comparing a pixel value spatially, it is known that any
mean shifting and dynamic range change can lead to large MSE

and RMSE. However, this does not mean the image content is
greatly changed. For instance, if all the pixel values in a band
are increased or decreased by a constant (mean shifting) or
multiplied by a constant (variance and dynamic range change),
the content in this band image is not actually changed. In
addition to MSE and RMSE, the aforementioned ERGAS,
Q, and Q4 suffer the same problem because they all include
the components related to RMSE, mean shifting, or contrast
change. Therefore, unless the fused image will be compared
with a predefined spatial or spectral pattern requiring precise
matching in pixel value in the following data analysis step,
these metrics may not be well correlated with the data analysis
performance. On the other hand, a fused image considered to
have poor quality using these metrics may have acceptable data
analysis result as long as the image content is well preserved.

For an MS image, spectral information is particularly im-
portant when the spatial resolution is rough. SAM can be used
for spectrally comparing a pixel vector. When a pixel vector is
multiplied by a constant, the change in SAM is 0◦ because the
vector is basically not changed except the norm. When pixel
vectors in an MS image are multiplied by values varied from
pixel to pixel, as in the Brovey and multiplicative methods, the
average SAM is still 0◦, but each band image is greatly changed
due to different values being involved in the multiplication from
pixel to pixel. Therefore, it is important to jointly evaluate the
spectral fidelity of pixels in the context of an image instead of
treating them separately.

This letter is focused on image content change and its impact
on practical applications. In particular, spectral-analysis-based
techniques are employed for the evaluation. These techniques
explore spectral information to fulfill a certain purpose, which
are described in Section III.

III. APPLICATION-ORIENTED PERFORMANCE EVALUATION

The three data analysis techniques for evaluation are linear
unmixing, detection, and classification. The spectral informa-
tion in an MS image within the context of an image scene is
used in these spectral-analysis-based techniques, so the spectral
and spatial fidelity of the pan-sharpened MS image can be
jointly evaluated. Because it is difficult to have prior informa-
tion about the various image scenes involved in pan sharpening
for evaluation, unsupervised methods are applied first. The
results from the original MS image are considered as the ground
truth. The extracted endmember or class signatures can be used
to conduct supervised evaluation.

A. Linear Unmixing

Linear mixture analysis is often used to analyze mixed pixel
composition. According to the linear mixture model, a pixel
value can be considered as the linear mixture from the dis-
tinctive endmember signatures present in an image scene. The
endmember signatures and their abundances are estimated from
the original and pan-sharpened images. This can be accom-
plished by applying the unsupervised fully constrained least
squares linear unmixing (UFCLSLU) algorithm [17]. Then, the
two corresponding endmember signatures from the original and
pan-sharpened images are compared to evaluate the spectral
information distortion, while two corresponding abundance
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images are compared to evaluate the spatial similarity. The
number of endmembers that can be extracted is equal to the
number of spectral bands when dealing with multispectral
imagery.

The endmembers extracted from the original MS image with
UFCLSLU can be used to conduct the supervised FCLSLU
for the fused image [17]. The resulting abundance images are
compared with those from the original MS image.

B. Detection

Target detection is another important application of remote
sensing data. When no target information is available, an
unsupervised detection technique is applied, which actually
performs anomaly detection. An anomaly is defined as a small
object whose spectral signature is very different from the
background, which is most likely an unknown target. Anomaly
detection is a good technique to test the performance of a
pan-sharpening method in detailed information preservation,
because these small objects are prone to be sacrificed. The well-
known RX algorithm is adopted for this purpose [18]. Since
there is no ground truth available, the detection map using
the original data is considered as the ground truth, and the
detection map using the pan-sharpened data is compared with
it. The metric of similarity comparison is the spatial correlation
coefficient.

To evaluate the supervised detection performance, the most
anomalous pixel from the anomaly detection map using the
RX algorithm is chosen as the target signature. Then, the
constrained energy minimization (CEM) algorithm is applied
to the original and fused MS images [19] followed by the
similarity comparison of detection maps.

C. Classification

Independent component analysis (ICA) is a popular tech-
nique for unsupervised classification when no prior class in-
formation is available. Its basic idea is to decompose a set of
multivariate signals into the basis of statistically independent
sources with minimal loss of information content so as to
achieve classification. The well-known FastICA algorithm can
be used for this purpose [20]. For a four-band MS image, there
are four classification maps to be generated. When no ground
truth is available, the classification maps using the original data
are considered as the ground truth, and the classification maps
using the pan-sharpened data are compared with them. The
correlation coefficient is employed to compare the similarity.

IV. EXPERIMENTS

Four-band IKONOS and QuickBird data were used in the
experiments. Both the pan and the original MS were degraded
before pan sharpening such that the pan-sharpened MS image
has the same size as the original MS image. Then, the pan-
sharpened MS image was compared with the original MS
image. The frequently used quality indices such as correlation
coefficient (ρ), SAM (θ), ERGAS, Q, and Q4 were em-
ployed. The three data analysis techniques in Section III, i.e.,
UFCLSLU and FCLSLU for linear unmixing, RX and CEM
algorithm for detection, and FastICA for classification, were

Fig. 1. IKONOS image scene used in the experiment. (a) Degraded pan
image. (b) Original MS image (Band 3).

TABLE I
TRADITIONAL PERFORMANCE EVALUATION FOR

THE IKONOS IMAGE SCENE

applied to evaluate the performance of pan-sharpened methods
in practical applications.

A. IKONOS Example

A small subimage about an urban area of size 256 × 256
was used. The 1-m pan after degradation and 4-m original MS
images are shown in Fig. 1.

The correlation coefficients ρavg are listed in Table I, which
shows the averaged values of the four spectral bands before and
after sharpening. SAM values θavg are also listed in Table I,
which shows the averages from all pixel vectors. We can see
that the Brovey and multiplicative methods performed very well
in terms of yielding larger ρavg and smaller θavg. However, the
multiplicative method produced very large ERGAS and very
low Qavg and Q4 because of great changes in the mean and
dynamic range.

However, the mean shifting and dynamic range change can
be easily adjusted without changing the image content. For
the multiplicative method, the adjustment can be achieved by
dividing the mean of the pan image, i.e.,

Multiplicative∗ =
Multiplicative

µ(Pan)
. (3)

In Table I, we can see that after such a simple adjustment,
ERGAS was greatly decreased, while Qavg and Q4 were greatly
increased. It is noteworthy that ρavg and θavg were not changed.
The fused image was just divided by a constant, but ERGAS,
Qavg, and Q4 were significantly different. This means that these
changes may not be well correlated with the image content.

Table II lists the performance evaluation results when ap-
plying linear unmixing to the original and pan-sharpened MS
images, where ρ̄avg denotes the averaged correlation coeffi-
cients between the four pairs of abundance images, and θ̄avg

denotes the averaged SAM between four pairs of endmember
signatures from UFCLSLU. The endmember signatures from



DU et al.: PERFORMANCE EVALUATION OF PAN-SHARPENING TECHNIQUES 521

TABLE II
PERFORMANCE EVALUATION USING UNSUPERVISED (UFCLSLU)

AND SUPERVISED (FCLSLU) LINEAR UNMIXING

FOR THE IKONOS IMAGE SCENE

TABLE III
PERFORMANCE EVALUATION USING UNSUPERVISED (RX)

AND SUPERVISED (CEM) TARGET DETECTION

FOR THE IKONOS IMAGE SCENE

TABLE IV
PERFORMANCE EVALUATION USING UNSUPERVISED CLASSIFICATION

(FASTICA) FOR THE IKONOS IMAGE SCENE

the original MS image were used to apply the supervised
FCLSLU analysis on the fused images, and ρ̄s

avg denotes
the similarity between the corresponding abundance images.
The Brovey method generated the best result of UFCLSLU
both spatially and spectrally. Zhang’s method provided the
best FCLSLU result. Interestingly, the adjusted multiplicative
method yielded good results supervised and unsupervised. It
should be noted that the supervised FCLSLU has difficulty in
applying to the fused image from the original multiplicative
method. This is because the abundance sum-to-one constraint
cannot be satisfied due to the great changes of pixel values.

Table III lists the correlation coefficient ρ̂ between the de-
tection maps from the original and pan-sharpened images using
the RX algorithm and ρ̂s using the supervised CEM algorithm
with the desired target signature being chosen as the most
anomalous pixels in the RX detection map from the original
MS image. Table IV shows the averaged correlation coeffi-
cient ρ̃avg between the classification maps from the original
and pan-sharpened images using the FastICA algorithm. All
these methods generated comparable results. It should be noted
that the performance of the multiplicative method before and
after adjustment was not changed, which means that the mean
shifting and dynamic range change do not affect target detection
and classification in this case.

Fig. 2. QuickBird image scene used in the experiment. (a) Degraded pan
image. (b) Original MS image (Band 3).

TABLE V
TRADITIONAL PERFORMANCE EVALUATION

FOR THE QUICKBIRD IMAGE SCENE

TABLE VI
PERFORMANCE EVALUATION USING UNSUPERVISED (UFCLSLU)

AND SUPERVISED (FCLSLU) LINEAR UNMIXING

FOR THE QUICKBIRD IMAGE SCENE

B. QuickBird Example

A small subimage about a mountainous area of size 256 ×
256 was used. The 0.7-m pan after degradation and 2.8-m
original MS images are shown in Fig. 2.

Table V lists the five quality measurement results. The five
pan-sharpening methods provided similar ρavg. The results
from the Brovey and multiplicative methods included very little
spectral distortion at the pixel level, so θavg were very small
as expected. The multiplicative method produced very large
ERGAS and very low Qavg and Q4. After the adjustment using
(3), ERGAS was greatly decreased, while Qavg and Q4 were
greatly increased.

Tables VI–VIII list the evaluation results using linear un-
mixing, detection, and classification algorithms. Similar to
the IKONOS experiment, the Brovey and multiplicative meth-
ods provided better results in unsupervised linear unmixing.
These five methods yielded comparable results in detection
and classification, while the result from Zhang’s method was
the best.

V. DISCUSSION AND CONCLUSION

The IKONOS and QuickBird experiments demonstrate that
it may not be appropriate to directly compare the pixel value
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TABLE VII
PERFORMANCE EVALUATION USING UNSUPERVISED (RX)

AND SUPERVISED (CEM) TARGET DETECTION

FOR THE QUICKBIRD IMAGE SCENE

TABLE VIII
PERFORMANCE EVALUATION USING UNSUPERVISED CLASSIFICATION

(FASTICA) FOR THE QUICKBIRD IMAGE SCENE

change when evaluating the spatial fidelity of a pan-sharpening
method. The frequently used spatial quality measures, such as
MSE, RMSE, ERGAS, Q, and Q4, consider the mean shifting
and dynamic range change. So their results are easily influenced
by simply multiplying a constant to an image, when the image
actually is not really changed.

SAM is frequently used for evaluating the spectral fidelity.
However, it performs the evaluation on a pixel-by-pixel base
without considering the interpixel relationship. For instance, in
these two experiments, the Brovey and multiplicative methods
yield small SAM values. However, when applying the spectral-
analysis-based algorithms, their performance is not as good as
indicated by the SAM values.

In our opinion, the evaluation of a pan-sharpened image
should be conducted under an application task, where we focus
on the usefulness of the image data rather than its pixel value
fidelity. The three applications on linear unmixing, detection,
and classification explore the pixel spectral information within
the spatial context of an image scene. This means that the
spatial and spectral information are jointly evaluated. Based
on the IKONOS and QuickBird experiments with different
image scenes, we also conclude that the performance of a pan-
sharpening technique may be varied with sensor and image
content.

Overall, GS and Zhang’s methods generated good results
when being evaluated by either the application algorithms or
the traditional quality indices. The Brovey method is robust
in both supervised and unsupervised applications. The multi-
plicative method (or after simple adjustment) can yield accept-
able results. These two methods are considered as obsolete,
and their performance may be underestimated due to many
advanced pan-sharpening techniques being developed recently.

Their major advantages include low computational complexity
and easy implementation for real-time processing. We believe
it is necessary to consider the tradeoff between computational
complexity, actual improvement on application, and hardware
implementation when developing a pan-sharpening method.
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