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Abstract—In this paper, we investigate and reveal the ergodic
sum-rate gain (ESG) of non-orthogonal multiple access (NOMA)
over orthogonal multiple access (OMA) in uplink cellular commu-
nication systems. A base station equipped with a single-antenna,
with multiple antennas, and with massive antenna arrays is
considered both in single-cell and multi-cell deployments. In
particular, in single-antenna systems, we identify two types of
gains brought about by NOMA: 1) a large-scale near-far gain
arising from the distance discrepancy between the base station
and users; 2) a small-scale fading gain originating from the
multipath channel fading. Furthermore, we reveal that the large-
scale near-far gain increases with the normalized cell size, while
the small-scale fading gain is a constant, given by γ = 0.57721
nat/s/Hz, in Rayleigh fading channels. When extending single-
antenna NOMA to M -antenna NOMA, we prove that both the
large-scale near-far gain and small-scale fading gain achieved
by single-antenna NOMA can be increased by a factor of M
for a large number of users. Moreover, given a massive antenna
array at the base station and considering a fixed ratio between
the number of antennas, M , and the number of users, K, the
ESG of NOMA over OMA increases linearly with both M and
K. We then further extend the analysis to a multi-cell scenario.
Compared to the single-cell case, the ESG in multi-cell systems
degrades as NOMA faces more severe inter-cell interference due
to the non-orthogonal transmissions. Besides, we unveil that
a large cell size is always beneficial to the ergodic sum-rate
performance of NOMA in both single-cell and multi-cell systems.
Numerical results verify the accuracy of the analytical results
derived and confirm the insights revealed about the ESG of
NOMA over OMA in different scenarios.

Index Terms—Non-orthogonal multiple access, ergodic sum-
rate gain, large-scale near-far gain, small-scale fading gain, inter-
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cell interference.

I. INTRODUCTION

The networked world we live in has revolutionized our

daily life. Wireless communications has become one of the

disruptive technologies and it is one of the best business

opportunities of the future [2], [3]. In particular, the de-

velopment of wireless communications worldwide fuels the

massive growth in the number of wireless communication

devices and sensors for emerging applications such as smart

logistics & transportation, environmental monitoring, energy

management, safety management, and industry automation,

just to name a few. It is expected that in the Internet-of-Things

(IoT) era [4], there will be 50 billion wireless communication

devices connected worldwide with a connection density up

to a million devices per km2 [5], [6]. The massive number

of devices and explosive data traffic pose challenging require-

ments, such as massive connectivity [7] and ultra-high spectral

efficiency for future wireless networks [2], [3]. As a result,

compelling new technologies, such as massive multiple-input

multiple-output (MIMO) [8]–[11], non-orthogonal multiple

access (NOMA) [12]–[16], and millimeter wave (mmWave)

communications [17]–[21] etc. have been proposed to address

the aforementioned issues. Among them, NOMA has drawn

significant attention both in industry and in academia as a

promising multiple access technique. The principle of power-

domain NOMA is to exploit the users’ power difference for

multiuser multiplexing together with superposition coding at

the transmitter, while applying successive interference can-

celation (SIC) at the receivers for alleviating the inter-user

interference (IUI) [14]. In fact, the industrial community has

proposed up to 16 various forms of NOMA as the potential

multiple access schemes for the forthcoming fifth-generation

(5G) networks [22].

Compared to the conventional orthogonal multiple access

(OMA) schemes [23]–[25], NOMA allows users to simul-

taneously share the same resource blocks and hence it is

beneficial for supporting a large number of connections in

spectrally efficient communications. The concept of non-

orthogonal transmissions dates back to the 1990s, e.g. [26],

[27], which serves as a foundation for the development of the

power-domain NOMA. Indeed, NOMA schemes relying on

non-orthogonal spreading sequences have led to popular code

division multiple access (CDMA) arrangements, even though

eventually the so-called orthogonal variable spreading factor

(OVSF) code was selected for the global third-generation

(3G) wireless systems [28]–[31]. To elaborate a little further,
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the spectral efficiency of CDMA was analyzed in [28]. In

[29], the authors compared the benefits and deficiencies of

three typical CDMA schemes: single-carrier direct-sequence

CDMA (SC DS-CDMA), multicarrier CDMA (MC-CDMA),

and multicarrier DS-CDMA (MC DS-CDMA). Furthermore,

a comparative study of OMA and NOMA was carried out

in [31]. It has been shown that NOMA possesses a spectral-

power efficiency advantage over OMA [31] and this theoretical

gain can be realized with the aid of the interleave division

multiple access (IDMA) technique proposed in [32]. Despite

the initial efforts on the study of NOMA, the employment

of NOMA in practical systems has been developing relatively

slowly due to the requirement of sophisticated hardware for its

implementation. Recently, NOMA has rekindled the interests

of researchers as a benefit of the recent advances in signal pro-

cessing and silicon technologies [33], [34]. However, existing

contributions, e.g. [26], [27], [31], have mainly focused their

attention on the NOMA performance from the information

theoretical point of view, such as its capacity region [26], [27]

and power region [31]. The recent work in [35] intuitively

explained the source of performance gain attained by NOMA

over OMA via simulations. The authors of [36], [37] surveyed

the state-of-the-art research on NOMA and offered a high-level

discussion of the challenges and research opportunities for

NOMA systems. Nevertheless, to the best of our knowledge,

there is a paucity of literature on the comprehensive analysis

of the achievable ergodic sum-rate gain (ESG) of NOMA

over OMA relying on practical signal detection techniques.

Furthermore, the ESG of NOMA over OMA in different

practical scenarios, such as single-antenna, multi-antenna, and

massive antenna array aided systems relying on single-cell or

multi-cell deployments has not been compared in the open

literature.

As for single-antenna systems, several authors have ana-

lyzed the performance of NOMA from different perspectives,

e.g. [38]–[41]. More specifically, based on the achievable rate

region, Xu et al. proved in [38] that NOMA outperforms

time division multiple access (TDMA) with a high proba-

bility in terms of both its overall sum-rate and the individ-

ual user-rate. Furthermore, the ergodic sum-rate of single-

input single-output NOMA (SISO-NOMA) was derived and

the performance gain of SISO-NOMA over SISO-OMA was

demonstrated via simulations by Ding et al. [39]. Upon relying

on their new dynamic resource allocation design, Chen et

al. [40] proved that SISO-NOMA always outperforms SISO-

OMA using a rigorous optimization technique. In [41], Yang et

al. analyzed the outage probability degradation and the ergodic

sum-rate of SISO-NOMA systems by taking into account the

impact of partial channel state information (CSI). As a further

development, efficient resource allocation was designed for

NOMA systems by Sun et al. [42] as well as by Wei et al.

[43] under the assumptions of perfect CSI and imperfect CSI,

respectively. The simulation results in [42] and [43] demon-

strated the performance gain of NOMA over OMA in terms

of its spectral efficiency and power efficiency, respectively.

The aforementioned contributions studied the performance of

NOMA systems or discussed the superiority of NOMA over

OMA in different contexts. However, the analytical results

quantifying the ESG of SISO-NOMA over SISO-OMA has

not been reported at the time of writing. More importantly,

the source of the performance gain of NOMA over OMA has

not been well understood and the impact of specific system

parameters on the ESG, such as the number of NOMA users,

the signal-to-noise ratio (SNR), and the cell size, have not

been revealed in the open literature.

To achieve a higher spectral efficiency, the concept of

NOMA has also been amalgamated with multi-antenna sys-

tems, resulting in the notion of multiple-input multiple-output

NOMA (MIMO-NOMA) [52], for example, by invoking the

signal alignment technique of Ding et al. [44] and the quasi-

degradation-based precoding design of Chen et al. [45]. Fur-

thermore, through building up the bounds for MIMO-NOMA,

Zeng et al. [46] and Liu et al. [47] have proven that MIMO-

NOMA outperforms MIMO-OMA in terms of both sum-

rate and ergodic sum-rate. However, no analytical expressions

were provided in [46], [47] for revealing important insights

about the performance gain of NOMA over OMA in multi-

antenna systems. Although the performance gain of MIMO-

NOMA over MIMO-OMA has indeed been shown in [44],

[45] with the aid of simulations, the performance gain due

to additional antennas has not been quantified mathematically.

Moreover, how the ESG of NOMA over OMA increases upon

upgrading the system from having a single antenna to multiple

antennas is still an open problem at the time of writing,

which deserves our efforts to explore. The answers to these

questions can shed light on the practical implementation of

NOMA in future wireless networks. On the other hand, there

are only some preliminary results on applying the NOMA

principle to massive-MIMO systems. For instance, Zhang

et al. [53] investigated the outage probability of massive-

MIMO-NOMA (mMIMO-NOMA). Furthermore, Ding and

Poor [48] analyzed the outage performance of mMIMO-

NOMA relying on realistic limited feedback and demonstrated

a substantial performance improvement for mMIMO-NOMA

over mMIMO-OMA. Upon extending NOMA to a mmWave

massive-MIMO system, the capacity attained in the high-SNR

regime and low-SNR regime were analyzed by Zhang et al.

[54]. Yet, the ESG of mMIMO-NOMA over mMIMO-OMA

remains unknown and the investigation of mMIMO-NOMA

has the promise attaining NOMA gains in large-scale systems

in the networks of the near future.

On the other hand, although single-cell NOMA has re-

ceived significant research attention [38]–[45], [48], [53], [54],

the performance of NOMA in multi-cell scenarios remains

unexplored but critically important for practical deployment,

where the inter-cell interference becomes a major obstacle

[55]. Centralized resource optimization of multi-cell NOMA

was proposed by You et al. in [49], while a distributed power

control scheme was studied in [50]. The transmit precoder

design of MIMO-NOMA aided multi-cell networks designed

for maximizing the overall sum throughput was developed by

Nguyen et al. [51] and a computationally efficient algorithm

was proposed for achieving a locally optimal solution. Despite

the fact that the simulation results provided by [49]–[51], [55]

have demonstrated a performance gain for applying NOMA in

multi-cell cellular networks, the analytical results quantifying
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TABLE I
COMPARISON OF THIS WORK WITH LITERATURE FOR THE RESULTS OF PERFORMANCE GAIN OF NOMA OVER OMA

System setup Main results [35] [39] [40] [44], [45] [46], [47] [48] [49]–[51] This work

Single-antenna
single-cell systems

Outage probability !

Proof of superiority ! !

Ergodic sum-rate ! !

Ergodic sum-rate gain !

Numerical results ! ! ! !

Multi-antenna
single-cell systems

Outage probability !

Proof of superiority ! !

Ergodic sum-rate !

Ergodic sum-rate gain !

Numerical results ! ! !

Massive-MIMO
single-cell systems

Outage probability !

Proof of superiority !

Ergodic sum-rate !

Ergodic sum-rate gain !

Numerical results ! ! !

Multi-cell systems

Outage probability

Proof of superiority !

Ergodic sum-rate !

Ergodic sum-rate gain !

Numerical results ! ! !

the ESG of NOMA over OMA for multi-cell systems relying

on single-antenna, multi-antenna, and massive-MIMO arrays

at the BSs have not been reported in the open literature. Fur-

thermore, the performance gains disseminated in the literature

have been achieved for systems having a high transmit power

or operating in the high-SNR regime. However, a high transmit

power inflicts a strong inter-cell interference, which imposes a

challenge for the design of inter-cell interference management.

Therefore, there are many practical considerations related to

the NOMA principle in multi-cell systems, while have to be

investigated.

In summary, the comparison of our work with the most

pertinent existing contributions in the literature is shown in

Table I. Although the existing treatises have investigated the

system performance of NOMA from different perspectives,

such as the outage probability [39], [44], [45], [48] and

the ergodic sum-rate [39], in various specifically considered

system setups, no unified analysis has been published to

discuss the performance gain of NOMA over OMA. To fill

this gap, our work offers a unified analysis on the ergodic

sum-rate gain of NOMA over OMA in single-antenna, multi-

antenna, and massive-MIMO systems with both single-cell and

multi-cell deployments.

This paper aims for providing answers to the above open

problems and for furthering the understanding of the ESG of

NOMA over OMA in the uplink of communication systems.

To this end, we carry out the unified analysis of ESG in single-

antenna, multi-antenna and massive-MIMO systems. We first

focus our attention on the ESG analysis in single-cell systems

and then extend our analytical results to multi-cell systems

by taking into account the inter-cell interference (ICI). We

quantify the ESG of NOMA over OMA relying on practical

signal reception schemes at the base station for both NOMA

as well as OMA and unveil its behaviour under different

scenarios. Our simulation results confirm the accuracy of our

performance analyses and provide some interesting insights,

which are summarized in the following:

• In all the cases considered, a high ESG can be achieved

by NOMA over OMA in the high-SNR regime, but the

ESG vanishes in the low-SNR regime.

• In the single-antenna scenario, we identify two types of

gains attained by NOMA and characterize their differ-

ent behaviours. In particular, we show that the large-

scale near-far gain achieved by exploiting the distance-

discrepancy between the base station and users increases

with the cell size, while the small-scale fading gain is giv-

en by an Euler-Mascheroni constant [56] of γ = 0.57721
nat/s/Hz in Rayleigh fading channels.

• When applying NOMA in multi-antenna systems, com-

pared to the MIMO-OMA utilizing zero-forcing detec-

tion, we analytically show that the ESG of SISO-NOMA

over SISO-OMA can be increased by M -fold, when the

base station is equipped with M antennas and serves a

sufficiently large number of users K.

• Compared to MIMO-OMA utilizing a maximal ratio

combining (MRC) detector, an (M − 1)-fold degrees of

freedom (DoF) gain can be achieved by MIMO-NOMA.

In particular, the ESG in this case increases linearly

with the system’s SNR quantified in dB with a slope of

(M − 1) in the high-SNR regime.

• For massive-MIMO systems with a fixed ratio between

the number of antennas, M , and the number of users, K,

i.e., δ = M
K

, the ESG of mMIMO-NOMA over mMIMO-

OMA increases linearly with both K and M using MRC

detection.

• In practical multi-cell systems operating without joint

cell signal processing, the ESG of NOMA over OMA

is degraded due to the existence of ICI, especially for a

small cell size with a dense cell deployment. Furthermore,

no DoF gain can be achieved by NOMA in multi-
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Fig. 1. The system model of the single-cell uplink communication with one
base station and K users.

cell systems due to the lack of joint multi-cell signal

processing to handle the ICI. In other words, all the ESGs

of NOMA over OMA in single-antenna, multi-antenna,

and massive-MIMO multi-cell systems saturate in the

high-SNR regime.

• For both single-cell and multi-cell systems, a large cell

size is always beneficial to the performance of NOMA.

In particular, in single-cell systems, the ESG of NOMA

over OMA is increased for a larger cell size due to

the enhanced large-scale near-far gain. For multi-cell

systems, a larger cell size reduces the ICI level, which

prevents a severe ESG degradation.

The notations used in this paper are as follows. Boldface

capital and lower case letters are reserved for matrices and

vectors, respectively. (·)T denotes the transpose of a vector or

matrix and (·)H denotes the Hermitian transpose of a vector or

matrix. CM×N represents the set of all M ×N matrices with

complex entries. |·| denotes the absolute value of a complex

scalar or the determinant of a matrix, ‖·‖ denotes Euclidean

norm of a complex vector, ⌈·⌉ is the ceiling function which

returns the smallest integer greater than the input value, and

Ex {·} denotes the expectation over the random variable x.

The circularly symmetric complex Gaussian distribution with

mean µ and variance σ2 is denoted by CN (µ, σ2).

II. SYSTEM MODEL

A. System Model

We first consider the uplink1 of a single-cell2 NOMA system

with a single base station (BS) supporting K users, as shown

in Fig. 1. The cell is modeled by a pair of two concentric ring-

shaped discs. As a distance-based channel model is adopted

in this work, the inner radius D0 is introduced to model the

minimum propagation path loss in the empirical path loss

model [58], while the outer radius D denotes the cell size. The

1We restrict ourselves to the uplink NOMA communications [57], as
advanced signal detection/decoding algorithms of NOMA are more affordable
at the base station.

2We first focus on the ESG analysis for single-cell systems, which serves as
a building block for the analyses for multi-cell systems presented in Section
VI.

BS is located at the center and all the K users are scattered

uniformly within the two concentric ring-shaped discs. For the

NOMA scheme, all the K users are multiplexed on the same

frequency band and time slot, while for the OMA scheme,

K users utilize the frequency or time resources orthogonally.

Without loss of generality, we consider frequency division

multiple access (FDMA) as a typical OMA scheme.

In this paper, we consider three typical types of communi-

cation systems:

• SISO-NOMA and SISO-OMA: the BS is equipped with

a single-antenna (M = 1) and all the K users also have

a single-antenna.

• MIMO-NOMA and MIMO-OMA: the BS is equipped

with a multi-antenna array (M > 1) and all the K users

have a single-antenna associated with K > M .

• Massive MIMO-NOMA (mMIMO-NOMA) and massive-

MIMO-OMA (mMIMO-OMA): the BS is equipped with

a large-scale antenna array (M → ∞), while all the K
users are equipped with a single antenna, associated with
M
K

= δ < 1, i.e., the number of antennas M at the BS is

lower than the number of users K, but with a fixed ratio

of δ < 1.

B. Signal and Channel Model

The signal received at the BS is given by

y =

K∑

k=1

hk

√
pkxk + v, (1)

where y ∈ C
M×1, pk denotes the power transmitted by

user k, xk is the normalized modulated symbol of user k

with E
{
|xk|2

}
= 1, and v ∼ CN (0, N0IM ) represents

the additive white Gaussian noise (AWGN) at the BS with

zero mean and covariance matrix of N0IM . To emphasize the

impact of the number of users K on the performance gain of

NOMA over OMA, we fix the total power consumption of all

the uplink users and thus we have

K∑

k=1

pk ≤ Pmax, (2)

where Pmax is the maximum total transmit power for all

the users. In the literature [35], [59], [60], the sum-power

constraint is commonly adopted to simplify the performance

analysis for uplink communications. More importantly, in this

work, the sum-power constraint is imposed to emphasize

the impact of the number of users, K, on the performance

gain of NOMA over OMA. In contrast, the system total

transmit power increases linearly with K for a fixed maximum

individual power, which prevents us to unveil the insights on

the relationship between K and the ESG. In practice, the

sum-power constraint can be adopted to limit the excessive

radiation to fulfill some practical regulations on spectrum

mask. Specifically, in our considered system model, no matter

how many users are served in a single-cell, their total transmit

power should be smaller than Pmax to avoid a severe ICI, i.e.,
K∑

k=1

pk ≤ Pmax.
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The uplink (UL) channel vector between user k and the BS

is modeled as

hk =
gk√
1 + dαk

, (3)

where gk ∈ C
M×1 denotes the Rayleigh fading coefficients,

i.e., gk ∼ CN (0, IM ), dk is the distance between user k and

the BS in the unit of meter, and α represents the path loss

exponent3. We denote the UL channel matrix between all the

K users and the BS by H = [h1, . . . ,hK ] ∈ C
M×K . Note

that the system model in (1) and the channel model in (3)

include the cases of single-antenna and massive-MIMO aided

BS associated with M = 1 and M → ∞, respectively. For

instance, when M = 1, hk = gk√
1+dα

k

denotes the correspond-

ing channel coefficient of user k in single-antenna systems.

We assume that the channel coefficients are independent and

identically distributed (i.i.d.) over all the users and antennas4.

Since this paper aims for providing some insights on the

performance gain of NOMA over OMA, we assume that

perfect UL CSI knowledge is available at the BS for coherent

detection, which is commonly adopted in the literature [39],

[44], [45], [62], [63].

Remark 1: In this paper, as a first attempt to unveil fun-

damental insights on the performance gain of NOMA over

OMA, we consider an ideal case which we model the channel

coefficients for all the users and antennas as i.i.d. random

variables. In practice, spatial channel correlation does exists

due to the antenna coupling and/or sparse propagation environ-

ment. However, it is challenging to analyze the performance

gain of NOMA over OMA when channel correlation exists,

which deserves a new work to be considered in the future.

Nevertheless, in the following, the impacts of the channel

correlation in both the antenna and the user domain are briefly

discussed.

When channel correlation exists among receiving antennas

at the BS, the received signals only span a subspace with a

dimension smaller than the number of antennas M . At the

same time, the spatial correlation among antennas reduces the

system DoF [64] as we focus on K ≥ M in the considered

massive MIMO communication system. Note that NOMA

is suitable for a DoF-limited system as it allows multiple

users to share one DoF with power domain multiplexing [13].

Therefore, the channel correlation in antenna domain favors

NOMA and is potential to increase the performance gain of

NOMA over OMA.

On the other hand, when there are channel correlations

among users, IUI becomes more severe for both NOMA and

OMA in both single-cell and multi-cell systems. However,

3In this paper, we ignore the impact of shadowing to simplify our
performance analysis. Note that, shadowing only introduces an additional
power factor to gk in the channel model in (3). Although the introduction of
shadowing may change the resulting channel distribution of hk , the distance-
based channel model is sufficient to characterize the large-scale near-far gain
exploited by NOMA, as will be discussed in this paper.

4 We note that the channel gains of the users ordered for ensuing SIC
operation are generally correlated according to order statistics theory [61].
However, as demonstrated in our performance analysis, we do not need to
consider the channel correlation imposed by channel ordering. A detailed
explanation on adopting independently distributed channels in our analysis is
given in Appendix G.

OMA is very sensitive to IUI, while NOMA is in favor of

interference-limited systems, owing to the execution of SIC

detection. Therefore, exploiting the channel correlation among

users is also a potential direction to enhance the performance

gain of NOMA over OMA.

Remark 2: In practice, various uplink channel estimation

schemes can be applied to achieve highly accurate CSI,

e.g. the least square and the minimum mean square error

(MMSE) methods [65]. In particular, each user transmits its

pilot sequence to the BS and channel estimation is executed

at the BS. Hence, we assume that perfect CSI is available at

the BS for signal detection.

Furthermore, we would like to discuss the impact of CSI

error on the performance gain of NOMA over OMA, as the

CSI error is usually inevitable in practice. In particular, the CSI

error for signal detection causes the non-removable residual

interference [41], [66], which deteriorates the performance of

both NOMA and OMA systems. For OMA schemes, as shown

in Equations (5), (26), (29), and (46) in the latter part of this

paper, the achievable data rate of user k is only affected by its

own CSI error. On the other hand, as shown in Equation (3)

in our previous work [66], the achievable data rate of user k is

affected by the CSI error at the BS from not only user k itself

but also the previously decoded users {1, 2, . . . , k−1}. In fact,

during SIC detection, the interference signals of previously

decoded users cannot be completely eliminated due to the CSI

error. Therefore, NOMA is generally more sensitive to the

CSI error due to the accumulation of residual interference. As

a result, the performance gain of NOMA over OMA might

be redeemed with the existence of CSI error. However, as a

first attempt to investigate the ESG, we focus on the case of

perfect CSI and the study for the case of imperfect CSI will

be considered in our future work.

C. Signal Detection and Resource Allocation Strategy

To facilitate our performance analyses, we focus our atten-

tion on the following efficient signal detection and practical

resource allocation strategies.

1) Signal detection: The signal detection techniques adopt-

ed in this paper for NOMA and OMA systems are shown in

Table II, which are detailed in the following.

For SISO-NOMA, we adopt the commonly used successive

interference cancelation (SIC) receiver [67] at the BS, since

its performance approaches the capacity of single-antenna

systems [27]. On the other hand, given that all the users are

separated orthogonally by different frequency subbands for

SISO-OMA, the simple single-user detection (SUD) technique

can be used to achieve the optimal performance.

For MIMO-NOMA, the MMSE-based successive interfer-

ence cancelation (MMSE-SIC) constitutes an appealing receiv-

er algorithm, since its performance approaches the capacity

[27] at an acceptable computational complexity for a finite

number of antennas M at the BS. On the other hand, two

types of signal detection schemes are considered for MIMO-

OMA, namely FDMA zero forcing (FDMA-ZF) and FDMA

maximal ratio combining (FDMA-MRC). Exploiting the extra

spatial degrees of freedom (DoF) attained by multiple antennas
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TABLE II
SIGNAL DETECTION TECHNIQUES FOR NOMA AND OMA SYSTEMS

NOMA system Reception technique OMA system Reception technique

SISO-NOMA SIC SISO-OMA FDMA-SUD
MIMO-NOMA MMSE-SIC MIMO-OMA FDMA-ZF, FDMA-MRC

mMIMO-NOMA MRC-SIC mMIMO-OMA FDMA-MRC

at the BS, ZF can be used for multi-user detection (MUD), as

its achievable rate approaches the capacity in the high-SNR

regime [27]. In particular, all the users are categorized into

G = K/M groups5 with each group containing M users.

Then, ZF is utilized for handling the inter-user interference

(IUI) within each group and FDMA is employed to separate

all the G groups on orthogonal frequency subbands. In the

low-SNR regime, the performance of ZF fails to approach the

capacity [27], thus a simple low-complexity MRC scheme is

adopted for single user detection on each frequency subband.

We note that there is only a single user in each frequency

subband of our considered FDMA-MRC aided MIMO-OMA

systems, i.e., no user grouping.

With a massive number of UL receiving antennas employed

at the BS, we circumvent the excessive complexity of matrix

inversion involved in ZF and MMSE detection by adopting

the low-complexity MRC-SIC detection [66] for mMIMO-

NOMA systems and the FDMA-MRC scheme for mMIMO-

OMA systems. Given the favorable propagation property of

massive-MIMO systems [68], the orthogonality among the

channel vectors of multiple users holds fairly well, provided

that the number of users is sufficiently smaller than the number

of antennas. Therefore, we can assign W ≪M users to every

frequency subband and perform the simple MRC detection

while enjoying negligible IUIs in each subband. In this paper,

we consider a fixed ratio between the group size and the

number of antennas, namely, ς = W
M

≪ 1, and assume that the

above-mentioned favorable propagation property holds under

the fixed ratio ς considered.

Remark 3: As observed in Table II, the main difference in

detection complexity between NOMA and OMA schemes is

the SIC detection6 in all the considered scenarios, which intro-

duces an extra detection complexity and delay for NOMA at

the BS. In particular, SIC detection is essentially a multi-stage

procedure to successively decode, regenerate, and subtract the

signal of each NOMA user at the BS [14]. According to [69],

both the complexity and the delay of SIC detection grows

linearly with respect to (w.r.t.) the number of users K. On the

other hand, as we assume the same total transmit power for

both NOMA and OMA schemes in all the considered scenarios

for fair comparison, the non-negative ESGs has implicitly

shown an increased power efficiency of NOMA over OMA,

i.e., the ergodic sum-rate achieved per Watt of transmit power.

If the circuit power consumption for SIC detection at the

BS dominates the total system power consumption, the power

5Without loss of generality, we consider the case with G as an integer in
this paper.

6Compared to FDMA-MRC for MIMO-OMA, an additional computational
complexity O

(

M3
)

is required for MIMO-NOMA due to the channel
inversion in MMSE-SIC, apart from that of the SIC detection of MIMO-
NOMA.

efficiency might be decreased. This is due to the fact that as

K → ∞, the ESG of NOMA over OMA becomes saturated as

shown in Fig. 5, while the power consumption of SCI detection

linearly increases w.r.t. K.

2) Resource allocation strategy: To facilitate our analytical

study in this paper, we consider an equal resource allocation

strategy for both NOMA and OMA schemes. In particular,

equal power allocation is adopted for NOMA schemes7. On the

other hand, equal power and frequency allocation is adopted

for OMA schemes. As shown in the literature [43], [62],

power control is usually adopted to potentially improve the

performance gain of NOMA. Specifically, power control can

increase the channel discrepancies between users which facili-

tates the exploitation of power domain multiplexing. However,

traditional centralized uplink power control approaches [71],

[72] may not be practical and scalable due to the required

tremendous system overhead, particular for uplink NOMA sys-

tems serving a larger number of users. Therefore, distributed

power control approaches [73], [74] were proposed for uplink

NOMA to improve the scalability of the system w.r.t. the

number of users. In contrast, our work focuses on investigating

the source of performance gain of NOMA over OMA and

the impact of specific system parameters on the ESG, such

as the number of users, the number of antennas, the system

SNR, and the cell size. To isolate the impact of resource

allocation design on the performance gain of NOMA over

OMA, we consider an equal power allocation for both NOMA

and OMA schemes8. In addition, any adaptive power control

strategy, either centralized or distributed approach, depends

on the availability of global or local instantaneous channel

state information. As a result, adopting an adaptive power

control can complicate the performance analysis and hence

we adopt an equal power allocation strategy to simplify the

performance analysis and insights investigation. In practice,

equal resource allocation is a typical selected strategy for

applications bearing only a limited system overhead, e.g.

machine-type communications (MTC) [6], [75].

We note that beneficial user grouping design is important

for the MIMO-OMA system relying on FDMA-ZF and for the

mMIMO-OMA system using FDMA-MRC. In general, finding

the optimal user grouping strategy is an NP-hard problem and

the performance analysis based on the optimal user grouping

strategy is generally intractable. Furthermore, the optimal SIC

detection order of NOMA in multi-antenna and massive-

MIMO systems is still an open problem in the literature, since

the channel gains on different antennas are usually diverse.

7As shown in [70], allocating a higher power to the user with the worse
channel is not necessarily required in NOMA [70].

8Note that, even a fixed but imbalanced power allocation strategy may
contribute to the ESG of NOMA over OMA and thus may bias the obtained
insights.
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Step 1: Derive instantaneous sum-rate:

( ) ( )NOMA OMA

sum sum,R RH H

Step 3: Derive ergodic sum-rate:

( ) ( )NOMA OMA

sum sum,R RH H

Step 4: Compute ESG:

( ) ( )NOMA OMA

sum sumG R R= −H H

Step 2: Derive distribution of

with Gaussian-Chebyshev 

quadrature approximation

H

Fig. 2. A flow chart summarizes the adopted analysis procedure in this paper.

To avoid tedious comparison and to facilitate our performance

analysis, we adopt a random user grouping strategy for the

OMA systems considered and a fixed SIC detection order for

the NOMA systems investigated. In particular, we randomly

select M and W users for each group on each frequency

subband for the MIMO-OMA and mMIMO-OMA systems, re-

spectively. For NOMA systems, without loss of generality, we

assume ‖h1‖ ≥ ‖h2‖ , . . . ,≥ ‖hK‖, that the users are indexed

based on their channel gains, and the SIC/MMSE-SIC/MRC-

SIC detection order9 at the BS is 1, 2, . . . ,K. Additionally,

to unveil insights about the performance gain of NOMA over

OMA, we assume that there is no error propagation during

SIC/MMSE-SIC/MRC-SIC detection at the BS.

Remark 4: We note that without proper transmission rate

allocation, both NOMA and OMA suffer from severe outage

events. In some existing works [39], [44], the authors assumed

fixed power as well as rate allocation and analyzed the outage

probability of NOMA due to the randomness of channel

fading. However, in this work, we focus on the ergodic

sum-rate analysis where the transmission rate is determined

opportunistically according to the instantaneous achievable

rate. In particular, based on the channel estimates, the BS

assigns the transmission rate for each user according to the

instantaneous achievable rate for both NOMA and OMA

schemes in different scenarios. However, in practice, the

estimated CSI might be outdated during the rate allocation,

which leads to the CSI error. The discussions of the impact of

CSI error on the performance gain of NOMA over OMA can

be found in Remark 2.

D. The Analysis Procedure

In the rest of this paper, e.g. Sections III, IV, and V, a

systematic procedure is adopted to analyze the ESG of NOMA

over OMA, via combining the specific features in different

scenarios. For the ease of illustration, we have summarized

the 4-Step analysis procedure as a flow chart shown in Fig.

2. Step 1, based on the adopted signal detection and resource

allocation strategies for NOMA and OMA in Table II, we

formulate the instantaneous sum-rate as a function of the

9Note that, in general, the adopted detection order is not the optimal SIC
detection order for maximizing the achievable sum-rate of the considered
MIMO-NOMA and mMIMO-NOMA systems.

instantaneous channels of all the users, i.e., RNOMA
sum (H) and

ROMA
sum (H) with H = [h1, . . . ,hK ]. Then in Step 2, we derive

the channel distributions in different scenarios. Note that an

accurate polynomial approximation method, i.e., the Gaussian-

Chebyshev quadrature approximation [76], is employed to

approximate the multi-dimensional integral for deriving the

channel distribution10. Then, the third step is dedicated to

derive the ergodic sum-rate via averaging the corresponding

instantaneous sum-rate w.r.t. channel distributions. Finally in

Step 4, the ESG can be obtained by comparing the ergodic

sum-rates of NOMA and OMA. We note that in each step,

asymptotic analysis techniques have been applied to provide

some interesting insights on the performance gain of NOMA

over OMA.

III. ESG OF SISO-NOMA OVER SISO-OMA

In this section, we first derive the ergodic sum-rate of

SISO-NOMA and SISO-OMA. Then, the asymptotic ESG of

SISO-NOMA over SISO-OMA is discussed under different

scenarios.

A. Ergodic Sum-rate of SISO-NOMA and SISO-OMA

When detecing the messages of user k, the interferences

imposed by users 1, 2, . . . , k − 1 have been canceled in

the SISO-NOMA system by SIC reception. Therefore, the

instantaneous achievable data rate of user k in the SISO-

NOMA system considered is given by:

RSISO−NOMA
k = ln


1 +

pk|hk|2
K∑

i=k+1

pi|hi|2 +N0


 . (4)

On the other hand, for the considered SISO-OMA system,

user k is allocated to a subband exclusively, thus there is no

inter-user interference (IUI). As a result, the instantaneous

achievable data rate of user k in the SISO-OMA system

considered is given by:

RSISO−OMA
k = fkln

(
1 +

pk|hk|2
fkN0

)
, (5)

with pk and fk denoting the power allocation and frequency

allocation of user k. Note that we consider a normalized

frequency bandwidth for both the NOMA and OMA schemes

in this paper, i.e.,
K∑

k=1

fk = 1. Under the identical resource

allocation strategy, i.e., for pk = Pmax

K
and fk = 1/K, we

have the instantaneous sum-rate of SISO-NOMA and SISO-

10The error analysis of the adopted Gaussian-Chebyshev quadrature ap-
proximation is presented in the proof of Lemma 1 in Appendix A.
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OMA given by

RSISO−NOMA
sum =

K∑

k=1

RSISO−NOMA
k

= ln

(
1 +

Pmax

KN0

K∑

k=1

|hk|2
)

and (6)

RSISO−OMA
sum =

K∑

k=1

RSISO−OMA
k

=
1

K

K∑

k=1

ln

(
1 +

Pmax

N0
|hk|2

)
, (7)

respectively.

Given the instantaneous sum-rates in (6) and (7), firstly

we have to investigate the channel gain distribution before

embarking on the derivation of the corresponding ergodic sum-

rates, which is given in the following lemma.

Lemma 1: The cumulative distribution function (CDF) and

probability density function (PDF) of |h|2 can be approximated

by11

F|h|2 (x) ≈ 1− 1

D +D0

N∑

n=1

βne
−cnx and (8)

f|h|2 (x) ≈
1

D +D0

N∑

n=1

βncne
−cnx, x ≥ 0, (9)

respectively, where the parameters in (8) and (9) are:

βn =
π

N

∣∣∣∣sin
2n−1
2N

π

∣∣∣∣
(
D−D0

2
cos

2n−1
2N

π +
D+D0

2

)
and

cn = 1 +

(
D −D0

2
cos

2n− 1

2N
π +

D +D0

2

)α

, (10)

while N denotes the number of terms adopted for integral

approximation.

Proof: Please refer to Appendix A for the proof of Lemma

1.

Based on (6), the ergodic sum-rate of the SISO-NOMA

system considered is defined as:

RSISO−NOMA
sum = EH

{
RSISO−NOMA

sum

}

= EH

{
ln

(
1 +

Pmax

KN0

K∑

k=1

|hk|2
)}

, (11)

where the expectation EH {·} is averaged over both the large-

scale fading and small-scale fading in the overall channel

matrix H. For a large number of users, i.e., K → ∞, the

sum of channel gains of all the users within the ln (·) in (11)

becomes a deterministic value due to the strong law of large

11As mentioned before, we assumed that the channel gains of all the users
are ordered as |h1| ≥ |h2| , . . . ,≥ |hK | in Section II-C2. However, as shown
in (6), the system sum-rate for the considered SISO-NOMA system is actually
independent of the SIC detection order. Therefore, we can safely assume
that all the users have i.i.d. channel distribution, which does not affect the
performance analysis results. In the sequel of this paper, the subscript k is
dropped without loss of generality.

numbers, i.e., lim
K→∞

1
K

K∑
k=1

|hk|2 = |h|2, where |h|2 denotes

the average channel power gain and it is given by

|h|2 =

∫ ∞

0

xf|h|2 (x)dx ≈ 1

D +D0

N∑

n=1

βn
cn
. (12)

Therefore, the asymptotic ergodic sum-rate of the SISO-

NOMA system considered is given by

lim
K→∞

RSISO−NOMA
sum

(a)
= EH

{
lim

K→∞
RSISO−NOMA

sum

}
(13)

= ln

(
1 +

Pmax

N0
|h|2
)

≈ ln

(
1 +

Pmax

(D +D0)N0

N∑

n=1

βn
cn

)
,

where the equality (a) is due to the bounded convergence theo-

rem [77] and owing to the finite channel capacity. Note that for

a finite number of users K, the asymptotic ergodic sum-rate in

(13) serves as an upper bound for the actual ergodic sum-rate

in (11), i.e., we have lim
K→∞

RSISO−NOMA
sum ≥ RSISO−NOMA

sum ,

owing to the concavity of the logarithmic function and the

Jensen’s inequality. In the Section VII, we will show that the

asymptotic analysis in (13) is also accurate for a finite value

of K and becomes exact for a sufficient large K.

Similarly, based on (7), we can obtain the ergodic sum-rate

of the SISO-OMA system as follows:

RSISO−OMA
sum = EH

{
1

K

K∑

k=1

ln

(
1 +

Pmax

N0
|hk|2

)}

(a)
=

∫ ∞

0

ln

(
1 +

Pmax

N0
x

)
f|h|2 (x)dx

=
1

(D +D0)

N∑

n=1

βne
cnN0
Pmax E1

(
cnN0

Pmax

)
, (14)

where El (x) =
∫∞

1
e−xt

tl
dt denotes the l-order exponential

integral [56]. The equality (a) in (14) is obtained since all the

users have i.i.d. channel distributions. Note that in contrast

to SISO-NOMA, RSISO−OMA
sum in (14) is applicable to SISO-

OMA supporting an arbitrary number of users.

B. ESG in Single-antenna Systems

Comparing (13) and (14), the asymptotic ESG of SISO-

NOMA over SISO-OMA with K → ∞ can be expressed as

follows:

lim
K→∞

GSISO = lim
K→∞

RSISO−NOMA
sum −RSISO−OMA

sum

≈ ln

(
1 +

Pmax

(D +D0)N0

N∑

n=1

βn
cn

)

− 1

(D +D0)

N∑

n=1

βne
cnN0
Pmax E1

(
cnN0

Pmax

)
. (15)
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Then, in the high-SNR regime12, we can approximate the

asymptotic ESG in (15) by applying lim
x→0

E1 (x) ≈ − ln (x)−γ
[56] as

lim
K→∞,Pmax→∞

GSISO ≈ ϑ (D,D0) + γ, (16)

where ϑ (D,D0) is given by

ϑ (D,D0) = ln




N∑
n=1

(
1
cn

)
βn

(D+D0)

N

Π
n=1

(
1
cn

) βn
(D+D0)


 (17)

and γ = 0.57721 is the Euler-Mascheroni constant [56].

Based on the weighted arithmetic and geometric means (AM-

GM) inequality [78], we can observe that ϑ (D,D0) ≥ 0.

This implies that lim
K→∞,Pmax→∞

GSISO > 0 and SISO-NOMA

provides a higher asymptotic ergodic sum-rate than SISO-

OMA in the system considered.

To further simplify the expression of ESG, we consider path

loss exponents α in the range of α ∈ [3, 6] in (10), which

usually holds in urban environments [58]. As a result, cn ≫ 1.

Hence, ϑ (D,D0) in (17) can be further simplified as follows:

ϑ (D,D0) ≈ ϑ (η) =

ln




π
N(1+η)

N∑
n=1

[λn (η)]
1−α

∣∣sin 2n−1
2N π

∣∣

N

Π
n=1

[λn (η)]
−

απλn(η)
N(1+η) |sin 2n−1

2N π|


 , (18)

where λn (η) =
(
η−1
2 cos

(
2n−1
2N π

)
+ η+1

2

)
∈ [1, η). The

normalized cell size of η = D
D0

≥ 1 is the ratio between

the outer radius D and the inner radius D0, which also serves

as a metric of the path loss discrepancy.

We can see that the asymptotic ESG of SISO-NOMA over

SISO-OMA in (16) is composed of two components, i.e.,

ϑ (D,D0) and γ. As observed in (18), the former component

of ϑ (D,D0) ≈ ϑ (η) only depends on the normalized cell

size of η = D
D0

instead of the absolute values of D and D0. In

fact, it can characterize the large-scale near-far gain attained

by NOMA via exploiting the discrepancy in distances among

NOMA users. Interestingly, for the extreme case that all the

users are randomly deployed on a circle, i.e., D = D0, we

have η = 1, λn (η) = 1, and ϑ (η) = 0. In other words,

the large-scale near-far gain disappears, when all the users

are of identical distance away from the BS. With the aid

of ϑ (η) = 0, we can observe in (16) that the performance

gain achieved by NOMA is a constant value of γ = 0.57721
nat/s/Hz. Since all the users are set to have the same distance

when D = D0, the minimum asymptotic ESG γ arising from

the small-scale Rayleigh fading is named as the small-scale

fading gain in this paper. In fact, in the asymptotic case

associated with K → ∞ and Pmax → ∞, SISO-NOMA

provides at least γ = 0.57721 nat/s/Hz spectral efficiency

12Under the sum-power constraint, the system SNR directly depends on
the total system power budget Pmax, and thus the system SNR and Pmax

are interchangeable in this paper. Note that in this paper, we assume a large
system SNR, as defined in (71), rather than a large individual SNR for each
user for analyzing the ergodic sum-rate.
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Fig. 3. The asymptotic ESG in (16) under equal resource allocation versus
D and D0 with K → ∞ and Pmax → ∞.

gain over SISO-OMA for an arbitrary cell size in Rayleigh

fading channels. Additionally, we can see that the ESG of

SISO-NOMA over SISO-OMA is saturated in the high-SNR

regime. This is because the instantaneous system sum-rates

of both the SISO-NOMA system in (6) and the SISO-OMA

system in (7) increase logarithmically with Pmax → ∞.

To visualize the large-scale near-far gain, we illustrate the

asymptotic ESG in (16) versus D and D0 in Fig. 3. We

can observe that when η = 1, the large-scale near-far gain

disappears and the asymptotic ESG is bounded from below

by its minimum value of γ = 0.57721 nat/s/Hz due to the

small-scale fading gain. Additionally, for different values of

D and D0 but with a fixed η = D
D0

, SISO-NOMA offers

the same ESG compared to SISO-OMA. This is because as

predicted in (18), the large-scale near-far gain only depends on

the normalized cell size η. More importantly, we can observe

that the large-scale near-far gain increases with the normalized

cell size η. In fact, for a larger normalized cell size η, the

heterogeneity in the large-scale fading among users becomes

higher and SISO-NOMA attains a higher near-far gain, hence

improving the sum-rate performance.

Remark 5: Note that it has been analytically shown in [62]

that two users with a large distance difference (or equivalently

channel gain difference) are preferred to be paired. This is

consistent with our conclusion in this paper, where a larger

normalized cell size η enables a higher ESG of NOMA over

OMA. However, [62] only considered a pair of two NOMA

users. In this paper, we analytically obtain the ESG of NOMA

over OMA for a more general NOMA system supporting a

large number of UL users. More importantly, we identify two

kinds of gains in the ESG derived and reveal their different

behaviours.

Remark 6: In this paper, we focus on the case of a large

number of users and perfect SIC to facilitate the analytical

study. In fact, the adopted system model with K → ∞ is

suitable for the application scenario of narrow band massive

internet-of-thing (IoT) communications, where a large number

of IoT devices intend to communicate with a common receiver
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through the same resource block [79], [80]. Although the

proposed analysis is based on asymptotic performance, it can

also be used to predict the performance of a finite value of

K. As shown in Fig. 5 of Section VII, for a finite value of

K, such as K = 128 and K = 256, the simulation results

are close to the corresponding asymptotic analytical results.

We note that a large finite NOMA group size may incur a

high detection complexity and delay for the SIC implemented

at the BS in the uplink of NOMA systems, although both

only linearly increase with K [69]. In addition, the asymptotic

analytical results obtained in this treatise can be regarded as an

upper bound of the performance gain of NOMA over OMA in

practical implementations where the detection complexity and

delay need to be considered. Moreover, the focus of asymptotic

regime is a commonly adopted approach [39], [60], [81], [82]

which can shed light on this complex problem for obtaining

insightful yet tractable results.

On the other hand, although SIC detection suffers from the

inevitable error propagation in practice, we assume the perfect

SIC to facilitate our performance analysis. This is because

modeling the error propagation during SIC detection is non-

trivial from the achievable data rate perspective. It is true

that there are some works in the literature considering the

impact of imperfect SIC to the system performance, e.g. the

performance analysis on coverage probability with considering

the imperfect SIC for uplink NOMA can be found in [83].

Although we can follow a similar approach as [83] to analyze

the impact of imperfect SIC on ESG, the results are generally

intractable due to the involved K-dimensional integrations for

calculating the system outage probability. As a first attempt

to investigate the ESG, we would like to focus on the case

of perfect SIC as fundamental system design insights can

be unveiled. The impact of the SIC imperfection on the

performance gain of NOMA over OMA will be investigated

in Section VII via simulations.

IV. ESG OF MIMO-NOMA OVER MIMO-OMA

In this section, the ergodic sum-rates of MIMO-NOMA

and MIMO-OMA associated with FDMA-ZF as well as

FDMA-MRC are firstly analyzed. Then, the asymptotic ESGs

of MIMO-NOMA over MIMO-OMA with FDMA-ZF and

FDMA-MRC detection are investigated.

A. Ergodic Sum-rate of MIMO-NOMA with MMSE-SIC

Let us consider that an M -antenna BS serves K single-

antenna non-orthogonal users relying on MIMO-NOMA. The

BS employs MMSE-SIC detection for retrieving the messages

of all the users. The instantaneous achievable data rate of

user k in the MIMO-NOMA system relying on MMSE-SIC

detection13 is given by [27]:

RMIMO−NOMA
k = ln

∣∣∣∣∣IM +
1

N0

K∑

i=k

pihih
H
i

∣∣∣∣∣

− ln

∣∣∣∣∣IM +
1

N0

K∑

i=k+1

pihih
H
i

∣∣∣∣∣ . (19)

As a result, the instantaneous sum-rate of MIMO-NOMA is

obtained as

RMIMO−NOMA
sum =

K∑

k=1

RMIMO−NOMA
k

= ln

∣∣∣∣∣IM +
1

N0

K∑

k=1

pkhkh
H
k

∣∣∣∣∣ . (20)

In fact, MMSE-SIC is capacity-achieving [27] and (20) is

the channel capacity for a given instantaneous channel matrix

H [84]. In general, it is a challenge to obtain a closed-form

expression for the instantaneous channel capacity above due

to the determinant of the summation of matrices in (20). To

provide some insights, in the following theorem, we consider

an asymptotically tight upper bound for the achievable sum-

rate in (20) associated with K → ∞.

Theorem 1: For the MIMO-NOMA system considered in

(1) relying on MMSE-SIC detection, given any power allo-

cation strategy p = [p1, . . . , pK ], the achievable sum-rate in

(20) is upper bounded by

RMIMO−NOMA
sum ≤M ln

(
1 +

1

MN0

K∑

k=1

pk‖hk‖2
)
. (21)

This upper bound is asymptotically tight, when K → ∞, i.e.,

lim
K→∞

RMIMO−NOMA
sum

= lim
K→∞

M ln

(
1 +

1

MN0

K∑

k=1

pk‖hk‖2
)
. (22)

Proof: Please refer to Appendix B for the proof of

Theorem 1.

Now, given the instantaneous achievable sum-rate obtained

in (22), we proceed to calculate the ergodic sum-rate. Before

that, we derive the distribution of ‖h‖2 in the following

lemma.

Lemma 2: The CDF and PDF of ‖h‖2 can be written as14

F‖h‖2 (x) ≈ 1− 1

D +D0

N∑

n=1

βnγL (M, cnx)

Γ (M)
and (23)

f‖h‖2 (x) ≈ 1

D +D0

N∑

n=1

βnGamma (M, cn, x), x ≥ 0,

13The derivation of individual rates in (19) for MMSE-SIC detection of
MIMO-NOMA is based on the matrix inversion lemma:

log
∣

∣

∣
A+ hhH

∣

∣

∣
− log |A| = log

∣

∣

∣
1 + hHA−1h

∣

∣

∣
.

Interested readers are referred to [27] for a detailed derivation.
14Similar to (8) and (9), we can safely assume that all the users have i.i.d.

channel distribution within the cell and drop the subscript k in (89), since
the system sum-rate in (20) is independent of the MMSE-SIC detection order
[27].
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respectively, where βn and cn are given in (10),

Gamma (M,λ, x) = λMxM−1e−λx

Γ(M) denotes the PDF of

a random variable obeying a Gamma distribution, Γ (M)
denotes the Gamma function, and γL (M, (1 + dα)x) denotes

the lower incomplete Gamma function.

Proof: Please refer to Appendix C for the proof of Lemma

2.

According to (22), given the equal resource allocation

strategy, i.e., pk = Pmax

K
, the asymptotic ergodic sum-rate of

MIMO-NOMA associated with K → ∞ can be obtained as

follows:

lim
K→∞

RMIMO−NOMA
sum = lim

K→∞
EH

{
RMIMO−NOMA

sum

}
(24)

=M ln

(
1 +

Pmax

MN0
‖h‖2

)

≈M ln

(
1 +

Pmax

(D +D0)N0

N∑

n=1

βn
cn

)
,

where ‖h‖2 denotes the average channel gain, which is given

by

‖h‖2 =

∫ ∞

0

xf‖h‖2 (x)dx ≈ M

D +D0

N∑

n=1

βn
cn
. (25)

Remark 7: Comparing (13) and (24), we can observe that

for a sufficiently large number of users, the considered MIMO-

NOMA system is asymptotically equivalent to a SISO-NOMA

system with M -fold increases in DoF and an equivalent

average channel gain of ‖h‖2 in each DoF. Intuitively, when

the number of UL receiver antennas at the BS, M , is much

smaller than the number of users, K → ∞, which corresponds

to the extreme asymmetric case of MIMO-NOMA, the multi-

antenna BS behaves asymptotically in the same way as a

single-antenna BS. Additionally, when K ≫ M , due to the

diverse channel directions of all the users, the received signals

fully span the M -dimensional signal space [60]. Therefore,

MIMO-NOMA using MMSE-SIC reception can fully exploit

the system’s spatial DoF, M , and its performance can be

approximated by that of a SISO-NOMA system with M -fold

DoF.

B. Ergodic Sum-rate of MIMO-OMA with FDMA-ZF

Upon installing more UL receiver antennas at the BS, ZF

can be employed for MUD and the MIMO-OMA system using

FDMA-ZF can accommodate M users on each frequency

subband. As mentioned before, we adopt a random user

grouping strategy for the MIMO-OMA system using FDMA-

ZF detection, where we randomly select M users as a group

and denote the composite channel matrix of the g-th group by

Hg =
[
h(g−1)M+1,h(g−1)M+2, . . . ,hgM

]
∈ C

M×M . Then,

the instantaneous achievable data rate of user k in the MIMO-

OMA system is given by

RMIMO−OMA
k,FDMA−ZF = fgln


1 +

pk

∣∣∣wH
g,khk

∣∣∣
2

fgN0


 , (26)

where fg denotes the normalized frequency allocation for the

g-th group. The vector wg,k ∈ C
M×1 denotes the normalized

ZF detection vector for user k with ‖wg,k‖2 = 1, which is

obtained based on the pseudoinverse of the composite channel

matrix Hg in the g-th user group [27].

Given the equal resource allocation strategy, i.e., pk = Pmax

K

and fg = 1/G = M
K

, the instantaneous sum-rate of MIMO-

OMA using FDMA-ZF can be formulated as:

RMIMO−OMA
sum,FDMA−ZF =

K∑

k=1

RMIMO−OMA
k,FDMA−ZF

=
M

K

K∑

k=1

ln

(
1 +

Pmax

MN0

∣∣∣wH
g,khk

∣∣∣
2
)
. (27)

Since ‖wg,k‖2 = 1 and gk ∼ CN (0, IM ), we have wH
g,kgk

∼
CN (0, 1) [27]. As a result,

∣∣∣wH
g,khk

∣∣∣
2

in (27) has an identical

distribution with |h|2, i.e., its CDF and PDF are given by (8)

and (9), respectively. Therefore, the ergodic sum-rate of the

MIMO-OMA system considered can be expressed as:

RMIMO−OMA
sum,FDMA−ZF = EH

{
RMIMO−OMA

sum,FDMA−ZF

}
(28)

=

∫ ∞

0

M ln

(
1 +

Pmax

MN0
x

)
f|h|2 (x)dx

=
M

(D +D0)

N∑

n=1

βne
cnMN0
Pmax E1

(
cnMN0

Pmax

)
.

C. Ergodic Sum-rate of MIMO-OMA with FDMA-MRC

The instantaneous achievable data rate of user k in the

MIMO-OMA system using the FDMA-MRC receiver is given

by

RMIMO−OMA
k,FDMA−MRC = fkln

(
1 +

pk‖hk‖2
fkN0

)
. (29)

Upon adopting the equal resource allocation strategy, i.e., pk =
Pmax

K
and fk = 1/K, the instantaneous sum-rate of MIMO-

OMA relying on FDMA-MRC is obtained by

RMIMO−OMA
sum,FDMA−MRC =

K∑

k=1

RMIMO−OMA
k,FDMA−MRC

=
1

K

K∑

k=1

ln

(
1 +

Pmax

N0
‖hk‖2

)
. (30)

Averaging RMIMO−OMA
sum,FDMA−MRC over the channel fading, we

arrive at the ergodic sum-rate of MIMO-OMA using FDMA-

MRC as

RMIMO−OMA
sum,FDMA−MRC = EH

{
1

K

K∑

k=1

ln

(
1 +

Pmax

N0
‖hk‖2

)}

=

∫ ∞

0

ln

(
1 +

Pmax

N0
x

)
f‖h‖2 (x)dx

=
1

(D +D0)

N∑

n=1

βnTn, (31)
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with Tn given by

Tn =

∫ ∞

0

ln

(
1 +

Pmax

N0
x

)
Gamma (M, cn) dx

(a)
=

∫ ∞

0

ln (1 + t)Gamma

(
M,

N0cn
Pmax

)
dt

(b)
=

(
N0cn
Pmax

)M

Γ (M)
G3,1
2,3

(
−M,−M + 1
−M,−M, 0

∣∣∣∣
N0cn
Pmax

)
, (32)

where Gm,n
p,q (·) denotes the Meijer G-function. The e-

quality (a) in (32) is obtained due to t = Pmax

N0
x ∼

Gamma
(
M, N0cn

Pmax

)
and the equality (b) in (32) is based on

Equation (3) in [85]. Now, the ergodic sum-rate of MIMO-

OMA using FDMA-MRC can be written as Equation (33) on

the top of next page.

Note that, the ergodic sum-rate in (33) is applicable to an

arbitrary number of users K and an arbitrary SNR, but it is too

complicated to offer insights concerning the ESG of MIMO-

NOMA over MIMO-OMA. Hence, based on (31), we derive

the asymptotic ergodic sum-rate of MIMO-OMA with FDMA-

MRC in the low-SNR regime with Pmax → 0 as follows:

lim
Pmax→0

RMIMO−OMA
sum,FDMA−MRC =

Pmax

N0
‖h‖2

=
MPmax

N0 (D +D0)

N∑

n=1

βn
cn
. (34)

On the other hand, in the high-SNR regime, based on (31), the

asymptotic ergodic sum-rate of MIMO-OMA using FDMA-

MRC is given by

lim
Pmax→∞

RMIMO−OMA
sum,FDMA−MRC

= ln

(
Pmax

N0

)
+ Eh

{
ln
(
‖h‖2

)}
. (35)

D. ESG in Multi-antenna Systems

By comparing (24) and (28), we have the asymptotic ESG

of MIMO-NOMA over MIMO-OMA relying on FDMA-ZF

given by Equation (36) on the top of next page. To unveil

some insights, we consider the asymptotic ESG in the high-

SNR regime given by Equation (37) on the top of next page,

where ϑ (D,D0) denotes the large-scale near-far gain given

in (17).

Remark 8: The identified two kinds of gains in ESG of the

single-antenna system in (16) are also observed in the ESG of

MIMO-NOMA over MIMO-OMA using FDMA-ZF in (37).

Moreover, it can be observed that both the large-scale near-far

gain ϑ (D,D0) and the small-scale fading gain γ are increased

by M times as indicated in (37). In fact, upon comparing (16)

and (37), we have

lim
K→∞,Pmax→∞

GMIMO
FDMA−ZF

=M lim
K→∞,Pmax→∞

GSISO +M ln (M) , (38)

which implies that the asymptotic ESG of MIMO-NOMA over

MIMO-OMA is M -times of that in single-antenna systems,

when there are M UL receiver antennas at the BS. In fact,

for K → ∞, the heterogeneity in channel directions of all the

users allows the received signals to fully span across the M -

dimensional signal space. Hence, MIMO-NOMA and MIMO-

OMA using FDMA-ZF can fully exploit the system’s maximal

spatial DoF M . Furthermore, we have an additional power gain

of ln (M) in the second term in (38). This is due to a factor of
1
M

average power loss within each group for ZF projection to

suppress the IUI in the MIMO-OMA system considered [27].

Comparing (24) and (33), the asymptotic ESG of MIMO-

NOMA over MIMO-OMA with FDMA-MRC is obtained by

Equation (39) on the top of next page. Then, based on (24)

and (34), the asymptotic ESG of MIMO-NOMA over MIMO-

OMA with FDMA-MRC in the low-SNR regime is given by

lim
K→∞,Pmax→0

RMIMO−OMA
sum,FDMA−MRC = 0. (40)

Not surprisingly, the performance gain of MIMO-NOMA over

MIMO-OMA with FDMA-MRC vanishes in the low-SNR

regime, which has been shown by simulations in existing

works, [39] for example. In the high-SNR regime, the asymp-

totic ESG of MIMO-NOMA over MIMO-OMA with FDMA-

MRC can be obtained from (24) and (35) by

lim
K→∞,Pmax→∞

GMIMO
FDMA−MRC (41)

≈ (M − 1) ln

(
Pmax

(D +D0)N0

N∑

n=1

βn
cn

)
− ln (M) + ∆,

where ∆ = ln
(
Eh

{
‖h‖2

})
− Eh

{
ln
(
‖h‖2

)}
denotes the

gap between ln
(
Eh

{
‖h‖2

})
and Eh

{
ln
(
‖h‖2

)}
.

Although the closed-form ESG of MIMO-NOMA over

MIMO-OMA is not available for the case of FDMA-MRC,

the third term ∆ in (41) is a constant for a given outer radius

D and inner radius D0. Besides, it is expected that the first

term in (41) dominates the ESG in the high-SNR regime. We

can observe that the first term in (41) increases linearly with

the system SNR in dB with a slope of (M−1) in the high-SNR

regime. In other words, there is an (M−1)-fold DoF gain [64]

in the asymptotic ESG of MIMO-NOMA over MIMO-OMA

using FDMA-MRC. In fact, MIMO-NOMA is essentially an

M ×K MIMO system on all resource blocks, i.e., time slots

and frequency subbands, where the system maximal spatial

DoF is limited by M due to M < K. On the other hand,

MIMO-OMA using the FDMA-MRC reception is always an

M × 1 MIMO system in each resource block, and thus it can

only have a spatial DoF, which is one. As a result, an (M−1)-
fold DoF gain can be achieved by MIMO-NOMA compared

to MIMO-OMA using FDMA-MRC. However, MIMO-OMA

is only capable of offering a power gain of ln (M) owing to

the MRC detection utilized at the BS and thus the asymptotic

ESG in (41) suffers from a power reduction by a factor of

ln (M) in the second term.

V. ESG OF mMIMO-NOMA OVER mMIMO-OMA

In this section, we first derive the ergodic sum-rate of both

mMIMO-NOMA and mMIMO-OMA and then discuss the

asymptotic ESG of mMIMO-NOMA over mMIMO-OMA.
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RMIMO−OMA
sum,FDMA−MRC =

1

(D +D0)

N∑

n=1

βn




(
N0cn
Pmax

)M

Γ (M)
G3,1
2,3

(
−M,−M + 1
−M,−M, 0

∣∣∣∣
N0cn
Pmax

)

 (33)

lim
K→∞

GMIMO
FDMA−ZF = lim

K→∞
RMIMO−NOMA

sum −RMIMO−OMA
sum,FDMA−ZF

≈M ln

(
1 +

Pmax

(D +D0)N0

N∑

n=1

βn
cn

)
− M

(D +D0)

N∑

n=1

βne
cnMN0
Pmax E1

(
cnMN0

Pmax

)
(36)

lim
K→∞,Pmax→∞

GMIMO
FDMA−ZF ≈M ϑ (D,D0)︸ ︷︷ ︸

large−scale near−far gain

+M ln (M) +M γ︸︷︷︸
small−scale fading gain

(37)

lim
K→∞

GMIMO
FDMA−MRC = lim

K→∞
RMIMO−NOMA

sum −RMIMO−OMA
sum,FDMA−MRC (39)

≈M ln

(
1 +

Pmax

(D +D0)N0

N∑

n=1

βn
cn

)
− 1

(D +D0)

N∑

n=1

βn




(
N0cn
Pmax

)M

Γ (M)
G3,1
2,3

(
−M,−M + 1
−M,−M, 0

∣∣∣∣
N0cn
Pmax

)



A. Ergodic Sum-rate with D > D0

Let us now apply NOMA to massive-MIMO systems, where

a large-scale antenna array (M → ∞) is employed at the

BS and all the K users are equipped with a single antenna.

A simple MRC-SIC receiver is adopted at the BS for data

detection of mMIMO-NOMA. The instantaneous achievable

data rate of user k and the sum-rate of the mMIMO-NOMA

system using the MRC-SIC reception are given by

RmMIMO−NOMA
k = ln


1+

pk‖hk‖2
K∑

i=k+1

pi‖hi‖2
∣∣eHk ei

∣∣2+N0


 and

(42)

RmMIMO−NOMA
sum =

K∑

k=1

RmMIMO−NOMA
k , (43)

respectively, where ek = hk

‖hk‖
denotes the channel direction

of user k. For the massive-MIMO system associated with D >
D0, the asymptotic ergodic sum-rate of K → ∞ and M → ∞
is given in the following theorem.

Theorem 2: For the mMIMO-NOMA system considered in

(1) in conjunction with D > D0 and MRC-SIC detection

at the BS, under the equal resource allocation strategy, i.e.,

pk = Pmax

K
, ∀k, the asymptotic ergodic sum-rate can be

approximated by Equation (44) on the top of next page, where

φn =
D −D0

2
cos

2n− 1

2N
π +

D +D0

2
, (45)

ψk =
PmaxM∑K

i=k+1 PmaxIi +KN0

, and

Ik = Edk

{
1

1 + dαk

}

=

(
K
k

)
k

D+D0

N∑

n=1

βn
cn

(
φ2n−D2

0

D2−D2
0

)k−1(
D2−φ2n
D2−D2

0

)K−k

.

Proof: Please refer to Appendix D for the proof of

Theorem 2.

For the mMIMO-OMA system using the FDMA-MRC de-

tection, we can allocate more than one user to each frequency

subband due to the above-mentioned favorable propagation

property [68]. In particular, upon allocating W = ςM users to

each frequency subband with ς = W
M

≪ 1, the orthogonality

among channel vectors of the W users holds fairly well,

hence the IUI becomes negligible15. Therefore, a random

user grouping strategy is adopted, where we randomly select

W = ςM users as a group and there are G = K
W

group-

s16 separated using orthogonal frequency subbands. In each

subband, low-complexity MRC detection can be employed for

each individual user and thus the instantaneous achievable data

15We note that the favorable propagation property is not applicable to the

considered mMIMO-NOMA system with M

K
= δ < 1. When detecting user

k at the BS, although the IUI power from an individual user is small, the
aggregated IUI power from all remained users k + 1, k + 2, . . . ,K is not

negligible as K = M

δ
→ ∞.

16Without loss of generality, we consider that K is an integer multiple of
G and W .
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lim
K→∞,M→∞

RmMIMO−NOMA
sum = lim

K→∞,M→∞
EH

{
RmMIMO−NOMA

sum

}
(44)

≈ lim
K→∞,M→∞

K∑

k=1

(
K
k

)
k

D +D0

N∑

n=1

βn ln

(
1 +

ψk

cn

)(
φ2n −D2

0

D2 −D2
0

)k−1(
D2 − φ2n
D2 −D2

0

)K−k

rate of user k can be expressed by

RmMIMO−OMA
k = fgln

(
1 +

pk‖hk‖2
fgN0

)
, (46)

where fg denotes the normalized frequency allocation of the

g-th group. Note that (46) serves as an upper bound of the

instantaneous achievable data rate of user k in the mMIMO-

OMA system, since we assumed it to be IUI-free. Then, under

the equal resource allocation strategy, i.e., pk = Pmax

K
and

fg = 1/G = W
K

= δς , we have the asymptotic ergodic sum-

rate of the mMIMO-OMA system associated with D > D0

given by Equation (47) on the top of next page, where φn is

given in (45) and ξ = Pmax

ςN0
.

B. Ergodic Sum-rate with D = D0

We note that the analytical results in (44) and (47) are only

applicable to the system having D > D0. The asymptotic

ergodic sum-rate of the mMIMO-NOMA system with D = D0

can be expressed using the following theorem.

Theorem 3: With D = D0 and the equal resource allocation

strategy, i.e., pk = Pmax

K
and fg = 1/G = W

K
= δς , the

asymptotic ergodic sum-rates of the mMIMO-NOMA system

and of the mMIMO-OMA system can be formulated by

Equations (48) and (49) on the top of next page, respectively,

where δ = M
K

and ς = W
M

are constants and ̟ = Pmax

(1+Dα
0 )N0

denotes the total average received SNR of all the users.

Proof: Please refer to Appendix E for the proof of

Theorem 3.

C. ESG in Massive-antenna Systems

Based on (44) and (47), when D > D0, the asymptotic

ESG of mMIMO-NOMA over mMIMO-OMA associated with

K → ∞ and M → ∞ can be expressed as Equation (50) on

the top of next page. However, the expression in (50) is too

complicated and does not provide immediate insights. Hence,

we focus on the case of D = D0 to unveil some important

and plausible insights on the ESG of NOMA over OMA in the

massive-MIMO system. The simulation results of Section VII

will show that the insights obtained from the case of D = D0

are also applicable to the general scenario of D > D0.

Comparing (48) and (49), when D = D0, we have the

asymptotic ESG of mMIMO-NOMA over mMIMO-OMA

for K → ∞ and M → ∞ given by Equation (51) on the

top of next page. In the low-SNR regime, we can ob-

serve that lim
K→∞,M→∞,Pmax→0

GmMIMO
D=D0

→ 0. This implies

that no gain can be achieved by NOMA in the low-SNR

regime, which is consistent with (40). By contrast, in the

high-SNR regime, we have asymptotic ESG given by E-

quations (52) and (53) on the top of next page, where

ζ = [ln (1 +̟δ +̟) (1 + δ)− ln (1 +̟δ) δ − ln (1 +̟)]
represents the extra ergodic sum-rate gain upon supporting

an extra user by the mMIMO-NOMA system considered.

Explicitly, for K → ∞, M → ∞, and Pmax → ∞, the

resultant extra benefit ζ is jointly determined by the average

received sum SNR ̟ and the fixed ratio δ. Observe in (52)

and (53) that given the average received sum SNR ̟ and

the fixed ratios δ and ς , the asymptotic ESG scales linearly

with both the number of UL receiver antennas at the BS, M
and the number of users, K, respectively. In other words, the

asymptotic ESG per user and the asymptotic ESG per antenna

of mMIMO-NOMA over mMIMO-OMA are constant and they

are given by

lim
K→∞,M→∞,Pmax→∞

GmMIMO
D=D0

K
= ζ − δς ln

(
1 +

̟

ς

)
and

(54)

lim
K→∞,M→∞,Pmax→∞

GmMIMO
D=D0

M
=
ζ

δ
− ς ln

(
1 +

̟

ς

)
,

(55)

respectively. We can explain this observation from the spatial

DoF perspective, since it determines the pre-log factor for

the ergodic sum-rate of both mMIMO-NOMA and mMIMO-

OMA and thus also determines the pre-log factor of the

corresponding ESG. In particular, the mMIMO-NOMA system

considered is basically an (M ×K) MIMO system associated

with M < K, since all the K users transmit their signals

simultaneously in the same frequency band. When scaling up

the mMIMO-NOMA system while maintaining a fixed ratio

δ = M
K

, the system’s spatial DoF increases linearly both with

M and K. On the other hand, the spatial DoF of the mMIMO-

OMA system is limited by the group size W , since it is always

an (M × W ) MIMO system associated with W ≪ M in

each time slot and frequency subband. Therefore, the system’s

spatial DoF increases linearly with both W , and M , as well

as K, when scaling up the mMIMO-OMA system under fixed

ratios of δ = M
K

and ς = W
M

. As a result, due to the linear

increase of the spatial DoF with M as well as K for both the

mMIMO-NOMA and mMIMO-OMA systems, the asymptotic

ESG increases linearly with both M and K. Note that in

contrast to (41), there is no DoF gain, despite the fact that the

asymptotic ESG scales linearly both with M as well as K.

This is because the extra benefit ζ does not increase linearly

with the system’s SNR in dB. As a result, the asymptotic

ESG of mMIMO-NOMA over mMIMO-OMA cannot increase

linearly with the system’s SNR in dB, which will be shown

in Section VII.
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lim
M→∞

RmMIMO−OMA
sum = lim

M→∞
EH

{
RmMIMO−OMA

sum

}
(47)

= lim
M→∞

δς
K∑

k=1

(
K
k

)
k

D +D0

N∑

n=1

βn ln

(
1 +

ξ

cn

)(
φ2n −D2

0

D2 −D2
0

)k−1(
D2 − φ2n
D2 −D2

0

)K−k

lim
K→∞,M→∞

RmMIMO−NOMA
sum ≈ lim

K→∞,M→∞

M

̟δ
[ln (1 +̟δ +̟) (1 +̟δ +̟)

− ln (1 +̟δ) (1 +̟δ)− ln (1 +̟) (1 +̟)] (48)

lim
M→∞

RmMIMO−OMA
sum = lim

M→∞
ςM ln

(
1 +

̟

ς

)
(49)

lim
K→∞,M→∞

GmMIMO
D>D0

≈ lim
K→∞,M→∞

K∑

k=1

(
K
k

)
k

D +D0

N∑

n=1

βn

[
ln

(
1 +

ψk

cn

)
− δς ln

(
1 +

ξ

cn

)]

×
(
φ2n −D2

0

D2 −D2
0

)k−1(
D2 − φ2n
D2 −D2

0

)K−k

(50)

lim
K→∞,M→∞

GmMIMO
D=D0

= lim
K→∞,M→∞

RmMIMO−NOMA
sum −RmMIMO−OMA

sum

≈ lim
K→∞,M→∞

M

̟δ
[ln (1 +̟δ +̟) (1 +̟δ +̟)

− ln (1 +̟δ) (1 +̟δ)− ln (1 +̟) (1 +̟)]− ςM ln

(
1 +

̟

ς

)
(51)

lim
K→∞,M→∞,Pmax→∞

GmMIMO
D=D0

≈ lim
K→∞,M→∞,Pmax→∞

M

δ
ζ − ςM ln

(
1 +

̟

ς

)
(52)

= lim
K→∞,M→∞,Pmax→∞

Kζ − δςK ln

(
1 +

̟

ς

)
(53)

VI. ESG IN MULTI-CELL SYSTEMS

In Section III, the performance gain of NOMA over OMA

has been investigated in single-cell systems, since these an-

alytical results are easily comprehensible and reveal directly

plausible insights. Naturally, the performance gain of NOMA

over OMA in single-cell systems serves as an upper bound

on that of non-cooperative multi-cell systems, which can

be approached by employing conservative frequency reuse

strategy. In practice, cellular networks consist of multiple

cells where the inter-cell interference (ICI) is inevitable [86].

Furthermore, the characteristics of the ICI for NOMA and

OMA schemes are different. In particular, ICI is imposed by

all the users in adjacent cells for NOMA schemes, while only

a subset of users inflict ICI in OMA schemes, as an explicit

benefit of orthogonal time or frequency allocation. As a result,

NOMA systems face more severe ICI than that of OMA, hence

it remains unclear, if applying NOMA is still beneficial in

multi-cell systems. Therefore, in this section, we investigate

the ESG of NOMA over OMA in multi-cell systems.

A. Inter-cell Interference in NOMA and OMA Systems

Consider a multi-cell system having multiple non-

overlapped adjacent cells with index l = 1, . . . , L, which

are randomly deployed and surround the serving cell l = 0,

as shown in Fig. 4. We assume that the L interfering cells

have the same structure as the serving cell and they are

uniformly distributed in the pair of concentric ring-shaped

discs of Fig. 4 having the inner radius of D and outer radius

of D1. Furthermore, we adopt the radical frequency reuse

factor of 1, i.e., using the same frequency band for all cells to

facilitate the performance analysis17. Again, we are assuming

that in each cell there is a single M -antenna BS serving

K single-antenna users in the UL and thus there are KL
users imposing interference on the serving BS. Additionally,

17With a less-aggressive frequency reuse strategy in multi-cell systems,
both NOMA and OMA schemes endure less ICI since only the adjacent cells
using the same frequency band with the serving cell are taken into account.
As a result, the performance analyses derived in this paper can be extended
to the case with a lower frequency reuse ratio by simply decreasing number
of adjacent cells L. Again, the resultant performance will then approach the
performance upper-bound of the single-cell scenario.
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Fig. 4. The system model of the multi-cell uplink communication with one
serving cell and L adjacent cells.

to reduce both the system’s overhead and its complexity, no

cooperative multi-cell processing is included in our multi-cell

system considered. In the following, we first investigate the

resultant ICI distribution and then derive the total received

ICI power contaminating over NOMA and OMA systems.

Given the normalized UL receive beamforming vector of

user k in the serving cell at the serving BS represented by

wk ∈ C
M×1 with ‖wk‖2 = 1, the effective ICI channel

spanning from user k′ in adjacent cell l to the serving BS

can be formulated as:

hk′,l = wH
k hk′,l =

wH
k gk′,l√
1 + dαk′,l

, (56)

where hk′,l =
gk′,l√
1+dα

k′,l

denotes the channel vector from user

k′ in adjacent cell l to the serving BS, gk′,l ∈ C
M×1 represents

the Rayleigh fading coefficients, i.e., gk′,l ∼ CN (0, IM ),
and dk′,l denotes the distance between user k′ in adjacent

cell l and the serving BS with the unit of meter. Similar to

the single-cell system considered, we assume that the CSI

of all the users within the serving cell is perfectly known

at the serving BS. However, the ICI channel is unknown for

the serving BS. Note that the receive beamformer wk of the

serving BS depends on the instantaneous channel vector of

user k, hk, and/or on the multiple access interference structure

[h1, . . . ,hk−1,hk+1, . . . ,hK ] in the serving cell. Therefore,

the receive beamformer wk of the serving cell is independent

of the ICI channel gk′,l. As a result, owing to ‖wk‖2 = 1,

it can be readily observed that wH
k gk′,l obeys the circularly

symmetric complex Gaussian distribution conditioned on the

given wk, i.e., we have wH
k gk′,l |wk

∼ CN (0, 1). However,

since the resultant distribution CN (0, 1) is independent of

wk, we can safely drop the condition and directly apply

wH
k gk′,l ∼ CN (0, 1). Now, based on (56), we can observe

that the effective ICI channel hk′,l is equivalent to a single-

antenna Rayleigh fading channel associated with a distance of

dk′,l, regardless of how many antennas are employed at the

serving BS.

Given that each uplink user is equipped with a single-

antenna, the transmission of each user is omnidirectional.

Therefore, to facilitate the analysis of the ICI power, we

assume that there is no gap between the adjacent cells and

that the inner radius of each adjacent cell is zero, i.e., D0 = 0.

Hence, we can further assume that the ICI emanates from KL
users uniformly distributed within the ring-shaped disc having

the inner radius of D and outer radius of D1. Similar to (8)

and (9), the CDF and PDF of |hk′,l|2 are given by

F|hk′,l|2 (x) ≈ 1− 1

D +D1

N∑

n=1

β′
ne

−c′nx and (57)

f|hk′,l|2 (x) ≈
1

D +D1

N∑

n=1

β′
nc

′
ne

−c′nx, x ≥ 0, ∀k′, l (58)

respectively, with parameters of

β′
n =

π

N

∣∣∣∣sin
2n−1
2N

π

∣∣∣∣
(
D1−D

2
cos

2n−1
2N

π +
D1+D

2

)
and

c′n = 1 +

(
D1 −D

2
cos

2n− 1

2N
π +

D1 +D

2

)α

. (59)

Note that all the adjacent cell users have i.i.d. channel distri-

butions since we ignore the adjacent cells’ structure.

Due to the ICI encountered in unity-frequency-reuse multi-

cell systems, the performance is determined by the signal-

to-interference-plus-noise ratio (SINR) instead of the SNR of

single-cell systems. Assuming that the ICI is treated as AWGN

by the detector, the system’s SINR can be defined as follows:

SINRmulticell
sum =

Pmax

Iinter +N0
|h|2, (60)

where Iinter characterizes the ICI power in multi-cell systems

and Pmax denotes the same system power budget in each single

cell.

To facilitate our performance analysis, we assume that the

equal resource allocation strategy is adopted in all the adjacent

cells, i.e., pk′,l = Pmax

K
, ∀k′, l. When invoking NOMA in a

multi-cell system, the ICI power can be modeled as

INOMA
inter =

L∑

l=1

K∑

k′=1

Pmax

K
|hk′,l|2. (61)

For KL → ∞, INOMA
inter becomes a deterministic value18,

which can be approximated by

lim
KL→∞

INOMA
inter ≈ LPmax|hk′,l|2 ≈ LPmax

D +D1

N∑

n=1

β′
n

c′n
. (62)

As a result, the SINR of the multi-cell NOMA system con-

sidered is given by

SINRmulticell
sum,NOMA =

Pmax

LPmax

D+D1

N∑
n=1

β′

n

c′n
+N0

|h|2. (63)

18Note that a spatially uniform distribution for the locations of both adjacent
BSs as well as users has been assumed, which is a special case of Poisson
point process [87].



17

For OMA schemes, we assume that all the K users in each

cell are clustered into G groups, with each group allocated to a

frequency subband exclusively. Since only 1
G

of users in each

adjacent cell are simultaneously transmitting their signals in

each frequency subband, the ICI power in a multi-cell OMA

system can be expressed as:

lim
KL→∞

IOMA
inter =

1

G
lim

KL→∞
INOMA
inter ≈ LPmax

G(D +D1)

N∑

n=1

β′
n

c′n
.

(64)

The SINR of the multi-cell OMA system considered can be

written as:

SINRmulticell
sum,OMA =

Pmax

LPmax

G(D+D1)

N∑
n=1

β′

n

c′n
+ 1

G
N0

|h|2. (65)

Note that we have G = K for SISO-OMA and MIMO-OMA

with FDMA-MRC, G = K
M

for MIMO-OMA with FDMA-ZF,

and G = K
W

for mMIMO-OMA with FDMA-MRC.

B. ESG in Multi-cell Systems

It can be observed that INOMA
inter in (62) and IOMA

inter in (64)

are independent of the number of antennas employed at the

serving BS, which is due to the non-coherent combining used

at the serving BS wH
k gk′,l, thereby leading to the effective

ICI channel becoming equivalent to a single-antenna Rayleigh

fading channel. Therefore, all the ergodic sum-rates of NOMA

in single-antenna, multi-antenna, and massive-MIMO single-

cell systems are degraded upon replacing the noise power N0

by (INOMA
inter +N0). On the other hand, since OMA schemes

only face a noise power level of 1
G
N0 on each subband,

all the ergodic sum-rates of the OMA schemes in single-

antenna, multi-antenna, and massive-MIMO single-cell sys-

tems are reduced upon substituting the noise power 1
G
N0 by

IOMA
inter + 1

G
N0 = 1

G

(
INOMA
inter +N0

)
.

Given the ICI terms INOMA
inter and IOMA

inter , we have the

corresponding asymptotic ESGs in single-antenna, multi-

antenna, and massive-MIMO multi-cell systems as shown

from Equation (66) to (70) on the top of next page19, where

ψk
′ = PmaxM∑

K
i=k+1 PmaxIi+K(INOMA

inter +N0)
, ξ′ = PmaxM

W(INOMA
inter +N0)

,

and ̟′ = Pmax

(1+Dα
0 )(INOMA

inter +N0)
.

In (66)-(70), we have mathematically quantified the impact

of ICI on the ESG of NOMA over OMA in multi-cell systems.

Besides, from (66)-(70), we can observe directly an ESG

degradation in multi-cell systems due to ICI, compared to the

corresponding ESGs in single-cell systems. In fact, NOMA

schemes enable all the users in adjacent cells to simultaneously

transmit their signals on the same frequency band and thus

the ICI power level in NOMA schemes is substantially higher

than that in OMA schemes, as derived in (64). Secondly,

it can be observed in Equations (66)-(70) that the ESGs in

multi-cell systems can be easily obtained by replacing the

noise power N0 to the ICI plus noise power (INOMA
inter +N0)

19Note that the performance analysis in multi-cell systems considered in
this work does not assume a large SNR. Therefore, the ESG analyses in
Equations (66)-(70) are accurate for the whole SNR regime, as shown in Fig.
8 in Section VII of this paper.

in corresponding ESGs of single-cell systems. In fact, OMA

schemes endure not only 1
G

of noise power, but also 1
G

of

ICI power, as derived in (64), compared to NOMA schemes.

Therefore, the performance analyses in single-cell systems can

be directly applied to multi-cell systems via increasing N0 to

(INOMA
inter +N0). We note that without the proposed asymp-

totic approximations, obtaining such important and interesting

insights would not have been possible. More insights can be

observed from the numerical results in Section VII-D. Upon

utilizing the coordinate signal processing among multiple cells

[55], the ICI power can be effectively suppressed, which may

prevent the ESG degradation, when extending NOMA from

single-cell to multi-cell systems.

Remark 9: In practice, users’ channel ordering might keep

changing for different channel realizations. In this work, we

assume that the users are indexed based on their instantaneous

channel gains, i.e., ‖h1‖ ≥ ‖h2‖ , . . . ,≥ ‖hK‖, and the SIC

detection order at the BS is 1, 2, . . . ,K correspondingly. It

implies that the variant of users’ ordering changes the SIC

detection order at the BS. However, the analytical results

obtained in this paper are applicable to the case of varying

user ordering. Let us explain the logic in the following.

Firstly, the ergodic sum-rates in Equations (13) and (24)

do not change when changing the users’ ordering for SISO-

NOMA and MIMO-NOMA systems, respectively. It is because

the instantaneous sum-rates of both SISO-NOMA and MIMO-

NOMA in (6) and (20), respectively, are independent of

the SIC detection order and thus independent of the users’

ordering [27]. Therefore, we can safely assume i.i.d. channel

distribution for all the NOMA users and neglect the changing

of users’ ordering for each instantaneous channel realization.

As a result, the obtained analytical results for single-antenna

and multi-antenna systems are still applicable to the case when

the ordering of K users’ channels keeps changing.

Secondly, for massive MIMO systems, the instantaneous

sum-rate of mMIMO-NOMA in (43) indeed depends on the

instant channel ordering. However, as we apply the theory of

order statistics for performance analysis in mMIMO-NOMA

systems, the ergodic sum-rates in (44) and (48) are obtained

via averaging w.r.t. the k-th largest user’s channel distribution,

∀k = 1, 2, . . . ,K, but are not determined by which user is

indexed as the k-th user. Therefore, the obtained results for

massive MIMO systems are also applicable to the case when

users’ channel ordering keeps changing.

Thirdly, we note that if the obtained results in single-cell

systems are applicable to the case of varying users’ order, the

obtained results in multi-cell systems are also applicable to the

case when the user ordering keeps changing. In fact, the main

difference between single-cell and multi-cell systems is ICI.

However, as all the K users in adjacent cell inflicts the ICI to

each user homogeneously in the desired cell and no joint-cell

processing is performed, the ICI power does not depends on

the user ordering.

In summary, the obtained results in all the considered

scenarios in this work are applicable to the case when the

channel ordering keeps changing.
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lim
K→∞

GSISO
′ ≈ ln

(
1 +

Pmax

(D +D0)
(
INOMA
inter +N0

)
N∑

n=1

βn
cn

)

− 1

(D +D0)

N∑

n=1

βne
cn(INOMA

inter +N0)
Pmax E1

(
cn
(
INOMA
inter +N0

)

Pmax

)
(66)

lim
K→∞

GMIMO
FDMA−ZF

′
≈M ln

(
1 +

Pmax

(D +D0)
(
INOMA
inter +N0

)
N∑

n=1

βn
cn

)

− M

(D +D0)

N∑

n=1

βne
cnM(INOMA

inter +N0)
Pmax E1

(
cnM

(
INOMA
inter +N0

)

Pmax

)
(67)

lim
K→∞

GMIMO
FDMA−MRC

′
≈M ln

(
1 +

Pmax

(D +D0)
(
INOMA
inter +N0

)
N∑

n=1

βn
cn

)

− 1

(D +D0)

N∑

n=1

βn




(
(INOMA

inter +N0)cn
Pmax

)M

Γ (M)
G3,1
2,3

(
−M,−M + 1
−M,−M, 0

∣∣∣∣∣

(
INOMA
inter +N0

)
cn

Pmax

)

 (68)

lim
K→∞,M→∞

GmMIMO
D>D0

′
≈ lim

K→∞,M→∞

K∑

k=1

(
K
k

)
k

D +D0

N∑

n=1

βn

×
[
ln

(
1 +

ψk
′

cn

)
− δς ln

(
1 +

ξ′

cn

)](
φ2n −D2

0

D2 −D2
0

)k−1(
D2 − φ2n
D2 −D2

0

)K−k

(69)

lim
K→∞,M→∞

GmMIMO
D=D0

′
≈ M

̟′δ
[ln (1 +̟′δ +̟′) (1 +̟′δ +̟′)

− ln (1 +̟′δ) (1 +̟′δ)− ln (1 +̟′) (1 +̟′)]− ςM ln

(
1 +

̟′

ς

)
(70)

C. Some Consistency Discussions

In this section, we want to provide some discussions on the

consistency among the results obtained in previous sections.

Also, the consistency between our main results with the

existing related works are discussed.

Although distinctive signal detection methods are adopted

in different scenarios in Sections III, IV, and V, they are

consistent in the sense that they all focus on analyzing and

characterizing the ESG of NOMA over OMA. The obtained

results are related and their comparison can unveil interesting

insights. Firstly, as shown in (38), the asymptotic ESG of

MIMO-NOMA over MIMO-OMA using FDMA-ZF is M -

times higher than that in single-antenna systems, when the

BS is equipped with M antennas serving a sufficiently large

number of users K. Additionally, the asymptotic ESG of

mMIMO-NOMA over mMIMO-OMA also increases linearly

with M . This is mainly due to the additional spatial DoF

offered by the additional antennas at the BS. Secondly, in

all the considered scenarios, the ESG of NOMA over OMA

increases with increasing the system SNR, while it vanishes

in the low-SNR regime. In fact, as NOMA exploits the power

domain for multi-user multiplexing, a high power is beneficial

to improve the performance of NOMA. Thirdly, the ESG of

NOMA over OMA in all the considered scenario increases

with the number of users K, owing to the small-scale fading

gain and large-scale near-far gain. Fourthly, it can be observed

from all the considered scenarios with both single-cell and

multi-cell deployments that a large cell size facilitates a higher

ESG of NOMA over OMA. This is due to the benefit of the

increased large-scale near-far gain for a larger cell size.

Most of the existing works focused on the outage perfor-

mance analysis of NOMA systems [41], [44], [45], [48], [53]

or on the analytical proof of superiority of NOMA over OMA

[40], [46], [47]. However, the ESG of NOMA over OMA

has not been mathematically quantified. Our work provides

a generalized framework which offers analytical expressions

for not only explaining the results of existing works, e.g.

[62], [63], but also unveiling new insights on the performance

gain of NOMA over OMA in different scenarios. In [62],

Ding et al. analytically shown that the performance gain

of NOMA over OMA can be enlarged when pairing two

users with distinctive channel conditions as a NOMA group.

This is consistent with our conclusion in this paper where a

larger normalized cell size enables a higher ESG of NOMA

over OMA. Furthermore, in [63], Ding et al. analytically

demonstrated that the performance gain of NOMA over OMA

increases with the number of users K when pairing user 1

and user K as a NOMA group. It is also consistent with our

obtained conclusion that the ESG increases with K. However,

we note that both [62], [63] only considered a two-user NOMA

case, while our work consider multiple users in a NOMA

group, which is more general.
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(b) Multi-antenna systems
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(c) Massive-antenna systems

Fig. 5. The ESG of NOMA over OMA versus the number of users K. The normalized cell size is η = 10 and the average received sum SNR is
SNRsum = [0, 10, 20] dB. For the considered MIMO-NOMA and MIMO-OMA systems in Fig. 5(b), we have M = 4. For the considered mMIMO-NOMA
and mMIMO-OMA systems in Fig. 5(c), the number of antennas equipped at the BS is adjusted according to the number of users K based on M = Kδ
with δ = 1

2
.

TABLE III
SYSTEM PARAMETERS USED IN SIMULATIONS

Inner cell radius, D0 50 m

Outer cell radius, D [50, 200, 500] m

Normalized cell size, η [1, 4, 10]

Number of users, K 2 ∼ 256

Number of receive antennas at BS, M 1 ∼ 128

Path loss exponent, α 3.76

Noise power, N0 -80 dBm

System SNR, SNRsum 0 ∼ 40 dB

Ratio ς = W

M
for mMIMO-OMA 1

16

Ratio δ = M

K
for mMIMO-NOMA 1

2

VII. SIMULATIONS

In this section, we use simulations to evaluate our analytical

results. In the single-cell systems considered, the inner cell

radius is D0 = 50 m and the outer cell radius is given by D =
[50, 200, 500] m, which corresponds to the cases of normalized

cell sizes given by η = [1, 4, 10], respectively. The number of

users K ranges from 2 to 256 and the number of antennas

employed at the BS M ranges from 1 to 128. The path loss

exponent is α = 3.76 according to the 3GPP path loss model

[58]. The noise power is set as N0 = −80 dBm. To emphasize

the effect of cell size on the ESG of NOMA over OMA, in

the simulations of the single-cell systems, we characterize the

system’s SNR with the aid of the total average received SNR

of all the users at the BS as follows [35]:

SNRsum =
Pmax

N0
|h|2 =

Pmax

N0

‖h‖2
M

, (71)

where |h|2 and ‖h‖2 are given by (12) and (25), respectively.

The total transmit power Pmax is adjusted adaptively for

different cell sizes to satisfy SNRsum in (71) ranging from

0 dB to 40 dB. In the mMIMO-OMA system considered,

we set the ratio between the group size and the number of

antennas to ς = W
M

= 1
16 , hence we can assume that the

favorable propagation conditions prevail in the spirit of [68].

Additionally, in the mMIMO-NOMA system considered, the

ratio between the number of receiver antennas at the BS and

the number of serving users is fixed as δ = M
K

= 1
2 . The

important system parameters adopted in our simulations are

summarized in Table III. The specific simulation setups for

each simulation scenario are shown under each figure. All the

simulation results in this paper are obtained by averaging the

system performance over both small-scale fading and large-

scale fading.

A. ESG versus the Number of Users in Single-cell Systems

Fig. 5 illustrates the ESG of NOMA over OMA versus

the number of users in the single-antenna, multi-antenna, and

massive-MIMO single-cell systems. In both Fig. 5(a) and Fig.

5(b), we can observe that the ESG increases with the number

of users K and eventually approaches the asymptotic results

derived for K → ∞. This is because upon increasing the num-

ber of users, the heterogeneity in channel gains among users is

enhanced, which leads to an increased near-far gain. As shown

in Fig. 5(c), for massive-MIMO systems, the asymptotic ESG

per user derived in (50) closely matches with the simulations

even for moderate numbers of users and SNRs. Although (54)

is derived for massive-MIMO systems with D = D0, in Fig.

5(c), we can observe a constant ESG per user in massive-

MIMO systems with D > D0. In other words, the insights

obtained from the massive-MIMO systems with D = D0 are

also applicable to the scenarios of D > D0. Compared to the

ESG in the single-antenna systems of Fig. 5(a), the ESG in the

multi-antenna systems of Fig. 5(b) is substantially increased

due to the extra spatial DoF offered by additional antennas at

the BS. Moreover, it can be observed in Fig. 5(b) that we
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(a) ESG of SISO-NOMA over SISO-OMA.
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(b) ESG of MIMO-NOMA over MIMO-OMA with FDMA-ZF.
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(c) ESG of MIMO-NOMA over MIMO-OMA with FDMA-MRC.
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(d) ESG of mMIMO-NOMA over mMIMO-OMA.

Fig. 6. The ESG of NOMA over OMA versus SNRsum. The number of users is K = 256 and the normalized cell size is η = [1, 4, 10]. In Fig. 6(b), the

number of antennas equipped at the BS M = 4, while we have M = [2, 4] in Fig. 6(c). In Fig. 6(d), we have M = 128 such that δ = M

K
= 1

2
.

have lim
K→∞

GMIMO
FDMA−ZF > lim

K→∞
GMIMO

FDMA−MRC in the low-

SNR case, while lim
K→∞

GMIMO
FDMA−ZF < lim

K→∞
GMIMO

FDMA−MRC in

the high-SNR case. This is because ZF detection outperforms

MRC detection in the high-SNR regime for the MIMO-OMA

system considered, while it becomes inferior to MRC detection

in the low-SNR regime. Furthermore, we can observe a higher

ESG in Fig. 5(a), Fig. 5(b), and Fig. 5(c) for the high-SNR

case, e.g. SNRsum = 20 dB. This is due to the power-

domain multiplexing of NOMA, which enables multiple users

to share the same time-frequency resource and motivates a

more efficient exploitation of the power resource.

B. ESG versus the SNR in Single-cell Systems

Fig. 6 depicts the ESG of NOMA over OMA versus the

system’s SNR SNRsum within the range of SNRsum = [0, 40]
dB in the single-antenna, multi-antenna, and massive-MIMO

single-cell systems. We can observe that the simulation results

match closely our asymptotic analyses in all the considered

cases. Besides, by increasing the system SNR, the ESGs

seen in Fig. 6(a) and Fig. 6(b) increase monotonically and

approach the asymptotic analyses results derived in the high-

SNR regime. In other words, the ESGs seen in Fig. 6(a) and

Fig. 6(b) are bounded from above even if Pmax → ∞. This is

because there is no DoF gain in the ESG of NOMA over

OMA in the pair of scenarios considered. By contrast, as

derived in (41), the (M − 1)-fold DoF gain in the ESG of

MIMO-NOMA over MIMO-OMA with FDMA-MRC enables

the ESG to increase linearly with the system’s SNR in dB

in the high-SNR regime, as shown in Fig. 6(c). Furthermore,

a higher number of antennas provides a larger DoF gain,

which leads to a steeper slope of ESG versus the system

SNR in dB. In contrast to Fig. 6(a), Fig. 6(b), and Fig. 6(c),

the ESG of mMIMO-NOMA over mMIMO-OMA recorded in

Fig. 6(d) first increases and then decreases with the system

SNR, especially for a small normalized cell size. In fact,
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(a) ESG of MIMO-NOMA over MIMO-OMA with
FDMA-ZF.
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(b) ESG of MIMO-NOMA over MIMO-OMA with
FDMA-MRC.
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(c) ESG of mMIMO-NOMA over mMIMO-OMA.

Fig. 7. The ESG of NOMA over OMA versus the number of antennas M . The number of users is K = 256 in Fig. 7(a) and Fig. 7(b). The normalized
cell size is η = [1, 4, 10] in Fig. 7(a) and Fig. 7(c) while it is set as η = [10] in Fig. 7(b). The average received sum SNR is SNRsum = [0, 10, 20] dB in
Fig. 7(b), while it is set as SNRsum = [40] dB in Fig. 7(a) and Fig. 7(c). In multi-antenna systems in Fig. 7(a) and Fig. 7(b), the number of antennas M
equipped at the BS ranges from 1 to 8. In massive-MIMO systems in Fig. 7(c), M ranges from 32 to 128, and the number of users K is adjusted according

to M based on K = M

δ
with δ = 1

2
.

the mMIMO-NOMA system relying on MRC-SIC detection

becomes interference-limited in the high-SNR regime, while

the mMIMO-OMA system remains interference-free, since

favorable propagation conditions prevail for ς = W
M

≪ 1. As

a result, upon increasing the system SNR, the increased IUI

of the mMIMO-NOMA system considered neutralizes some

of its ESG over the mMIMO-OMA system, particularly for a

small cell size associated with a limited large-scale near-far

gain.

On the other hand, it is worth noticing in Fig. 6(a), that

if all the users are randomly distributed on a circle when

D = D0 = 50 m, i.e., η = 1, then we have an ESG of

about 0.575 nat/s/Hz at SNRsum = 40 dB for SISO-NOMA

compared to SISO-OMA. This again verifies the accuracy of

the small-scale fading gain γ derived in (16). Furthermore,

we can observe in Fig. 6(a), Fig. 6(b), and Fig. 6(c), that a

larger normalized cell size η results in a higher performance

gain, which is an explicit benefit of the increased large-scale

near-far gain ϑ (η). By contrast, in Fig. 6(d), a larger cell size

facilitates a higher ESG but only in the high-SNR regime,

while a smaller cell size can provide a larger ESG in the low

to moderate-SNR regime. In fact, due to the large number of

antennas, the IUI experienced in the mMIMO-NOMA system

is significantly reduced compared to that in single-antenna and

multi-antenna systems. As a result, in the low to moderate-

SNR regime, the mMIMO-NOMA system considered may

be noise-limited rather than interference-limited, which is in

line with the single-antenna and multi-antenna systems. For

instance, the noise degrades the achievable rates of the cell-

edge users more severely compared to the impact of IUI in the

mMIMO-NOMA system, especially for large normalized cell

sizes. Therefore, the large-scale near-far gain cannot be fully

exploited in the low to moderate-SNR regime in the massive-

MIMO systems. Moreover, it can be observed in Fig. 6(d) that

the ESG increases faster for a larger normalized cell size η.

This is due to the enhanced large-scale near-far gain observed

for a larger cell size, which enables NOMA to exploit the

power resource more efficiently.

C. ESG versus the Number of Antennas M in Single-cell

Systems

Fig. 7 illustrates the ESG of NOMA over OMA versus

the number of antennas M employed at the BS in multi-

antenna and massive-MIMO systems. It can be observed that

the simulation results closely match our asymptotic analyses

for all the simulation scenarios. In particular, observe for the

ESG of MIMO-NOMA over MIMO-OMA with FDMA-ZF

in Fig. 7(a) that as predicted in (38), the asymptotic ESG

GSISO of single-antenna systems is increased by M , when an

M -antenna array is employed at the BS. More importantly, a

larger normalized cell size η enables a steeper slope in the

ESG versus the number of antennas M , which is due to the

increased large-scale near-far gain ϑ (η), as shown in (37).

Apart from the linearly increased component of ESG vesus M ,

an additional power gain factor of ln (M) can also be observed

in Fig. 7(a) as derived in (38). Observe the ESG of MIMO-

NOMA over MIMO-OMA with FDMA-MRC in Fig. 7(b) that

the ESG grows linearly versus M due to the (M − 1)-fold of

DoF gain and the corresponding slope becomes higher for a

higher system SNR, as seen in (41). The ESG per user seen in

Fig. 7(c) for massive-MIMO systems remains almost constant

upon increasing M , which matches for our asymptotic analysis

in (54), and is also consistent with the results of Fig. 5(c) for

the fixed ratio δ = M
K

. Furthermore, we can observe that a
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(a) The ESG of SISO-NOMA over SISO-OMA.

20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

12

14

16

18

E
SG

 (
na

t/s
/H

z)

(b) ESG of MIMO-NOMA over MIMO-OMA with FDMA-ZF.
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(c) ESG of MIMO-NOMA over MIMO-OMA with FDMA-MRC.
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(d) ESG of mMIMO-NOMA over mMIMO-OMA.

Fig. 8. ESG versus the total transmit power P ′

max in multi-cell systems. The normalized cell size is η = [1, 4, 10] in Fig. 8(a), Fig. 8(b), and 8(c), while it
is set as η = [4, 10] in Fig. 8(d). The number of antennas equipped at each BS is M = 1 in Fig. 8(a) and M = 4 in Fig. 8(b) as well as Fig. 8(c). In Fig.
8(d), the number of antennas equipped at each BS is adjusted based on the number of users in each cell via M = ⌈Kδ⌉ and the group size of the considered
mMIMO-OMA system is W = ⌈ςM⌉. The ESG degradations due to the ICI are denoted by double-sided arrows.

large cell size offers a higher ESG per user due to the improved

large-scale near-far gain.

D. ESG versus the Total Transmit Power in Multi-cell Systems

In a multi-cell system, we consider a high user density

scenario within a large circular area with the radius of D1 = 5
km and the user density of ρ = 1000 devices per km2. As

a result, the total number of users in the multi-cell system

considered is K ′ =
⌈
ρπD2

1

⌉
. Then, the number of users

in each cell is given by K =
⌈
ρπD2

⌉
with D in the unit

of km. Meanwhile, the number of adjacent cells L can be

obtained by L =
⌈
K′−K

K

⌉
, so that all the K ′ users can be

covered. Furthermore, the K ′ users in all the cells share a

given total transmit power and the total transmit power P ′
max

of (L+1) cells is within the range spanning from 20 dBm to

60 dBm20. In this section, we also consider an equal power

allocation among multiple cells and an equal power allocation

among users within each cell, i.e., we have Pmax =
P ′

max

L+1 and

pk′,l =
Pmax

K
. All the other simulation parameters are the same

as those adopted in the single-cell systems.

In contrast to the single-cell systems, the ESG versus

the total transmit power P ′
max trends are more interesting,

which is due to the less straightforward impact of ICI on the

performance gain of NOMA over OMA in multi-cell systems.

Fig. 8 shows the ESG of NOMA over OMA versus the total

transmit power P ′
max in single-antenna, multi-antenna, and

20Since there are a larger number of users deployed in the considered area,
we set a large power budget for all the users in the considered multi-cell
system.
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TABLE IV
COMPARISON ON ESG (NAT/S/HZ) OF NOMA OVER OMA IN THE CONSIDERED SCENARIOS. THE SYSTEM SETUP IS K = 256, D = 200 M, η = 4, AND

M = 4 FOR MULTI-ANTENNA SYSTEMS.

SNRsum = 0 dB SNRsum = 10 dB

Single-cell Multi-cell Single-cell Multi-cell

Single-antenna 0.281 0.2639 0.983 0.7973
Multi-antenna 2.114 2.0179 6.65 5.4113

Massive-MIMO (ESG per user) 0.1796 0.1702 0.5765 0.4490

massive-MIMO21 multi-cell systems. The analytical results in

single-cell systems are also shown for comparison. As shown

in Fig. 8, we can observe that the performance gains of NOMA

over OMA are degraded upon extending NOMA from single-

cell systems to multi-cell systems. This is because the ICI

of NOMA systems is contributed by all the users in adjacent

cells, while only a subset of users introduce ICI to the desired

cell in OMA systems. Additionally, it can be observed from

Fig. 8 that the ESG degradation becomes more severe with

increasing the total transmit power. Furthermore, in the high-

SNR regime, the ESG degradation is larger for the case with

a smaller cell size. Note that the performance degradation ǫ
in Fig. 8(c) is calculated at pmax = 60 dBm, as the ESGs in

single-cell systems are not saturated in the high-SNR regime.

This is because the ICI power increases with either increasing

the total transmit power budget or decreasing the cell size. For

the ease of illustration, we define the normalized performance

degradation of the ESG in multi-cell systems compared to

that in single-cell systems as ǫ = G−G
′

G
, where G denotes the

ESG in single-cell systems and G
′

denotes the ESG in multi-

cell systems. It can be observed that the ESG degradation

is more severe for a small normalized cell size η, because

multi-cell systems suffer from a more severe ICI for smaller

cell sizes due to a shorter inter-site distance. Therefore, the

system performance becomes saturated even for a moderate

system power budget in the case of a smaller cell size.

It is worth noting that the ESG of MIMO-NOMA over

MIMO-OMA with FDMA-MRC is saturated in multi-cell

systems in the high transmit power regime, as shown in Fig.

8(c), which is different from the trends seen for single-cell

systems in Fig. 6(c). In fact, the (M−1)-fold DoF gain in the

ESG of MIMO-NOMA over MIMO-OMA with FDMA-MRC

in single-cell systems derived in (41) can only be achieved

in the high-SNR regime. However, due to the lack of joint

multi-cell signal processing to mitigate the ICI, the multi-

cell system becomes interference-limited upon increasing the

total transmit power. Therefore, the multi-cell system actually

operates in the low-SINR regime, which does not facilitate the

exploitation of the DoF gain in single-cell systems.

Remark 10: The comparison of the ESG (nat/s/Hz) results

of NOMA over OMA in all the scenarios considered is

summarized in Table IV. We consider a practical operation

setup with K = 256, D = 200 m, η = 4, and M = 4 for the

21Note that, for the considered massive-MIMO multi-cell system, a small
cell size leads to a small number of users K in each cell and thus results
in a small number of antennas M due to the fixed ratio δ = M

K
. This is

contradictory to our assumption of K → ∞ and M → ∞. Therefore, we
only consider the normalized cell size of η = [4, 10] for massive-MIMO
multi-cell systems in Fig. 8(d).
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Fig. 9. ESG degradation ǫ versus the number of adjacent cells L. The cell
size is fixed as D = 500 m, the number of users in each cell is K =

⌈

ρπD2
⌉

,
and the total transmit power for each cell is Pmax = 46 dBm. The number
of antennas equipped at each BS is M = 4 for MIMO systems. In the
considered mMIMO system, the number of antennas equipped at each BS is
adjusted based on the number of users in each cell via M = ⌈Kδ⌉ and the
group size of the considered mMIMO-OMA system is W = ⌈ςM⌉.

multi-antenna systems. For fair comparison, the total transmit

power P ′
max in multi-cell systems is adjusted for ensuring that

the total average received SNR SNRsum at the serving BS

is identical to that in single-cell systems. Note that the row

of massive-MIMO in Table IV quantifies the ESG per user

of mMIMO-NOMA over mMIMO-OMA, which is consistent

with Fig. 6(d), Fig. 7(c) and Fig. 8(d). We can observe that the

ESG remains a near-constant at the low-SNR of SNRsum = 0
dB when extending NOMA from single-cell systems to multi-

cell systems, while the ESG degrades substantially at the high-

SNR of SNRsum = 10 dB. In fact, the limited transmit power

budget in the low-SNR regime in adjacent cells only leads to a

low ICI level at the serving BS, which avoids a significant ESG

degradation, when applying NOMA in multi-cell systems.

E. The Impact of the Number of Adjacent Cells

As demonstrated in Fig. 8, the ESG of NOMA over OMA

is degraded when extending NOMA from single-cell to multi-

cell systems due to the more severe ICI faced by NOMA.

To further illustrate the impact of the number of adjacent

cells L on the ESG degradation, we consider a multi-cell

system having a variable number of adjacent cells L. In our

simulations, we fix the cell size to D = 500 m and the number

of adjacent cells is determined by the area considered, i.e., we

have L =
⌈
K′−K

K

⌉
=
⌈
D2

1−D2

D2

⌉
given a constant user density.
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Fig. 10. ESG degradation ǫSIC versus the residual interference coefficient
κ. The cell size is fixed as D = 500 m, the number of users in each cell
is K = 256, and the system SNR is SNRsum = 20 dB. The number of
antennas equipped at each BS is M = 4 for MIMO systems. In the considered
mMIMO system, the number of antennas equipped at each BS is fixed as
M = ⌈Kδ⌉ = 128 and the group size of the considered mMIMO-OMA
system is W = ⌈ςM⌉.

Fig. 9 illustrates the ESG degradation ǫ versus the number

of adjacent cells L for single-antenna, multi-antenna, and

massive-MIMO base stations. We can observe that the ESG

degradation increases upon increasing the number of adjacent

cells L due to have more severe ICI faced by the desired cell.

Additionally, the ESG degradation becomes saturated upon

increasing L. This is because the additionally introduced cells

corresponding to increasing L are far away from the desired

cell for a large L. Therefore, the additional ICI imposed on

the BS in the desired cell is reduced upon increasing L and

thus the ESG degradation almost does not change with further

introducing more adjacent cell. It implies that in practice only

several tiers of adjacent cells have significant impacts on the

performance gain of NOMA of OMA in multi-cell systems.

F. The Impact of the SIC Detection Error

In this treatise, we assume having perfect SIC for sim-

plifying our performance analysis. In practice, SIC detection

suffers from error propagation, when the detection error of the

preceding interference cancelation affects the current interfer-

ence cancelation [88]. Indeed, realistic imperfect SIC has a

significant impact on the performance gain of NOMA over

OMA, especially for a large NOMA group size K. At the

time of writing, it remains an open problem to characterize

the impact of imperfect SIC. This is because imperfect SIC

is influenced by many factors, such as the coding/modulation

strategy, the channel estimation accuracy, and the hardware-

related restrictions. Hence, it is a challenge to model their

impact on SIC detection [88]. Therefore, we rely on simula-

tions to investigate the impact of realistic imperfect SIC on the

performance gain of NOMA over OMA via employing a sim-

plified residual interference model introduced in [88], [89]. In

particular, the impact of the preceding imperfect interference

cancelation on the current interference cancelation is modelled

by a residual interference source, which is assumed to be a

linear function of the received signal power [88], [89]. We note

that the adopted residual interference model is a simplified

model for illustrating the impact of SIC detection error via

simulations in this work. A non-linear model can characterize

the impact of imperfect SIC more accurately, since the residual

interference also depends on the received power difference

among NOMA users in practice.

According to Equation (4), the instantaneous achievable

data rate of user k in the SISO-NOMA system considered

associated with imperfect SIC is given by

RSISO−NOMA
k = ln


1 +

pk|hk|2
K∑

i=k+1

pi|hi|2+
k−1∑
i=1

κipi|hi|2+N0


 ,

(72)

where 0 ≤ κi < 1 denotes the coefficient between the

residual interference power and the received signal power

for user i, namely the residual interference coefficient, which

can be obtained by long-term measurement [88]. Similarly, in

conjunction with imperfect SIC detection, the instantaneous

achievable data rates of user k in the MIMO-NOMA and

mMIMO-NOMA systems considered are given by Equations

(73) and (74) on the top of next page, respectively. Note

that Equation (74) is a straightforward extension of Equation

(42). The derivation details of Equation (73) are given in the

Appendix F.

To demonstrate the impact of SIC detection errors on the

performance gain of NOMA over OMA, we further define the

ESG degradation ǫSIC =
GPerfect−GImperfect

GPerfect
, where GPerfect

and GImperfect denotes the ESG with perfect SIC detection

and imperfect SIC detection, respectively. When ǫSIC = 0, we

have GPerfect = GImperfect, i.e., there is no ESG degradation

even with imperfect SIC detection. Additionally, we note that

ǫSIC ≥ 1 implies GImperfect ≤ 0, which means that NOMA is

inferior to OMA in this case.

Based on the achievable data rate expressions (72), (73), and

(74), we can perform simulations for evaluating the impact of

imperfect SIC on the performance gain of NOMA over OMA.

We note that the SIC detection imperfection only introduces

additional intra-cell interference but does not affect the inter-

cell interference. Thus, one can imagine that the insights

obtained for multi-cell systems still hold even for imperfect

SIC detection. Therefore, we only perform simulations for

single-cell systems with imperfect SIC detection.

Fig. 10 depicts the ESG degradation ǫSIC versus the residual

interference coefficient κ. In our simulations, we assume

that κ1 = κ2, . . . ,= κK = κ. Furthermore, we consider

a fixed cell size of D = 500 m, a fixed number of users

K = 256, and a fixed system SNR of SNRsum = 20 dB for

our simulations. We can observe that the higher the residual

interference coefficient, the more severe the ESG degradation

becomes. In fact, the residual interferences from previous

stages of interference cancelation accumulate and jointly affect

the current interference cancelation. Therefore, even a small

value of κ = 0.05 leads to a severe ESG degradation, i.e., the

SIC error propagation degrades the performance gain of NO-
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RMIMO−NOMA
k = ln

∣∣∣∣∣IM +
1

N0

K∑

i=k

pihih
H
i +

1

N0

k−1∑

i=1

κipihih
H
i

∣∣∣∣∣− ln

∣∣∣∣∣IM +
1

N0

K∑

i=k+1

pihih
H
i +

1

N0

k−1∑

i=1

κipihih
H
i

∣∣∣∣∣ (73)

RmMIMO−NOMA
k = ln


1 +

pk‖hk‖2
K∑

i=k+1

pi‖hi‖2
∣∣eHk ei

∣∣2 +
k−1∑
i=1

κipi‖hi‖2
∣∣eHk ei

∣∣2 +N0
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Fig. 11. ESG versus the total transmit power P ′

max in multi-cell systems
with different path loss exponents α = [3.76, 3, 2]. The normalized cell size
is η = 10. The ESG degradations due to the ICI are denoted by double-sided
arrows.

MA over OMA. Additionally, the ESG degradation of SISO

systems is substantially higher than that of the other systems.

In fact, in single-antenna systems, the residual interference

signal is fully imposed on the current stage of interference

cancelation, while it is projected onto the currently detected

user’s channel owing to the multiple antennas employed at

the BS. As a result, SISO-NOMA systems are more sensitive

to SIC detection error propagation than MIMO-NOMA and

mMIMO-NOMA systems.

G. The Impact of the Path Loss Exponent

We note that the obtained analytical results in this paper are

applicable to any other values of α, as it has been treated as

a fixed constant in our performance analysis. For illustration,

we simulate the ESG of SISO-NOMA over SISO-OMA in

both single-cell and multi-cell systems with different path loss

exponents α, as shown in Fig. 11. Note that the path loss

exponent, α, only determines the signal power attenuation

along the propagation distance and has a homogeneous effect

on all the antennas at the BS. As a result, the simulation

results in a single-antenna system is sufficient to illustrate the

impact of α on ESG of NOMA over OMA. In Fig. 11, we

can observe that the ESG of NOMA over OMA for a larger α
outperforms that for a smaller α in both single-cell and multi-

cell systems. In fact, as demonstrated in (16), the performance

gain of NOMA over OMA partially arises from the large-scale

near-far gain. Besides, as the path loss exponent α determines

the slope of path loss w.r.t. the distance between the transmitter

and receiver, one can imagine that a smaller α results in

a smaller large-scale near-far gain. As a result, the ESG of

NOMA over OMA degrades with decreasing α. Moreover,

we can observe that the smaller the path loss exponent α,

the larger the ESG degradation when extending NOMA from

single-cell systems to multi-cell systems. This is due to the fact

that the ICI in multi-cell systems becomes more severe with

reducing α, which results in a more severe ESG degradation.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the ESG in uplink communica-

tions attained by NOMA over OMA in single-antenna, multi-

antenna, and massive-MIMO systems with both single-cell and

multi-cell deployments. In the single-antenna single-cell sys-

tem considered, the ESG of NOMA over OMA was quantified

and two types of gains were identified in the ESG derived,

i.e., the large-scale near-far gain and the small-scale fading

gain. The large-scale near-far gain increases with the cell size,

while the small-scale fading gain is a constant of γ = 0.57721
nat/s/Hz in Rayleigh fading channels. Additionally, we un-

veiled that the ESG of SISO-NOMA over SISO-OMA can

be increased by M times upon using M antennas at the BS,

owing to the extra spatial DoF offered by additional antennas.

In the massive-MIMO single-cell system considered, the ESG

of NOMA over OMA increases linearly both with the number

of users and with the number of antennas at the BS. The

analytical results derived for single-cell systems were further

extended to multi-cell systems via characterizing the effective

ICI channel distribution and by deriving the ICI power. We

found that a larger cell size is preferred by NOMA for both

single-cell and multi-cell systems, due to the enhanced large-

scale near-far gain and reduced ICI, respectively. Extensive

simulation results have shown the accuracy of our performance

analyses and confirmed the insights provided above.

In this paper, as a first attempt to unveil fundamental

insights on the performance gain of NOMA over OMA, we

considered the ideal case associated with perfect CSI and

error-propagation-free SIC detection at the BS. In practice, it

is difficult to acquire the perfect CSI due to channel estimation

errors, feedback delays, and/or quantization errors. Similarly,

the error propagation during SIC detection is usually also

inevitable in practice. In our future work, we will investigate

the ESG of NOMA over OMA both in the face of imperfect

CSI and error propagation during SIC detection.
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Fig. 12. The approximation error of the ergodic sum-rate of SISO-NOMA.
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APPENDIX

A. Proof of Lemma 1

Since all the users are scattered uniformly across the pair

of concentric rings between the inner radius of D0 and the

outer radius of D in Fig. 1, the CDF of the channel gain |h|2
is given by

F|h|2 (x) =

∫ D

D0

(
1− e−(1+zα)x

)
fd (z) dz, (75)

where fd (z) = 2z
D2−D2

0
, D0 ≤ z ≤ D, denotes the

probability density function (PDF) for the random distance

d. The Gaussian-Chebyshev quadrature approximation is a

polynomial approximation with a high accuracy [76]. For a

given function g(x), its definite integral can be represented by

[76]

∫ b

a

g (x) dx =
b− a

2

N∑

n=1

π

N

√
1− x2ng

(
b− a

2
x+

b+ a

2

)

+ON (ξ) , (76)

and the approximation error is given by

ON (ξ) =
2π

22N (2N)!

(√
1− ξ2g

(
b− a

2
ξ +

b+ a

2

))(2N)

,

(77)

for some −1 < ξ < 1, where (·)(2N)
denotes the 2N

times derivative operation. We can observe from (77) that for

a smooth function g (x), the error term ON (ξ) diminishes

with increasing N . As a result, the approximation accuracy in

ergodic sum-rate of SISO-NOMA in (13) also becomes higher

with increasing N , as shown in Fig. 12.

B. Proof of Theorem 1

To facilitate the proof, we first consider a virtual system

whose capacity serves as an upper bound to that of the system

in (1). In particular, the virtual system is the uplink of a K-

user M ×M MIMO system with M antennas employed at

each user and the BS. We assume that, in the virtual K-user

M×M MIMO system, each user faces M parallel subchannels

with identical subchannel gain ‖hk‖, i.e., the channel matrix

between user k and the BS is ‖hk‖IM . As a result, the signal

received at the BS is given by

ỹ =

K∑

k=1

√
pk‖hk‖IM x̃k + v, (78)

where x̃k = ukxk ∈ C
M×1 denotes the transmitted signal

after preprocessing by a precoder uk ∈ C
M×1. We note that

the precoder should satisfy the constraint Tr
(
uku

H
k

)
≤ 1, so

that E
{
x̃H
k x̃k

}
≤ E

{
x2k
}

= 1. Additionally, in the virtual

K-user M ×M MIMO system, the subchannel gain between

user k and the BS is forced to be identical as ‖hk‖, where

‖hk‖ is the corresponding channel gain value between user k
and the BS in the original K-user 1×M MIMO system in (1).

Furthermore, we consider an arbitrary but the identical power

allocation strategy p = [p1, . . . , pK ] as that of our original

system in (1) during the following proof. Upon comparing

(1) and (78), we can observe that the specific choice of the

precoder uk = hk

‖hk‖
in (78) would result in an equivalent

system to that in (1). In other words, the capacity of the system

in (78) serves as an upper bound to that of the system in (1),

i.e., we have:

RMIMO−NOMA
sum

(a)
= C (M,K,p,H) ≤ C

(
M2,K,p, H̃

)

= max
Tr(uku

H
k )≤1

ln

∣∣∣∣∣IM +
1

N0

K∑

k=1

pk‖hk‖2IMuku
H
k I

H
M

∣∣∣∣∣

=M ln

(
1 +

1

MN0

K∑

k=1

pk‖hk‖2
)
, (79)

where C (M,K,p,H) denotes the capacity for the uplink

K-user 1 × M MIMO system in (1) for a channel matrix

H = [h1, . . . ,hK ] and power allocation p. Furthermore,

C
(
M2,K,p, H̃

)
denotes the capacity of the virtual K-user

M×M MIMO system in (78) associated with a channel matrix

H̃ = [‖h1‖IM , . . . , ‖hK‖IM ], while p is the value as in (1).

The achievable sum-rate RMIMO−NOMA
sum is given in (20) and

the equality (a) in (79) is obtained by a capacity-achieving

MMSE-SIC [27].

Now, to prove the asymptotic tightness of the upper bound

considered in (79), we have to consider a lower bound of

the achievable sum-rate in (20) and prove that asymptotically

the upper bound and the lower bound converge to the same

expression. For the uplink K-user 1×M MIMO system in (1),

we assume that all the users transmit their signals subject to

the power allocation p = [p1, . . . , pK ] and the BS utilizes an

MRC-SIC receiver to retrieve the messages of all the K users.

Then the achievable rate for user k of the MIMO-NOMA
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system using the MRC-SIC receiver is given by:

RMIMO−NOMA
k,MRC−SIC = ln


1 +

pk‖hk‖2
K∑

i=k+1

pi‖hi‖2
∣∣eHk ei

∣∣2 +N0


 ,

(80)

where ek = hk

‖hk‖
denotes the channel direction of user k.

Then, it becomes clear that the achievable sum-rate of the

MIMO-NOMA system using the MRC-SIC receiver serves as

a lower bound to the channel capacity in (20), i.e., we have

RMIMO−NOMA
sum,MRC−SIC =

K∑

k=1

RMIMO−NOMA
k,MRC−SIC ≤ RMIMO−NOMA

sum .

(81)

Through the following theorem and corollaries, we first

characterize the statistics of ek as well as
∣∣eHk ei

∣∣2 and derive

the asymptotic achievable sum-rate of MIMO-NOMA em-

ploying an MRC-SIC receiver. Then, we show that the upper

bound considered in (79) and the lower bound of (81) will

asymptotically converge to the same limit for K → ∞.

Lemma 3: For hk ∼ CN
(
0, 1

1+dα
k

IM

)
, the normalized

random vector (channel direction) ek = hk

‖hk‖
is uniformly

distributed on a unit sphere in C
M .

Proof: According to the system model of hk = gk√
1+dα

k

with gk ∼ CN (0, IM ), we have hk ∼ CN
(
0, 1

1+dα
k

IM

)
.

The distribution of ek can be proven by exploiting the

orthogonal-invariance of the multivariate normal distribution.

In particular, for any orthogonal matrix Q, we have Qhk ∼
CN

(
0, 1

1+dα
k

IM

)
, which means that the distribution of hk

is invariant to rotations (orthogonal transform). Then, ek =
Qhk

‖Qhk‖
= Qhk

‖hk‖
is also invariant to rotation. Meanwhile, we

have ‖ek‖ = 1 for sure. Therefore, ek must be uniformly

distributed on a unit sphere on C
M .

Corollary 1: The channel direction of user k, ek, is inde-

pendent of its channel gain ‖hk‖.

Proof: According to Lemma 3, the channel direction ek
is uniformly distributed on a unit sphere on C

M , regardless of

the value of ‖hk‖. Therefore, ek is independent of ‖hk‖.

Corollary 2: The mean and covariance matrix of ek are

given by

E {ek} = 0 and E
{
eke

H
k

}
=

1

M
IM , (82)

respectively.

Proof: Due to the symmetry of the uniform spherical

distribution, ek and −ek have the same distribution and thus

we have E {ek} = E {−ek} and hence E {ek} = 0. For

the reason of symmetry, ek = [ek,1, . . . , ek,m, . . . , ek,M ] and

e′k = [ek,1, . . . ,−ek,m, . . . , ek,M ] have the same distribution,

where ek,m denotes the m-th entry in ek. Therefore, we have

E
{
ek,me

∗
k,n

}
= E

{
−ek,me∗k,n

}
= −E

{
ek,me

∗
k,n

}
, ∀m 6= n,

(83)

which implies that the covariance terms are zero, i.e.,

E
{
ek,me

∗
k,n

}
= 0, ∀m 6= n. Note that, the zero covariance

terms only reflect the lack of correlation between ek,m and

ek,n, but not their independence. In fact, the entries of ek
are dependent on each other, i.e., increasing one entry will

decrease all the other entries due to ‖ek‖ = 1. As for the

variance, since ek has been normalized, we have

M∑

m=1

E
{
e2k,m

}
= E

{
M∑

m=1

e2k,m

}
= 1. (84)

Again, based on the symmetry of the uniform spherical distri-

bution, we have E
{
e2k,m

}
= E

{
e2k,n

}
, ∀m,n, and hence we

have E
{
e2k,m

}
= 1

M
and E

{
eke

H
k

}
= 1

M
IM . This completes

the proof.

Let us now define a scalar random variable as νk,i =
eHk ei ∈ C, which denotes the projection of channel direction

of user k on the channel direction of user i. Note that the

random variable νk,i can characterize the IUI during MRC in

(80). Additionally, thanks to the independence between ek and

‖hk‖, νk,i is independent of ‖hk‖ and ‖hi‖. The following

Lemma characterizes the mean and variance of νk,i.

Lemma 4: For hk ∼ CN
(
0, 1

1+dα
k

IM

)
and ek = hk

‖hk‖
, the

random variable νk,i = eHk ei has a zero mean and variance of
1
M

.

Proof: In fact, νk,i denotes the projection of ek on ei,

where ek and ei are uniformly distributed in a unit sphere

on C
M . Upon fixing one channel direction ek, the conditional

mean and variance of νk,i are given by

E {νk,i |ek } = eHk E {ei} = 0 and

E
{
|νk,i|2 |ek

}
= eHk E

{
eie

H
i

}
ek =

1

M
, (85)

respectively. Since ek is uniformly distributed, the integral

over ek will not change the mean and variance. Therefore,

the mean and variance of νk,i are given by

E {νk,i} = 0 and E
{
|νk,i|2

}
=

1

M
, (86)

respectively, which completes the proof.

Now, based on (80), we have the asymptotic achievable data

rate of user k given by Equation (87) on the top of next page.

Note that the equality in (a) in (87) holds asymptotically

by applying Corollary 1 and Lemma 4 with K → ∞. In

addition, the equality in (b) in (87) holds with K → ∞
since lim

x→0
ln (1 +Mx) = lim

x→0
M ln (1 + x). As a result, the

asymptotic achievable sum-rate in (81) can be obtained by

lim
K→∞

RMIMO−NOMA
sum,MRC−SIC= lim

K→∞
M ln

(
1+

1

MN0

K∑

k=1

pk‖hk‖2
)
.

(88)

Now, upon comparing (79), (81), and (88), it can be

observed that the upper bound and the lower bound considered

converge when K → ∞. In other words, for any given power

allocation strategy p = [p1, . . . , pK ], the upper bound in (79)

is asymptotically tight. It completes the proof.
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lim
K→∞

RMIMO−NOMA
k,MRC−SIC = lim

K→∞
ln


1 +

pk‖hk‖2
K∑

i=k+1

pi‖hi‖2 |νk,i|2 +N0




(a)
= lim

K→∞
ln


1 +

pk‖hk‖2
K∑

i=k+1

pi‖hi‖2 1
M

+N0




(b)
= lim

K→∞
M ln


1 +

pk‖hk‖2 1
M

K∑
i=k+1

pi‖hi‖2 1
M

+N0


 (87)

C. Proof of Lemma 2

Given the distance from a user to the BS as d, the chan-

nel gain ‖h‖2 follows the Gamma distribution [90], whose

conditional PDF and CDF are given by

f‖h‖2|d (x) = Gamma (M, 1 + dα, x) and

F‖h‖2|d (x) =
γL (M, (1 + dα)x)

Γ (M)
, (89)

respectively. Then, the CDF of the channel gain ‖h‖2 can be

obtained by

F‖h‖2 (x) =

∫ D

D0

γL (M, (1 + dα)x)

Γ (M)
fd (z) dz. (90)

By applying the Gaussian-Chebyshev quadrature approxima-

tion in (76), the CDF and PDF of ‖h‖2 can be written as

F‖h‖2 (x) ≈ 1− 1

D +D0

N∑

n=1

βnγL (M, cnx)

Γ (M)
and (91)

f‖h‖2 (x) ≈ 1

D +D0

N∑

n=1

βnGamma (M, cn, x), x ≥ 0,

respectively, where βn and cn are given in (10).

D. Proof of Theorem 2

Based on (87) in the proof of Theorem 1 in Appendix B,

under the equal resource allocation strategy, i.e., pk = Pmax

K
,

∀k, the asymptotic individual rate of user k of the mMIMO-

NOMA system with the MRC-SIC detection in (42) can be

obtained by Equation (92) on the top of next page. With the

aid of a large-scale antenna array, i.e., M → ∞, the fluctuation

imposed by the small-scale fading on the channel gain can be

averaged out as a benefit of channel hardening [91]. Therefore,

the channel gain is mainly determined by the large-scale fading

asymptotically as follows:

lim
M→∞

‖hk‖2
M

=
1

1 + dαk
. (93)

As a result, the asymptotic data rate of user k in (92) is given

by Equation (94) on the top of next page.

Based on the theory of order statistics [61], the PDF of dk
is given by

fdk
(x) = k

(
K
k

)
Fd

k−1 (x) (1− Fd (x))
K−k

fd (x) ,

D0 ≤ z ≤ D. (95)

Thus, the mean of the large-scale fading of user k can be

written as

Ik = Edk

{
1

1 + dαk

}
=

∫ D

D0

1

1 + xα
fdk

(x) dx (96)

≈
(
K
k

)
k

D+D0

N∑

n=1

βn
cn

(
φ2n−D2

0

D2−D2
0

)k−1(
D2−φ2n
D2−D2

0

)K−k

,

with φn = D−D0

2 cos 2n−1
2N π + D+D0

2 . For a large number of

users, i.e., K → ∞, the random IUI term in (94) can be

approximated by a deterministic value given by

lim
K→∞

K∑

i=k+1

Pmax
1

1 + dαi
≈ lim

K→∞

K∑

i=k+1

PmaxIi. (97)

Now, the asymptotic ergodic data rate of user k can be

approximated by Equation (98) on the top of next page, where

ψk = PmaxM∑
K
i=k+1 PmaxIi+KN0

. Substituting (98) into (43) yields

the asymptotic ergodic sum-rate of the mMIMO-NOMA sys-

tem with the MRC-SIC detection as in (44), which completes

the proof.

E. Proof of Theorem 3

With D = D0, based on the channel hardening property

[91], the channel gain can be asymptotically formulated as:

lim
M→∞

‖hk‖2
M

=
1

1 +Dα
0

, ∀k. (99)

Substituting (99) into (92), the asymptotic individual rate of

user k of the mMIMO-NOMA system with D = D0 is

obtained by

lim
K→∞,M→∞

RmMIMO−NOMA
k

= lim
K→∞,M→∞

ln


1 +M

Pmax
1

1+Dα
0

K∑
i=k+1

Pmax
1

1+Dα
0
+KN0




= lim
K→∞,M→∞

ln

(
1 +

δ̟(
1− k

K

)
̟ + 1

)
, (100)

where δ = M
K

and ̟ = Pmax

(1+Dα
0 )N0

. We can ob-

serve that the asymptotic individual rate of user k in

(100) becomes a deterministic value for K → ∞
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lim
K→∞

RmMIMO−NOMA
k = lim

K→∞
ln


1 +

Pmax‖hk‖2
K∑

i=k+1

Pmax‖hi‖2 1
M

+KN0


 (92)

lim
K→∞,M→∞

RmMIMO−NOMA
k = lim

K→∞,M→∞
ln


1 +

MPmax
1

1+dα
k

K∑
i=k+1

Pmax
1

1+dα
i
+KN0


 (94)

lim
K→∞,M→∞

RmMIMO−NOMA
k ≈ lim

K→∞,M→∞

∫ D

D0

ln

(
1 +

ψk

1 + xα

)
fdk

(x) dx (98)

≈ lim
K→∞,M→∞

(
K
k

)
k

D +D0

N∑

n=1

βn ln

(
1 +

ψk

cn

)(
φ2n −D2

0

D2 −D2
0

)k−1(
D2 − φ2n
D2 −D2

0

)K−k

and M → ∞ due to the channel hardening proper-

ty. As a result, we have lim
K→∞,M→∞

RmMIMO−NOMA
k =

lim
K→∞,M→∞

RmMIMO−NOMA
k .

Now, the asymptotic ergodic sum-rate of the mMIMO-

NOMA system with MRC-SIC receiver can be obtained by

Equation (101) on the top of next page. which completes the

proof of (48).

On the other hand, under the equal resource allocation

strategy, the asymptotic individual rate of user k of the

mMIMO-OMA system with the MRC detection in (46) can

be approximated by

RmMIMO−OMA
k ≈ δςln

(
1 +

Pmax‖hk‖2
ςMN0

)
. (102)

Exploiting the channel hardening property as stated in (99),

the individual rate of user k in (102) can be approximated

by a deterministic value and we have the asymptotic ergodic

sum-rate of the mMIMO-OMA system considered as

lim
M→∞

RmMIMO−OMA
sum ≈ lim

M→∞
ςM ln

(
1 +

̟

ς

)
, (103)

which completes the proof of (49).

F. Derivations of Equation (73)

Based on Equation (1), the residual signal in the k-th step

of the MMSE-SIC detection is given by

yk = hk

√
pkxk︸ ︷︷ ︸

Desired signal

+

K∑

i=k+1

hi

√
pixi

︸ ︷︷ ︸
IUI

+

k−1∑

i=1

ηihi

√
pixi

︸ ︷︷ ︸
Residual interference

+v,

(104)

where the first term is the desired signal of user k, the second

term denotes the IUI originating from the remaining users

k + 1, . . . ,K during the MMSE-SIC detection, and the third

term is the residual interference of the preceding MMSE-SIC

detection for users 1, . . . , k− 1. According to [27], the SINR

of the MMSE estimator for xk is given by Equation (105)

on the top of next page. Then, following the matrix inversion

lemma introduced in footnote 13, the instantaneous achievable

data rate of user k of the MIMO-NOMA systems associated

with imperfect SIC is given by Equation (106) on the top of

next page. Note that when η1 = η2, . . . , ηK = 0, Equation

(106) degenerates to Equation (19), which is for the case of

perfect SIC detection.

G. Remark on Adopting Independently Distributed Channels

in Analysis

We note that channel ordering introduces channel correla-

tion among the ordered users within a NOMA cluster [61].

However, the correlation introduced by channel ordering is

not taken into account in our performance analysis. In the

following, let us clarify the reasons for adopting independently

distributed channels for our analysis in this work.

Firstly, as shown in Equations (6) and (20), the instan-

taneous sum-rates of both the SISO-NOMA and MIMO-

NOMA systems are actually independent of the channel order.

Furthermore, both the SISO-OMA and MIMO-OMA systems

adopted a random user grouping strategy and hence their

instantaneous sum-rates in Equations (7), (27), and (30) are

also independent of the channel ordering. Therefore, we do

not need to consider the channel ordering in single-antenna as

well as multi-antenna systems and analyze their ergodic sum-

rate gains by treating the users’ channels as i.i.d. as in Lemma

1 and Lemma 2 of the paper.

Secondly, as the instantaneous sum-rate of the mMIMO-

NOMA system considered in Equation (43) does depend on

the channel ordering, we analyze the ergodic sum-rate of

mMIMO-NOMA via employing order statistics, as derived

in Appendix D. According to Equation (95) in Appendix D,

the instantaneous data rate of user k can be asymptotically

approximated as a function of the random distance dk between

user k and the BS, i.e., lim
K→∞,M→∞

RmMIMO−NOMA
k (dk).

Additionally, as derived in [61], the joint distribution of all
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lim
K→∞,M→∞

RmMIMO−NOMA
sum = lim

K→∞,M→∞

K∑

k=1

ln

(
1 +

δ̟(
1− k

K

)
̟ + 1

)
= lim

K→∞,M→∞
K

∫ 1

0

ln

(
1 +

δ̟

(1− x)̟ + 1

)
dx

= lim
K→∞,M→∞

M

̟δ
[ln (1 +̟δ +̟) (1 +̟δ +̟)− ln (1 +̟δ) (1 +̟δ)− ln (1 +̟) (1 +̟)] (101)

SINRk =
pk
N0

hH
k

(
IM +

1

N0

K∑

i=k

pihih
H
i +

1

N0

k−1∑

i=1

ηipihih
H
i

)−1

hk (105)

RMIMO−NOMA
k = ln (1 + SINRk)

= ln

∣∣∣∣∣IM +
1

N0

K∑

i=k

pihih
H
i +

1

N0

k−1∑

i=1

ηipihih
H
i

∣∣∣∣∣− ln

∣∣∣∣∣IM +
1

N0

K∑

i=k+1

pihih
H
i +

1

N0

k−1∑

i=1

ηipihih
H
i

∣∣∣∣∣ (106)

the ordered dk is given by

fd1,...,dK
(x1, . . . , xK) = K!fd1

(x1) . . . fdK
(xK) . (107)

Therefore, we can obtain the ergodic data rate

of user k via lim
K→∞,M→∞

RmMIMO−NOMA
k =

∫
lim

K→∞,M→∞
RmMIMO−NOMA

k (x)fdk
(x) dx as derived

in Equation (95), where fdk
(x) denotes the probability

density function of dk. Additionally, since a random grouping

strategy is adopted for the mMIMO-OMA system considered,

its ergodic sum-rate is also independent of the channel

ordering. As a result, we can perform the ESG analysis

of massive-MIMO systems without taking into account the

channel correlation caused by channel ordering.

Thirdly, the inter-cell interference power derived in Equa-

tions (61) and (64) for multi-cell NOMA and multi-cell OMA

systems, respectively, are irrelevant to the channel ordering in

all the adjacent cells. Therefore, we do not need to consider

the channel correlation introduced by channel ordering in the

ESG analysis of multi-cell systems either.
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