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e paper is about the application of mini minibatch stochastic gradient descent (SGD) based learning applied to Multilayer
Perceptron in the domain of isolated Devanagari handwritten character/numeral recognition. 
is technique reduces the variance
in the estimate of the gradient and o�enmakes better use of the hierarchical memory organization inmodern computers. L2-weight
decay is added on minibatch SGD to avoid over�tting. 
e experiments are conducted �rstly on the direct pixel intensity values as
features. A�er that, the experiments are performed on the proposed exible zone based gradient feature extraction algorithm.
e
results are promising on most of the standard dataset of Devanagari characters/numerals.

1. Introduction


e need to recognize the handwritten text is challenging
problem not only from the perspective of behavioural bio-
metrics but also in the context of pattern recognition.Writing
is the most natural mode of collecting, storing, and trans-
mitting the information. It is a widely used communication
tool among human being and forms the input for simulation
of reading by a machine. 
e intensive research e�ort in the
�eld of character recognition (CR) was due to challenges on
simulation of human reading and also because of its potential
applications, for example, postal automation, bank cheque
analysis and processing, conversion of handwritten text into
Braille, hand drawn pictogram or formula recognition, and
so forth. Pattern recognition is a computationally intensive
and time-consuming task due to vast amount of image data
and large number of computational steps involved. 
e great
demand for fast classi�cation of letters by the post o�ce
requires a fast automated recognition system. Traditionally,
the conventional approach always demands a very high speed
computer or a parallel computer system to perform a satis-
factory and fast recognition. We cannot meet these demands
using simple digital computer. Digital computers are good at
handling problemswhich are explicitly formulated, but hand-
written character recognition is not such a problem. With

the advent of neurocomputing technology, the great research
e�ort has been devoted to formulate the pattern recognition
tasks in an e�cient manner. Present study investigates the
direction for the improvement of performance in Devanagari
CR system.


ere are 18 o�cial languages accepted in the present
Indian constitution. Twelve di�erent scripts are used for
writing these languages. Many of the Indian documents are
supposed to be written in three languages, namely, English,
Hindi, and the state o�cial language as per the three language
formula [1]. Hindi is the popularly used language of India
and is the third most popular language in the world, which is
written and encoded using Devanagari script. Not only Hindi
but also the other languages such as Marathi, Sanskrit, and
Konkani are encoded intoDevanagari script. Basic characters
in Devanagri script consists of 13 vowels and 36 consonants
[2] as shown in Figure 1. Writing style is from le� to write.

ere is no concept of upper and lower case. Vowels following
consonants take amodi�ed shape and are known asmodi�ed
characters. Shape of modi�ed characters varies depending
on whether the vowel modi�er is placed to the le�, right,
top, or bottom of the consonants as shown in Table 1. In
Devanagari script, there is a practice of using more than
twelve di�erent forms each of 36 consonants [3], giving
rise to its shape variation. 
e existence of modi�ers and
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Figure 1: Basic characters of Devanagari script.

Table 1: Modi�ers in Devanagari script.

Vowel

Modi�er

Modi�ed shape of

Figure 2: Compound characters of Devanagari script.

the compound characters, shown in Figure 2, makes the
character recognition more di�cult for Devanagari script.

A key reason for the absence of sustained research
e�orts in Devanagari Optical Character Recognition (OCR)
is mainly because of the paucity of data resources. Ground-
truthed data for words and characters, on-line dictionaries,
corpora of text documents, reliable standardized statistical
analysis, and evaluation tools are currently lacking. So, the
creation of such data resources will undoubtedly provide a
much needed �llip to researchers working on Devanagari
OCR. 
e major research for isolated Devanagari characters
is done byComputerVision andPatternRecognition (CVPR)

Unit of Indian Statistical Institute (ISI), Kolkata. Fuzzy
model based recognition scheme was proposed by Han-
mandlu and Murthy [4] for isolated Devanagari numerals.
Classi�er combination is now widely applied on Devana-
gari CR system for increasing recognition accuracy [5–9].
Classi�er combination techniques using shadow features is
proposed by Arora et al. [3, 10]. MLP and HMM combi-
nation schemes have been proposed by Bhattacharya et al.
[6].

Pattern recognition applications use the algorithm of
machine learning. Machine learning in supervised classi�ca-
tion domain mainly involves two steps: training and testing.
One of theway to improve the performance ofmachine learn-
ing algorithm is to use a low bias algorithm and to train the
algorithm with a large data typically known as big data. But
learning with large dataset comes with its own computational
problems and requires a million aggregations over each step.
So, massive computation cost in the most popular algorithms
such as gradient descent requires alternative solution. 
e
present study focuses on this issue for the larger dataset
of Devanagri. Stochastic gradient descent, online learning,
and minibatch learning are some of the alternatives to deal
with this issue. 
e rest of the paper is organized as follows:
Section 2 talks about the methodology used, Section 3 gives
the description of classi�er model used, Section 4 describes
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Figure 3: Design cycle of handwriting recognition system.

the evaluation results on the Devanagari datasets, and �nal
concluding remarks are presented in Section 5.

2. Methodology Used


e design cycle for the recognition of characters follows
all the steps of standard pattern recognition technique in
supervised learning mode. For the purpose of training,
datasets developed by various research groups are used. To
the best of our knowledge, only isolated characters and
numeral dataset of Devanagari script is available as test bed.
So, these are experimented in this study.
edesign cycle used
in this study is shown in Figure 3.


e images obtained from benchmarking dataset exist
in two groups, namely, training and testing. 
e images are
subjected to various preprocessing steps described in Table 2.

e output a�er preprocessing module is not suitable for
the classi�er training because of the high dimensionality.
Feature extraction/selection is an important step for the
dimensionality reduction. In this study, we have used a
gradient based directional features. 
e features are obtained
from the 9 di�erent parts of the image sample.
e global and
local histogram based zone boundary concept [11] as shown
in Figure 4, is used before feature extraction.

2.1.�e Feature ExtractionModule. 
e features are accumu-
lated zonewise using two di�erent alternatives of zoning. For
example,

(i) standard zoning: the entire bounding box of the
image is divided into 3 × 3 zones, and gradients are
accumulated for each zone;

(ii) elastic zoning: the concept of elastic zoning is based
on equalizing the density of each zone.We here de�ne
global or local zoning concept. In global zoning, the
zone separating line is decided on the basis of equal
density division, horizontally and vertically, whereas
in local method the image is divided horizontally
based on density equalization in each zone and then

the vertical boundary is decided on the local division
of density.

2.1.1.�eGradient Features. 
egradient feature decomposi-
tionwas originally proposed for online character recognition.

is method is applicable to machine printed/handwritten
and binary/grayscale, as well as low resolution images. Con-
ventionally, the gradient is calculated on each pixel of the
image. In our analysis, we have applied “Sobel” edge detection
algorithm to calculate gradient vector at each image pixel of
preprocessed image. 
e gradient vector can be quantized
into eight directions using twomethods, namely, angle vector
quantization and vector decomposition using parallelogram
rule. In the �rst method, the magnitude of gradient in each
image pixel is assigned to its nearest directional plane and
in the second method the gradient vector is decomposed
into twonearest directional planes using parallelogramvector
division rule. 
e parallelogram quantization method gives
less quantization error, so we have taken this method for
quantizing gradient vector.


e calculated gradient of the image is decomposed into
four, eight, or sixteen directional planes. For our analysis,
we have taken eight directional planes. Figure 5(c) shows
the gradient vector decomposition into their nearest vector
plane. We have accumulated the magnitude of gradient in
eight discrete directions for each of the subsection of original
image. 
e components of gradient vector are given by the
following equations:

�� (�, �) = � (� + 1, � − 1) + 2� (� + 1, �)
+ � (� + 1, � + 1) − � (� − 1, � − 1)
− 2� (� − 1, �) − � (� − 1, � + 1) ,

�� (�, �) = � (� − 1, � + 1) + 2� (�, � + 1)
+ � (� + 1, � + 1) − � (� − 1, � − 1)
− 2� (�, � − 1) − � (� + 1, � − 1) .

(1)



4 Applied Computational Intelligence and So� Computing

Table 2: Proposed feature extraction algorithm.

Input: image (training/test) Output: features of image

Preprocessing steps

(1) Convert the image into two-tone image
(2) Normalize the image to standard size
(3) Obtain the boundary image
(4) Obtain the features using algorithms 1 or 2 or 3

Algorithm 1 (standard zone)

For boundary image IM(�,	)
(1) divide the � and	 by number of bins in horizontal and vertical directions to
calculate the value of boundary indices 
� and V�
(2) obtain the subimages IM� generated from IM using 
� and V�
(3) go for feature extraction of each subimage IM�

Algorithm 2: (global zone)

For boundary image IM(�,	)
(1) calculate density in horizontal direction ��
(2) calculate density in vertical direction��
(3) divide the density��/�� by number of bins in horizontal/vertical direction to
calculate �ℎ/�V

; obtain the indices 
�/V� for zone boundary using�ℎ/�V

(4) obtain the subimages IM� generated from IM using 
� and V�
(5) go for feature extraction of each subimage IM�

Algorithm 3: (local zone)

For boundary image IM(�,	)
(1) calculate density in horizontal direction ��
(2) calculate density in vertical direction��
(3) divide the density�� and�� by number of bins in horizontal and vertical
directions to calculate density for locating the boundary indices of zone 
� and V�
(4) obtain the subimages IM� generated from IM using only 
�
(5) obtain for each IM� density��ℎ and divide this by the number of bins in
horizontal direction to calculate density for locating vertical index of zone ��
(6) obtain subimage from IM� using 
� and ��
(7) go for feature extraction of each subimage IM�
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Figure 4: (a) Standard zoning; (b) global zoning; (c) and (d) local zoning.

3. The Classifier Model

Multilayer Perceptron is used as classi�er. 
e architecture
of Multilayer Perceptron (MLP) consists of input layer,
output layer, and hidden layer. Single hidden layer perceptron
gives universal approximation in many pattern recognition
applications. 
e output vector for a single layer perceptron
is given by

� (�) =  (�(2) + �(2) (� (�(1) + �(1)�))) , (2)

where �(1), �(2) are the bias vectors at the hidden and
output layers, �(1), �(2) are the weight matrices at the
respective nodes, and �,  are the activation functions. For

a classi�cation problem, if (�(�), �(�)) is the training vector,

where �(�) ∈ R
�, a�-dimensional training vector, and �(�) ∈

{1, . . . , �}. For the prediction function �(�) given in (2), the
zero-one loss function is given by

ℓ0,1 = |D|∑
�=0

��(	(�) ̸=�(�)), (3)

where � is the indicator function given by

�	 = {{{
1 if � is true

0 otherwise,
� (�) = argmax

�
� (� = � | �, �) ,

(4)

where � is the set of all parameters of the given model. 
e
objective of the training is to minimize the loss function.
But, the zero-one loss function is not di�erentiable; therefore,
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Figure 5: (a) Sobel mask for vertical gradient; (b) Sobel mask for horizontal gradient; (c) quantization using parallelogram rule.

negative log likelihood of loss function minimization is used
as the objective of the training

NLL (�,D) = −|D|∑
�=0

� (� = �(�) | �(�), �) . (5)

Weights are updated using gradient of the error surface
de�ned by loss function. Gradient is estimated from the
training data. In this study, stochastic gradient descent based
learning (Table 3) approach is applied to MLP. In ordinary
gradient descent algorithm, repeatedly small steps are made
in downward direction on an error surface, which is themean
square error. Mean square error is a function of weights.
Stochastic gradient descent (SGD) works according to the
same principles as ordinary gradient descent, but it proceeds
more quickly by estimating the gradient from just a few
examples at a time instead of the entire training set. In
its purest form, estimation of the gradient is made from
just a single example at a time. In both gradient descent
(GD) and stochastic gradient descent (SGD), we update a
set of weights in an iterative manner to minimize an error
function. In normal GD (Table 4), all the samples of the
training set have to be processed before updating the weight
for a particular iteration, while, in SGD, only single training
sample from whole training set is used to do the update for
a weight in a particular iteration. 
us, for big data, if the
number of training samples is very large, then using gradient
descent may take too long because in every iteration, when
we are updating the values of the parameters, we are running
through the complete training set. On the other hand, using
SGD will be faster because you use only one training sample
and it starts improving itself right away from the �rst sample.
SGD o�en converges much faster compared to GD, but the
error function is not as well minimized as in the case of
GD. O�en, in most cases, the close approximation that we
get in SGD for the parameter values is enough because they
reach the optimal values and keep oscillating there. Stochastic
gradient descent has a convergence rate which is independent
of the size of our dataset and is thus adapted when we have a
huge or even in�nite dataset. But, there are two downsides to
it:

(i) its slow convergence rate: it is not bene�cial to get a
faster convergence rate on the training set as this will
not be translated into a better convergence rate on the
test set [12];

Table 3: Stochastic gradient descent.

For (��,��) in training set,

% assume an in�nite generator

% It may repeat examples (if there is only a �nite training loss)

loss = �(parameters, ��, ��)
�nd derivative of loss with respect to parameters % compute
gradient

modify parameters by-learning rate ∗ derivative of loss with
respect to parameters

if ⟨stopping condition is met⟩,
return parameters

Table 4: Gradient descent.

While being true,

loss = �(parameters)

�nd derivative of loss with respect to parameters % compute
gradient

modify parameters by-learning rate ∗ derivative of loss with
respect to parameters

if ⟨stopping condition is met⟩
return parameters

Table 5: Minibatch-SGD.

for (�batch, �batch) in training batches,

% assume an in�nite generator

% it may repeat examples

loss = �(parameters, �batch, �batch)

�nd derivative of loss with respect to parameters % compute
gradient

modify parameters by-learning rate ∗ derivative of loss with
respect to parameters

if ⟨stopping condition is met⟩,
return parameters

(ii) its sensitivity to the two parameters, the learning rate,
and the decrease constant.

For deep learning, a variant that we recommend is a further
modi�cation in stochastic gradient descent using the so-
called “minibatches.” Minibatch SGD (MSGD), explained in
Table 5, works identically to SGD, except that we use more
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Table 6: Number of image samples in CPAR-12 numeral dataset.

Image 0 1 2 3 4 5 7 8 91 92

Train dataset 2280 2280 2280 2280 2280 2280 2280 2280 2280 1200

Test dataset 1012 1012 1012 1012 1012 1012 1012 1012 1012 880

Total 3292 3292 3292 3292 3292 3292 3292 3992 3292 2080


ere are two forms of writing digit “9” in Devanagari, 1for form 1 while 2for form 2.

than one training example to make each estimate of the
gradient. 
is technique reduces variance in the estimate of
the gradient and o�en makes better use of the hierarchical
memory organization in modern computers.


ere is a trade-o� in the choice of the minibatch size". With large ", time is wasted in reducing the variance of
the gradient estimator, that time would be better spent on
additional gradient steps. An optimal " is model, dataset,
and hardware dependent and can be anywhere from 1 to
several hundreds. In machine learning, when we train our
model from data, we are trying to prepare it to do well
on new examples, not the ones it has already seen. 
e
MSGD training loop does not have the capability for this
generalization and have a tendency for over�tting. 
e way
to combat over�tting is through regularization and early
stopping using validation. 
ere are several techniques for
regularization; the most commonly used method is �1/�2
regularization which is explained in the next section.

3.1. Weight Decay. Weight decay is a subset of regularization
methods. 
e penalty term in weight decay, by de�nition,
penalizes large weights. Other regularization methods may
involve not only the weights but also various derivatives of
the output function. 
e weight decay penalty term causes
the weights to converge to smaller absolute values than
they otherwise would. Large weights can hurt generalization
in two di�erent ways. Excessively large weights leading to
hidden units can cause the output function to be too rough,
possibly with near discontinuities. Excessively large weights
leading to output units can cause wild outputs far beyond
the range of the data if the output activation function is not
bounded to the same range as the data. To put it another way,
large weights can cause excessive variance of the output.

3.2. L1 and L2 Regularization. �1 and �2 regularization
involve adding an extra term to the loss function, which
penalizes certain parameter con�gurations. Formally, if our
negative log likelihood loss function is NLL(�, |D|), then the
regularized loss will be given by

# (�,D) = NLL (�, |D|) + $% (�) . (6)


is is written as follow for the present study:

# (�,D) = NLL (�, |D|) + $ ‖�‖ , (7)

where ‖�‖ is the � norm of �
‖�‖ = ( |�|∑

�=0

*****��*****)
1/

, (8)

$ is a hyperparameter which controls the relative importance
of the regularization parameter. Commonly used values for 4
are 1 and 2, hence the �1/�2 nomenclature. If 4 = 2, then the
regularizer is also called “weight decay.” In principle, adding
a regularization term to the loss will encourage smooth
network mappings in a neural network (by penalizing large
values of the parameters, which decreases the amount of
nonlinearity that the network models). More intuitively, the
two terms (NLL and %(�)) correspond to modeling the data
well (NLL), having “simple” or “smooth” solutions. 
us,
minimizing the sum of both will, in theory, correspond to
�nding the right trade-o� between the �t to the training data
and the “generality” of the solution that is found.

4. Experimental Results


e experiments are performed on various datasets as
described in the next subsections. 
e images from the
dataset (training and testing) are preprocessed. 
e fea-
ture extraction method as discussed in Table 2 is applied
and Feed-Forward Neural Network based classi�er is used
which is incorporated with �2-Regularization and mini-
batch. For implementing the Feed-Forward Neural Network
using minibatch approach, the code developed by Palm [13]
is used in MATLAB. 
e neural network con�guration as
speci�ed in column 4 of Table 9 is either a three layer or a four
layer network. 
e �rst value of the con�guration speci�es
the number of features, last value speci�es the number of
classes and the rest (between input and output) speci�es
the units present in the hidden layer. 
e experiments are
performed on Intel Core i-3 processor with 6GB RAM. In
next subsection, the information about various datasets is
given.

4.1. �e MNIST Dataset. 
eMNIST [14] dataset consists of
handwritten digit images and it is divided in 60,000 examples
for the training set and 10,000 examples for testing. All digit
images have been size-normalized and centered in a �xed size
image of 28 × 28 pixels. In the original dataset, each pixel of
the image is represented by a value between 0 and 255, where
0 is black, 255 is white, and anything in between is a di�erent
shade of grey. An image is represented as 1-dimensional array
of 784 (28 × 28) oat values between 0 and 1 (0 stands for
black and 1 for white). 
e labels are numbers between 0 and
9 indicatingwhich digit the image represents.Whenusing the
dataset, we usually divide it in minibatches.

4.2. �e CPAR-2012 Dataset. 
is dataset is available since
the year 2012 [15] to the research community and is developed
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Table 9: Error rates for various datasets using direct pixel values.

Dataset
Training
samples

Test samples
Neural net

con�guration

Time for recognition
of dataset including

training

Percentage
error

MNIST handwritten digit 50000 10000 784-100-10 4846 sec 2.25

MNIST handwritten digit 50000 10000 784-200-100-10 9471 sec 2.15

MNIST Handwritten digit 50000 10000 784-200-10 7923 sec 2.13

ISI digit 18000 3500 784-100-10 1524 sec 3.31

ISI digit 18000 3500 784-200-100-10 3239 sec 3.17

ISI digit 18000 3500 784-200-10 2767 sec 2.74

CPAR-2012 character 49000 29400 784-100-49 3903 sec 21.54

CPAR-2012 character 49000 29400 784-200-49 8334 sec 18.6

CPAR-2012 character 49000 29400 784-200-100-49 8794 sec 17.21

CPAR-2012 numeral 26250 8750 784-200-11 5422 sec 2.53

CPAR-2012 numeral 26250 8750 72-100-11 2153 sec 2.8

CPAR-2012 numeral 26250 8750 784-200-100-11 5560 sec 2.77

Table 10: Error rates for various datasets using proposed feature extraction method.

Dataset
Feature extraction

method
Number of
features

NN con�guration
Time for training

and testing
Error rate

CPAR-2012 character
Global zone based

edge
72 72-200-49 1941 sec 14.89

CPAR-2012 character
local zone based

edge
72 72-200-49 1864 sec 16.01

CPAR-2012 character Equal zone 72 72-200-49 2082 sec 21.35

ISI digit Equal zone edge 72 72-200-10 1224 sec 2.03

ISI digit
Global zone based

edge
72 72-200-10 1178 sec 1.83

ISI digit
local zone based

Edge
72 72-200-10 909 sec 2.14

CPAR-2012 numeral
Global zone based

edge
72 72-200-10 756 sec 2.38

CPAR-2012 numeral
local zone based

edge
72 72-200-10 785 sec 1.93

CPAR-2012 numeral Equal zone edge 72 72-200-10 956 sec 2.07

by Intelligent System Group Noida (Centre for Pattern
Analysis and Recognition, CPAR). 
is is the largest dataset
available for the handwritten isolated patterns. It consists of
35000 images of numerals and 78400 images of characters.

e data is collected from diverse population strata of 2000
writers from various states of India having di�erent religions.

enumeral dataset is having 11 classes in this dataset because
the pattern corresponding to number “9” can be written in
two alternate ways as shown in Table 7. 
e character dataset
is having 1000 training images and 600 test images of 49
classes each. Table 6 describes the number of pattern for each
numeral class of CPAR-12 used in this study.

4.3. CVPR-ISI Dataset. 
is dataset is available for the global
research community since the year 2009 and is developed
by CVPR unit of ISI Kolkata. 
e Devanagari numeral
database includes samples collected frommail pieces and job
application forms through specially designed form for data

collection.
e dataset consists of 22,556 images (as shown in
Table 8) stored in “tif ” format, collected from 1049 writers.

In this study, experiments are performed with single
hidden layer (having 200 or 100 hidden units) NN and two
hidden layer NN (having 200 and 100 hidden units resp.).
Input layer is made up of the number of units equal to the
size of feature vector generated. Network is trained for 200
epoch with a mini batch size of 100.
e learning rate used in
the experiments is kept constant to be equal to 1. 
e value
of regularization weight decay �2 is maintained at 15 − 04.

e activation function used in hidden layer is hyperbolic
tangent and in the output layer it is logistic. 
e momentum
set for experiments is equal to 0.7. 
e error rates obtained
for the various dataset using direct pixel values as features
are tabulated in Table 9. 
e results are obtained for the size
normalized image patterns with the features as direct pixel
intensities. 
e network con�guration varies with respect
to the number of hidden layers. 
e time for recognition
includes the training time along with the classi�cation.
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Table 11: Comparison of performance of proposed method with the previously reported results.

Dataset
Approach used by
previous reported

results

Feature used by
previous

reported results

Classi�er used by
previous reported

results

Previously
reported

recognition
percentage

Recognition
percentage of

proposed method
(direct pixel as

features)

Recognition
percentage of

proposed method
(gradient feature)

CPAR-2012
digit [17]

Classi�er
combination (MV)

Direct pixel +
pro�le +
gradient +
wavelet

transform

CCN, FNN, PRN,
KNN, FFT

97.87%
(35000)

97.47
(35000)

98.07
(35000)

CPAR-2012
character [9]

Classi�er
combination (MV)

Direct pixel +
pro�le +
Gradient +
wavelet

transform

CCN, FNN, PRN,
KNN, FFT

84.03%
(79400)

82.79%
(79400)

85.11

(79400)

ISI
devanagari
digit [18]

Feature
combination

PCA/MPCA
+ QTLR

SVM
98.55%
(3000)

CMATER data

ISI
devanagari
digit [16]

Multistage
classi�er

Wavelet
Multistage
MLPs

99.04 with 0.24%
rejection

97.26

(22546)

Full ISI Data

98.17

(22546)

Full ISI Data

ISI
devanagari
digit [7]

Ensemble using
AdaBoost

Zernike
moments

MLPs
96.80 (single)

(22546)

Abbreviations used in Table 11 are as follows: PCA: principal component analysis, KNN: K-nearest neighbor, FNN: feed-forward neural network, SVM: support
vector machine, MLP: multilayer perceptron, CNN: cascade neural network, PRN: pattern recognition network, and FFT: function �tting neural network.

Table 10 illustrates the performance of various feature
extraction algorithms described in Table 2 on SGD based
learning of MLP. All the sample images are partitioned into
3 × 3 subimages, but the criterion for zoning is di�erent.
Edge based directional features are extracted from each of the
subimage in 8 discrete directions de�ning 72D feature vector
in each case.
ree layer architecture ofMLP is used with 200
nodes in hidden layer. 
e rest of the NN-settings are kept
as same as in the previous experiment on direct pixel values.

e number of data samples used in this case for training and
testing is same as that mentioned in Table 9 (column 2 and
column 3).

4.4. Performance Comparison for Numeral Dataset CPAR-
2012. In the experiments performed by Kumar and Ravu-
lakollu [17], the average recognition rate reported was 95.18%
with rejection of some of the samples, on a single classi�er
and 97.87%with rejection of some of samples on an ensemble
of classi�er is applied to the patterns. For the same dataset,
the proposed learning strategy gives the recognition rate of
98.07% without any rejection. For the CPAR-2012 numeral
dataset, the accuracy the proposed features with SGD learning
ofMLP is improved by 0.2%. Here, the point to be emphasized
is that our results are better than the previous results because
of two reasons: (1) we have not used any rejection of samples
and (2) we have not used model of classi�er ensemble. 
e
recognition results reported here in this work are for the
single classi�er.

4.5. Performance Comparison for Character Dataset CPAR-
2012. Kumar and Ravulakollu [17] applied the method of

classi�er ensemble on the character dataset and obtained
the recognition rate of 84.03% for a rejection of 5.3%. For
the same dataset, the proposed learning method yields the
recognition rate of 82.79% with direct pixel values and
85.11% with feature extraction method without any rejection
of patterns. For CPAR-2012 character dataset, the accuracy
improvement of 1.08% is observed with the proposed feature set
along with the SGD learning on MLP. Our results are better
from the point of view of the reasoning given in the previous
section.

4.6. Performance Comparison for Numeral Dataset ISI-CVPR.
For ISI Devanagari numerals performance comparison is
made with the three previously reported results. 
e result
reported by Das et al. [18] is better, but it is tested for small
subset of ISI data, whereas our method is tested on complete
ISI dataset. Result reported by Bhattacharya and Chaudhuri
[16] is tested on complete dataset, but the accuracy is obtained
with 0.24% rejection of patterns and features used in the
study belong to complex algorithms of feature extraction.
Also, the classi�cation algorithm used by them is amultistage
MLP based classi�er and there is a rejection of patterns used
by the last stage in multistage MLP. For the single �-NN
(7-nearest neighbor), the benchmark established by them
is of accuracy level 97.26%. So, for ISI data considering the
complexity of the algorithm, our results are better. 
e pro-
posedmethod is better comparedwith themethod developed
by Bhattacharya and Chaudhuri [16] in terms for speed of
recognition.
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Figure 6: Performance of the proposed method with the previously
reported result.

5. Conclusion


e minibatch stochastic gradient is used to accelerate the
speed of recognition for large dataset.
e recognition results
are obtained using direct pixel intensities as feature on
MSGD. Secondly, the results are obtained for edge based
directional features on MSGD. From the results it is clear
that if Pre-processing and feature extraction is used along
with the mini batch algorithm, the error rate reduces by a 1–
3% over direct pixel intensity features. 
e proposed method
gives better/same recognition accuracy withmost of the stan-
dard benchmarks available for Devanagari characters. 
e
recognition time cannot be compared from the previously
reported results as the time was not considered as criterion in
previous research.
eproposedmethod is faster over normal
gradient descent based learning and it gives good accuracy on
even direct pixel intensities. 
e performance improvement
of the proposed methods is given in terms of accuracy as
tabulated in column 6 and 7 of Table 11. In this table the
�rst column is giving the information about the dataset
and the reference associated with the previous result. For
showing the e�ectiveness of our proposed strategy we have
taken the same dataset of Devanagari characters. Column 2
is summarizing the approach used by the previously reported
results, column 3 provides features used by them, column 4
gives the classi�cation method used by the previous research
and column 5 of Table 11 provides the accuracy of previously
reported results by other researchers.

Figure 6 is showing the accuracy improvement of the
proposed results over the existing methods.
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