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ABSTRACT Cellular systems are undergoing a transformation toward the fifth generation (5G). Envisioned

applications in 5G include intelligent transport system (ITS), autonomous vehicles, and robots as a part of

future roads, factories, and society. These applications rely to a great extent on accurate and timely location

information of connected devices. This paper proposes a practical scheme for acquiring precise and timely

position information by means of a user–centric ultra–dense network (UDN) architecture based on an edge

cloud. The considered solution consists of estimating and tracking the azimuth angle–of–arrival (AoA) of the

line–of–sight (LoS)–path between a device and multiple transmission–reception points (TRPs), each having

a uniform linear antenna array (ULA). AoA estimates from multiple TRPs are fused into position estimates

at the edge cloud to obtain timely position information. The extensive measurements have been carried

out using a proof–of–concept software–defined–radio (SDR) testbed in order to experimentally assess the

achievable positioning accuracy of the proposed architecture. A realistic UDN deployment scenario has been

considered in which TRPs consist of antenna arrays mounted on lamp posts. Our results show that practical

UDNs can provide sub–meter positioning accuracy of mobile users by employing ULAs with at least four

antennas per TRP and by taking into account the non–idealities of the ULAs’ phase and magnitude response.

INDEX TERMS AoA, localization, position, UDN, edge cloud.

I. INTRODUCTION

The ongoing transformation of cellular systems towards

future 5G networks, with support for machine–to–machine

(M2M) communication and internet of things (IoT) services,

is driving new markets and industry segments beyond the

traditional human–centric communication. Emerging appli-

cations of 5G, which are envisioned to be part of future roads

and factories, include autonomous vehicles, autonomous

robots and ITS use–cases that enable cooperative collision

avoidance, high density platooning and vulnerable road user

discovery [1], [2]. The majority of these 5G use–cases are

dependent on precise and timely location information of

mobile devices. As a result, providing position information

has changed from an on–demand approach with coarse posi-

tion estimation in the past to an always–on approach in 5G
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with strict requirements in the level of accuracy, availabil-

ity, continuity and integrity as well as trust in the solution.

Location awareness is becoming an essential element ofmany

emerging markets, and positioning is considered an integral

part of the system design of upcoming 5G [3], [4].

Various radio–based positioning methods have been stud-

ied in the literature. One such method of obtaining location

information is based on the received signal strength (RSS)

of radio signals exchanged among base stations (BSs) and

mobile devices [5]–[8]. Positioning may also be obtained by

means of time–of–arrival (ToA)–based methods where the

distance between transmitter and receiver is found from the

propagation delay and propagation speed, given that the trans-

mission time is known. In case such an assumption does not

hold true, differences of reception time at different locations,

known as time–difference–of–arrival (TDOA) [9]–[12], may

be exploited. A third approach consists in using an array of

antennas and exploiting the AoA of the LoS path between
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every user equipment (UE) and each BS [13]. Then, the AoA

estimates acquired by all BSs are fused at a central unit in

order to determine the devices’ locations; see [3], [14] and

references therein.

The strict requirements on latency and accuracy of position

information for real–time services of 5G is well beyond that

achieved by existing legacy systems, e.g., long–term evolu-

tion (LTE) or Global Navigation Satellite Systems (GNSSs).

This calls for a solution that allows for accurate positioning

with ultra–low–latency in order to satisfy the requirements of

emerging use–cases.

One of the enablers of 5G is UDNs. UDNs facilitate accu-

rate positioning due to a higher likelihood of having LoS

communication most of the time, both in indoor and outdoor

scenarios. Additionally, a device in a UDN can be connected

to more than one small BS, commonly termed TRP. Each

TRP provides an estimate of spatial and temporal parameters,

based on its measurements, to a central unit for computation

of position estimates. UDNs have also the potential of boost-

ing area capacity and enhancing the end–user experience

by overcoming cell boundary problems such as inter–cell

interference (ICI), signalling overhead in mobility manage-

ment and frequent handover (HO) by employing a so–called

user–centric UDN approach [15], [16]. In a user–centric

UDN, a UE is connected to multiple TRPs and the network

decides which TRP is, or group of TRPs are, best suited to

serve a given UE.

Performing localization in a fully–centralized architecture,

typically located far away from the majority of UEs, is chal-

lenging due to the need for delivering timely location infor-

mation under the strict limits imposed by 5G low–latency

services. It is therefore necessary to perform localization in

a distributed manner utilizing high–performance machines

with adequate computing and storage capacity closer to the

users for latency constrained services. To this end, edge

computing is an emerging and effective approach for services

requiring complex data processing and low–latency com-

munication [17]. With edge clouds, processing and storage

resources are made available at close proximity to the mobile

terminals in the network. Therefore, edge cloud is responsible

for providing precise and timely position estimation as well as

user–centric services. An intelligent network having this con-

troller at the edge would be responsible for joint optimization

such as dynamically assigning a group of TRPs to serve each

UE seamlessly, performing scheduling decisions, proactive

handover and mobility management [18].

An important prerequisite for antenna array–based AoA

estimation is phase–coherence. A time–invariant phase dif-

ference among the signals at the receiver chains is typically

a requirement for AoA estimation of a target at specific

location [14], [19]. However, in practical systems, with

off–the–shelf radio front–end hardware, the relative phase

among receiver chains varies with time due to drifts in

the clocks driving each radio frequency (RF)–chain. More-

over, antenna arrays built in practice are typically sub-

ject to mutual–coupling, individual antenna beampattern and

phase–center. Employing the theoretical array steering vector

model in [20] for AoA estimation on a practical system

typically leads to a significant performance degradation [21].

This calls for calibration techniques in order to compensate

for time–varying phase–offsets as well as to take into account

other gain and phase uncertainties that are unavoidable in any

real–world system.

Motivated by the aforementioned practical limitations of

state–of–the–art localization schemes, with regards to the

requirements of envisioned use–cases for 5G, this paper con-

tains the following contributions:

• An edge cloud–based architecture for real–time posi-

tioning services in 5G, requiring strict latency bounds

and high accuracy, by fusing directional parameter esti-

mates from each TRP comprising a UDN. The pro-

posed architecture takes advantage of: 1) very small

propagation delay in UDNs (≤ 83.33 ns in cells with

inter–site distance (ISD) ≤ 50 m), 2) very small trans-

mission delay due to very short slot duration design in

the utilized frame structure. 5G New Radio (NR) has

flexible frame structure with scalable subcarrier spac-

ing (fs) of 2µ ∗ 15 kHz, where µ ∈ {0, 1, 2, 3, 4, 5}

and for µ ≥ 2, the slot duration ≤ 0.250 ms which

is a suitable choice for low–latency services and 3)

high–performance machines to significantly reduce the

processing delay as a result of computationally demand-

ing solutions, e.g. AoA estimation and localization.

• Validation of the proposed solution using a proof-of-

concept SDR–based testbed developed at Aalto Univer-

sity. Performance measurements have been carried out

in a realistic UDN scenario with TRPs having ULA

antennas deployed on lamp posts.

• Identification of the usable azimuth angle range for

accurate (sub–meter) positioning using ULAs. Such

identified usable angle range can be used for designing

future UDNs, namely for road users on highways.

The remainder of this paper is organized as follows.

Section II provides the employed system model. Section III

describes analysis of the considered AoA and position esti-

mation techniques. Description of the experimental setup and

testbed are given in Section IV. Numerical results obtained

from testbed measurements are given in Section V. Finally,

Section VI concludes the paper.

II. SYSTEM MODEL

We consider an edge cloud–based user–centric UDN posi-

tioning architecture in which small cells equipped with

antenna arrays are deployed on lamp posts along the street;

see Fig. 1. We focus on ULAs due to practical limitations of

our testbed; see Section IV. In particular, our testbed could

only support up to four antennas on each TRP. In such cases,

linear arrays have a larger aperture than e.g. circular arrays

when incident signal coming from source is around broadside

as indicated in [22]. But the cost of ULAs is twofold: only a

single direction (e.g., azimuth angle) can be unambiguously
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FIGURE 1. Proposed architecture for positioning with an edge
cloud–based user–centric UDN.

determined and its coverage area is limited to 180◦. Another

practical limitation of our testbed requires us to have at most

two TRPs connected to our edge cloud. Hence, only 2D posi-

tioning is achievable. However, we emphasize that this paper

can be extended to azimuth and elevation angle estimation as

well as 3D positioning in a straightforward manner.

An orthogonal frequency division multiplexing (OFDM)

waveform–based frame structure with dedicated symbols for

uplink (UL) pilot transmission proposed in [23] is used. The

frame structure has slot duration (also called transmission

time interval (TTI)) of 0.184 ms, which falls in between

µ = {2, 3} of NR. See also Table 1 for further details on

testbed air interface parameters. Since testbed development

had started before the 3GPP has frozen the 5G NR air inter-

face specifications, the utilized radio frame structure is not

a 5G NR specification compliant one. The main differences

in current implementation and 5G NR is on the values of

air interface parameters used. The detail on time–frequency

grid allocation of the utilized frame structure can be found in

[23]. Furthermore, extension of the current platform to 5GNR

specification compliant one is ongoing separately and taken

as future work.

A device, with a single antenna, connects to a synchronized

set of TRPs by means of a network entry procedure to estab-

lish a communication link with the TRPs. This entails device

synchronization and transmission of pilot signal for position-

ing (PSP), among others. In this work, the UE synchronizes

to TRP by decoding Primary Synchronization Signals (PSS)

transmitted by TRP to identify frame and sample timings,

in similar fashion to LTE. However, a truncated version of

frequency–domain Zadoff–Chu (ZC) sequence [24] used in

LTE is adopted here as PSS to fit the utilized frame structure

which has 52 useful subcarriers. Once the UE is synchronized

with TRP, it starts transmitting UL PSP which is generated

in similar fashion from ZC sequence but with a different

root index. The TRPs exploit this periodically transmitted

OFDM–based PSP from UEs in uplink for AoA estimation.

The frequency domain representation of the received signal

from the antenna array can be written as:

r = SBp(ϕ, τ )ξ + n, (1)

where S ∈ C
NNf×NNf denotes a diagonal matrix containing

the PSP and ξ ∈ C
2 is a vector containing the complex

channel coefficients of the dominant (typically LoS) signal

path. Moreover, Bp(ϕ, τ ) = [bph(ϕ, τ ), bpv(ϕ, τ )], where

bph(ϕ, τ ) ∈ C
NNf×1 and bpv(ϕ, τ ) ∈ C

NNf×1 denote response

vectors for horizontal and vertical polarization, respectively.

The channel parameters ϕ and τ denote azimuth angle and

time delay respectively. n ∈ C
NNf×1 denotes the zero–mean

complex–circular Gaussian distributed receiver noise, Nf is

the number of sub–carriers comprising the OFDM waveform

and N is the number of antennas in TRP.

The estimate of the channel response at a given TRP is

obtained from r as follows:

ĥ = S−1r

= Bp(ϕ, τ )ξ + ñ, (2)

where ñ = S−1n. Here, superscript −1 denotes matrix

inverse. The channel parameters ϕ and τ (measured in sec-

ond) are estimated from ĥ.

Phase coherence of multiple RF chains of transceivers can

be achieved by coupling them with a common reference, e.g,

the 10 MHz reference signal. However, a closer inspection

of the instantaneous differential phase of the RF signals

shows instability due to: 1) phase noise of the synthesizers

at transceiver chains; 2) weak coupling at the 10 MHz, and

a long synthesis chain up to the RF output; 3) temperature

differences which cause a change in the effective electrical

length of some synthesizer components. Although a 10 MHz

common reference signal is used, the phase coherence at

base station level cannot be maintained perfectly due to the

dominance of the second factor mentioned above and also

difference in circuitry constituting each radio frontend.

Another level of phase calibration is required, on top of

the 10 MHz common reference, in order to compensate the

dynamic phase offset due to the variation in clocks driving

each RF chain. In this work, such a phase calibration is

achieved by having a transmitter at a known position sending

reference signals. Antennas’ feeding cables, connectors and

other RF components have also been calibrated using a vector

network analyzer (VNA).

Each practical antenna array element has an individual

gain and phase characteristic. In addition, mutual coupling,

cross–polarization effects and mounting platform reflections

may be significant and should be taken into account by the

AoA estimation algorithm. In order to take into account these

non–idealities of real–world antenna arrays, it is important

to incorporate the antenna arrays’ complex–valued response
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for all azimuth–angles into the AoAs estimation algorithm.

This is done by measuring the antenna arrays’ responses

in an anechoic chamber and finding the so–called Effective

Aperture Distribution Function (EADF) [21].

In particular, the complex–valuedmulticarrier polarimetric

beampattern of a real world antenna array can be expressed

in terms of the EADF, denoted by (G), as follows [25]:

Bp(ϕ, τ ) =
[

bh(ϕ)⊗ bf (τ ) bv(ϕ)⊗ bf (τ )
]

, (3)

where

bh(ϕ) = Ghd(ϕ) (4a)

bv(ϕ) = Gvd(ϕ) (4b)

bf (τ ) = Gf d(τ ). (4c)

In (3), ⊗ denotes the Kronecker product. Moreover, bh(ϕ) ∈

C
N and bv(ϕ) ∈ C

N denote the array responses correspond-

ing to horizontal and vertical polarizations, respectively. The

corresponding EADFs are given by G = [Gh Gv] and Gf ∈

C
Nf×Nf denotes the frequency–response of the receiver. The

phase vector d(ϕ) ∈ C
M is given by:

d(ϕ) =
[

e−j(
M−1
2 )ϕ · · · ej(

M−1
2 )ϕ

]T
, (5)

where M denotes the number of modes employed for rep-

resenting the array response. The phase vector and bf (τ ) ∈

C
Nf X1 is expressed similarly to (5) with ϕ andM replaced by

2πτ fs and Nf , respectively.

III. ANALYSIS OF ANGLE AND POSITION ESTIMATION

Once the beampattern is modelled effectively, localization

is performed by adopting a two–stage extended Kalman fil-

ter (EKF)–based positioning engine in [3] and [14]. Here,

general system dynamics and measurement model in (2) are

non–linear and the EKF linearizes, using the Taylor series

expansion, about an estimate of the current mean and covari-

ance [26, Ch.13]. In the first stage, the local EKF–based

computing engine at each TRP does the AoA estimation and

tracking by rejecting outliers in AoA estimation. In the 2nd

stage, a global EKF–based computing engine at the edge

cloud performs fusion of AoA estimates from each TRP to

obtain the position estimate from noisy measurement at each

stage.

A. LOCAL EKF–BASED COMPUTING ENGINE AT TRP

Considering the azimuth angle (ϕ) as the parameter of interest

in the considered positioning scheme, it is enough to formu-

late the EKF such that it only tracks the AoA and ToA. For-

mulation of EKF with useful parameters, i.e., concentrating

out the nuisance parameters from the log–likelihood function

and leaving a concentrated log–likelihood function only as

a function of the parameters of interest, is computationally

efficient approach. In the course of tracking the azimuth

angle (ϕ) and ToA (τ ) using the EKF, a continuous white

noise acceleration (CWNA) model is employed for the state

evolution. Hence, the state–vector in the local computing

engine of the ith TRP at time–instant k , denoted by θ i
k
∈ R

4,

can be written as:

θ ik =
[

τ ik ϕik 1τ ik 1ϕik

]T
. (6)

Following the linear state evolutionmodel that stems from the

assumed CWNA model, the system evolves from state k −

1 to k with predicted state–vector (θ
i−
k

) and covariance of

state–vector estimate (ζ
i−
k

) respectively as:

θ
i−
k
= Fθ

i−
k−1

(7a)

ζ
i−
k
= Fζ

i−
k−1

FT + Q (7b)

where F ∈ R
4x4 denotes the state transition matrix and

Q ∈ R
4x4 denotes the state noise covariance matrix, which

are given by:

F =

[

I2 1tI2
02 I2

]

(8a)

Q =







σ 2
w1t3

3
I2

σ 2
w1t2

2
I2

σ 2
w1t2

2
I2 σ 2

w1t2I2.






(8b)

Here, 1t denotes the time–interval from state k − 1 to k and

σ 2
w ∈ R denotes the state noise variance, which is a design

parameter.

After performing channel estimation from PSP, the poste-

rior mean state–vector estimate (θ i
k
) and covariance estimate

(ζ i
k
) in the update step of the EKF are given as:

ζ ik =

(

(ζ i−k )−1 +4(θ i−k )

)−1

(9a)

θ ik = θ i−k + ζ ikυ(θ
i−
k ) (9b)

where 4(θ ik ) ∈ R
4x4 and υ(θ ik ) ∈ R

4x1 denote the observed

Fisher information matrix (FIM) and score–function of the

state evaluated at θ i−k , respectively. 4(θ ik ) and υ(θ ik ) are

found by employing the measurement model for the esti-

mated channel from the PSP in (2), and concentrating

the log–likelihood function with respect to (w.r.t) the path

weights as in [20]:

4(θ ik ) =
2

σ 2
w

ℜ

{

(

∂γ

∂θ i
k

)†
∂γ

∂θ i
k

}

(10a)

υ(θ ik ) =
2

σ 2
w

ℜ

{

(

∂γ

∂θ i
k

)†

γ

}

, (10b)

where γ is expressed as:

γ =
(

I − Bp(ϕ, τ )BC
p (ϕ, τ )

)

ĥ. (11)

Here, ℜ {} denotes real part of a complex quantity, super-

scripts † and + denote the conjugate transpose and

Moore–Penrose pseudo–inverse respectively. Initialization of

the EKF, i.e. initial state estimate (τ io, ϕio) is obtained by

employing the space–time conventional beamformer, which

is identical to the deterministic maximum likelihood estima-

tor (MLE) for a single propagation path as in [14] and [25].
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The initial covariance estimate (ζ io) can be found by eval-

uating the inverse of the observed FIM at (τ io, ϕio). Also,

the corresponding initial rate–of–change of these parameters

as well as the update of the corresponding covariance matrix

are carried out once two EKF estimates of the state have been

obtained. See Algorithm 1 for further detail on implementa-

tion of initial estimation and then tracking of τ and ϕ.

B. GLOBAL EKF–BASED POSITIONING ENGINE AT EDGE

CLOUD

An edge–cloud positioning engine with prior location infor-

mation of each TRP performs localization of a device by

fusing the AoA estimates from multiple TRPs. The initial

position estimate can be carried out by either a least–squares

(LS) or total least–squares (TLS) method. The EKF at the

edge–cloud tracks the 2D position (xk and yk ) and 2D velocity

vector (vxk and vyk ) of the user. Hence, the state–vector in the

edge computing engine at time–instant k , denoted by p ∈ R
4,

is given by:

pk =
[

xk yk vxk vyk
]T

. (12)

Assuming that the velocity of the UE is nearly constant

during the transition from state k − 1 to k , except only being

perturbed by small random changes, the CWNA model still

holds for state evolution, and thus the prior state estimate

(pk
−) as well as the covariance of state estimate (ζ−k ) in the

prediction step at the edge–cloud are:

pk
− = Fppk−1 (13a)

ζk
− = Fpζk−1Fp

T + Qp. (13b)

Here, the state transition matrix Fp ∈ R
4x4 and state noise

covariancematrixQp ∈ R
4x4 are similar to those in (8) except

that 1t now depends on how often positioning is done at the

edge cloud, and σ 2
w ∈ R is again a design parameter. The

posterior covariance estimate ζk and state estimate (pk) in the

global EKF engine is:

ζk =

(

(ζk
−)−1 + J(pk

−)

)−1

(14a)

pk = pk
− + ζkq(pk

−), (14b)

with FIM (J(pk)) and score–function (q(pk)) given as:

J(pk) =
2

σ 2
w

(

∂γ
p
k

∂pk

)†

(Pk)
−1

∂γ
p
k

∂pk
(15a)

q(pk) =
2

σ 2
w

(

∂γ
p
k

∂pk

)†

(Pk)
−1(mk − γ

p
k
). (15b)

Here, matrix Pk ∈ R
2×2 denotes the covariance of γ

p
k
∈ R

2

at time–instant k , which is given as:

Pk =

[

σ 2A

k 0

0 σ 2B

k

]

. (16)

Here, σ 2A

k ∈ R and σ 2B

k ∈ R denote the estimated variance

of the azimuth angle estimates, obtained from the local EKFs

at TRPs A and B, respectively. Moreover, mk = [ϕAk , ϕBk ]
T

denotes the measurement vector, also obtained from the local

EKFs from TRPA and TRPB. Finally, γ
p
k
∈ R

2 denotes the

measurement model vector, which is given as:

γ
p
k
=

[

arctan(
yUEk − yTRPA

xUEk − xTRPA
) arctan(

yUEk − yTRPB

xUEk − xTRPB
)

]T

.

(17)

Here, (xTRPA , yTRPA ) and (xTRPB , yTRPB ) denote the known

locations of TRPA and TRPB, respectively.

C. THEORETICAL PERFORMANCE BOUND ON ANGLE

ESTIMATION

It is important to know the limit on the accuracy of AoA

estimates. The accuracy of an estimator can be described

by comparing the estimate with ground truth or using the

variance of the estimates. Given the data model described

in Section II, the general deterministic Cramér–Rao lower

bound (CRLB) on the covariance matrix of any unbiased

estimator of θ is given as [27], [28]:

CRLBθ =
σ 2
w

2

{

ℜ
{

S†D†5⊥
A DS

}}−1
(18)

Here, 5⊥
A denotes the projection onto nullspace of A read as

5⊥A = I − A(A†A)−1A† where A is the beampattern of m

far–field narrow–band sources, and D is the partial derivative

of A w.r.t θ , both given as:

A = [Bp(ϕ1, τ1),Bp(ϕ2, τ2), . . . ,Bp(ϕm, τm)] (19a)

D = [B′
p1

,B′
p2

, . . . ,B′
pm
],B′

pm
=

∂Bpm

∂θm
. (19b)

Although the expression for the CRLB in (18) is explicit,

it is somewhat cumbersome. More insight can be obtained

by considering the utilized ULA with single user. The

asymptotic CRLB on the variance of AoA estimation for

two–dimensional single–path case having independent and

identically distributed (i.i.d.) circular Gaussian noise, expo-

nential model, and single path weight (with real and imagi-

nary components) is given as [25]:

CRLBϕ =
σ 2
w

|ξ |2
·

6λ2

(2πd)2sin2(ϕ)MT (N 2 − 1)
(20)

where MT denotes the total number of samples, given as

MT = NNf for one TTI realization. It is clear to see from (20)

that as the signal–to–noise ratio (SNR) term
(

|ξ |2

σ 2
w

)

increases,

the CRLB reduces. Besides, as the array size increases, one

can form a better estimate. Furthermore, the more samples

(MT ) we have, the better the estimate we can obtain. Finally,

the sin(ϕ) term represents the fact that as one scans off

broadside, the beamwidth increases, i.e., beam broadening

factor making AoA estimates much worse.
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FIGURE 2. Our testbed and measurement environment.

IV. TESTBED DESCRIPTION AND EXPERIMENTAL SETUP

A. DESCRIPTION OF UDN TESTBED

Our testbed comprises two TRPs, each composed of a

standard host computer and two Universal Software Radio

Peripherals (USRPs) X300 series with UBX–160 and SBX

RF–daughterboards as the radio front–end. This is shown

in Fig. 2 where ULAs of four elements are situated on lamp

posts, with inter–element spacing (d) equals half wavelength

(λ). The array response of each antenna element was mea-

sured in an anechoic chamber for all azimuth and elevation

angles and the EADF of these practical antenna array was

constructed from these measurements. The USRPs perform

conversion between baseband and RF signals operating at

a center frequency of 3.42 GHz. A license for using this

frequency in our campus area was obtained. The USRPs

are fed with a common external 10 MHz reference clock

and pulse per second (PPS) trigger. A separate transmitter,

transmitting known signal to each TRP, is also used as a

reference to measure the phase offset due to the clock drift.

The TRPs perform run time compensation by computing the

phase difference between RF chains, based on the received

reference signal from this separate transmitter.

The baseband inphase/quadrature (I/Q) samples are trans-

ported to and from the host computer over a 10G Ethernet

link. All baseband processing, a subset of physical layer

protocol implementation including initial synchronization of

UE, periodical tracking of UE’s synchronization w.r.t TRP

for sample and frame level alignment for TDD system, PSP

transmission from UE, and AoA estimation at TRP run as

software on an Ubuntu Linux–based desktop computer. Fur-

ther detail on the main software components of TRP can be

found in [29]. Utilized testbed’s air interface parameters and

setup information are summarized in Table 1.

B. EXPERIMENTAL SETUP

The baseline layout used to validate our work is shown

in Fig. 3. In this setup, TRPs are placed ISD meters apart

from each other on the lamp posts in a parking lot, and a

mobile UE is situated Y meters away from the axis joining

both TRPs. Our goal was to identify the range of azimuth

Algorithm 1: channel parameter estimation and tracking

1 Initialization of parameters

2 ϕgrid← [0, π] ⊲ initialize angle grid table

3 τgrid← [0, 1/fs] ⊲ initialize time delay grid table

4 G← EADF ⊲ load EADF and assign it to G

5 run TRPs ⊲ TRPs starts transmitting PSS

6 run UE ⊲ UE decodes PSS for synchronization

7 if UE synchronized then

8 UE starts tranmitting PSP ⊲ after synchronization

9 ĥ← PSP ⊲ TRPs perform channel estimate from

PSPs as in (2)

10 if TTI number == 1 then

11 ⊲ start of initial estimation of τ and ϕ

12 H ← reshape(ĥ,Nf ,N ) ⊲ reshape ĥNf N×1 to

HNf×N

13 av← H ∗ (Gv)
† and ah← H ∗ (Gh)

† ⊲ correlate

H with Gv and Gh
14 Av← reshape(av,Nf ,Ma,Me),

Ah←reshape(ah,Nf ,Ma,Me) ⊲ reshape av and

ah, whereMa and Me are the number of modes

15 Bh← |FFT2D{Ah}|
2, Bv← |FFT2D{Av}|

2 and

B← Bv + Bh ⊲ employ 2D IFFT on Av and Ah
and obtain B from Bv and Bh

16 (i∗, j∗)← argmax B(i, j) ⊲ find indices of matrix

B that result in maximum value

17 τ ← τgrid(i
∗), ϕ← ϕgrid(j

∗) ⊲ the delay and

AoA grid values corresponding to indices i∗, and

j∗ are the channel parameter estimates.

18 ⊲ end of initial estimate of τ and ϕ

19 else

20 ⊲ start of EKF–based tracking of τ and ϕ

21 Obtain θ
i−
k

using (7) ⊲ prediction step

22 Obtain θ i
k
using (9) ⊲ update step based on θ

i−
k

and measurement

23 τ ← θ i
k
(1) and ϕ← θ i

k
(2) ⊲ the delay and

AoA estimates

24 ⊲ end of EKF–based tracking of τ and ϕ

25 if TTI number == 2 then

26 1τ2←
τ2−τ1

1t
, 1ϕ2←

ϕ2−ϕ1
1t

⊲ Initial

rate–of–change parameters

27 (ζ2)33←
(ζ1)11+(ζ2)11

1t2
,

(ζ2)44←
(ζ1)22+(ζ2)22

1t2
⊲ update of

covariance matrix
28 end

29 else

30 go back to step 6 ⊲ UE keeps on trying

synchronization and no PSP transmission from UE
31 end

angles that allow us to achieve sub–meter positioning accu-

racy. In particular, the following cases were considered: 1)

ISD = 1.5 ∗ Y = 21.3 m, Y = 14.20 m 2) ISD = 1.2 ∗ Y =

17.5 m, Y = 14.58 m and 3) ISD = Y = 12.5 m. Each
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TABLE 1. Details of our testbed. Here, Y denotes the distance between
the axis in which both TRPs are deployed and the route taken by the UE;
See also Fig. 3.

of these cases have changing 2D geometry and the incident

angles as well. In all cases, the UE movement was taken

in discrete steps, from point 1 to point K , or vice–versa,

as shown in Fig. 3, where each point is 2.5 m away from

its neighbour point. The general movement model described

in (7) is valid for continuous movements. In our measurement

campaign, the UE was placed in each point and held fixed

until data is collected for 1000 TTIs. Then, the UEwasmoved

to another location. The EKF was re-initialized every time

the UE was re-located, and tracking was performed for each

location of the UE in an independent manner. For the sake of

generality, the EKF does not assume the UE to be static, and

therefore the rate of change of (ϕ, τ ) are also tracked.

V. MEASUREMENT RESULTS AND DISCUSSION

Performance results obtained from testbed measurements are

reported in this section. As described in (20), the performance

of an AoA estimator is dependent on SNR value. The average

FIGURE 3. Illustration of the measurement layout.

FIGURE 4. Measured average SNR at each TRP for each ISD vs Y cases.

measured SNR result per point, for all measurement cases

and TRPs, is as shown in Fig. 4. It is clear to see that the

average SNR value in each measurement point on both TRPs

is above 20 dB, which is good enough for AoA estimation.

Moreover, the corresponding CRLBϕ is computed using (20)

and compared with the measured sample variance of AoA

estimation as shown in Fig. 5, for the second TRP as an

illustrative example.

The first set of measurements was carried out for the case

of ISD = Y = 12.5 m, i.e. the maximum azimuth AoA,

when measured from boresight, was 45◦. Fig. 6 shows the

azimuth AoA estimate vs ground truth at each TRP using the

MLE. The MLE provides reasonable results only at certain

TTIs. Significant errors are observed for some TTIs due

to variation in clock between the UE and TRP as a result

of imperfections of the oscillators driving clocks. Although

the UE tracks its synchronization periodically every given
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FIGURE 5. CRLB vs measured variance of AoA using EKF–based estimate
for the case of ISD = Y = 12.5 m and MT = 1000 ∗ 4 ∗ 52 per each
measurement point.

FIGURE 6. AoA estimate at each TRP using MLE for the case of
ISD = Y = 12.5 m.

FIGURE 7. AoA estimate and tracking at each TRP using EKF for the case
of ISD = Y = 12.5 m.

number of TTIs to compensate the error due to imperfections

of clock, there exists temporal clock variation within that

periodic interval whichmay result in misaligned PSP samples

at TRP. Consequently, the channel estimate obtained from

suchmisaligned PSP samples results in AoA estimation error.

Fig. 7 shows the same case as Fig. 6, but by using the

EKF–based aproach instead of the MLE for estimation and

tracking of azimuth AoA. It can be seen that the momentary

outliers have been rejected effectively by filtering. Addition-

ally, the computational loadwhile utilizing EKF is small com-

pared to exhaustive search–based MLE approach. Therefore

the EKF–based results show that significant improvement can

be obtained in terms of performance for latency–constrained

services of 5G. Fig. 8 shows the corresponding position esti-

mate at the edge cloud using EKF–based AoA from TRPs for

the case of ISD = Y .

FIGURE 8. Position estimates at edge cloud using EKF–based AoAs from
TRPs for the case of ISD = Y = 12.5 m.

FIGURE 9. Position estimate using MLE–based AoA for the case of
ISD = 1.23 ∗ Y = 17.5 m.

The second set of measurements was carried out for the

case of ISD = 1.23 ∗ Y = 17.5 m. Fig. 9 and 10 show the

position estimates using MLE and EKF–based approaches

respectively for the said case. It is clear to see from Fig. 9

that the position estimate is highly influenced by the differ-

ence in the clocks running UE and TRP. On the other hand,
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FIGURE 10. Position estimate using EKF–based AoA for the case of
ISD = 1.23 ∗ Y = 17.5 m.

FIGURE 11. AoA estimate and tracking at each TRP using EKF for the case
of ISD = 1.5 ∗ Y = 21.3 m.

the position estimate in Fig. 10 has better accuracy around

the boresight of the array as a result of filtering and the

accuracy decreases as one scans off broadside due to the beam

broadening effect. The third set of measurements was carried

out for the case of ISD = 1.5 ∗ Y = 21.3 m, i.e., the azimuth

AoA ranges from 0◦ to 56◦. Fig. 11 show AoA estimates

FIGURE 12. CDF of 2D position error for the considered cases.

at each TRP using the EKF–based approach for the case of

ISD = 1.5 ∗ Y = 21.3 m. Similarly, the results show that

AoA estimation is poor at the end–fire of the array for both

TRPs, i.e. when the azimuth AoA is below 45◦.

Fig. 12 shows the cumulative distribution function (CDF)

of the positioning error for all three cases described earlier.

These results are helpful in identifying the usable range of

azimuth angles (i.e., ISD vs Y relation) of the described

testbed scenario for a pre–defined target accuracy. This ISD

vs Y relation shows the beamwidth. The result shows that

sub–meter positioning accuracy can be achieved in about

95% of the considered UE locations, for the ISD = Y case.

Therefore, sub–meter positioning accuracy can be achieved

by tackling the effect of beam broadening in the network

design. Effectively, the UDN network has to be designed

in such a way that the UE’s trajectory (e.g. road users on

highways) should fall in the usable azimuth angle range of

serving TRPs.

VI. CONCLUSION

This work has addressed experimentally achievable posi-

tioning accuracy of connected devices in a 5G UDN

using proof–of–concept user–centric positioning testbed.

The considered scheme consists of spatial parameters’ esti-

mation at multiple TRPs and subsequent position estima-

tion at an edge–cloud using the well–known EKF–based

approach. This work also contributes to the body of knowl-

edge by addressing practical impairments faced in imple-

mentation. Specifically, the practical limitations include

non–uniformity in radiation pattern among the antenna ele-

ments in the array and non–identical characteristics of RF

front–ends, antenna feed cables, connector and other RF

components. All these impairments have significant effect on

the relative phase of signals among received streams, which

is the basis for AoA–based positioning approach. To tackle

these problems, three step calibration techniques have been

implemented in this paper. The first step is aimed at solv-

ing time–varying phase–offset problem due to clock drifts.

A separate transmitter sends reference signals and then TRPs

perform run time compensation by computing the phase dif-

ference between RF chains. Second step mitigates the phase

offset as a result of non–identical antenna feed cables, con-

nectors and other RF components. This is achieved by per-

forming phase measurement of each component via VNA and

accounting for the offset. Third step is aimed at taking into

account individual practical antenna element gain and phase

characteristics, effect of mutual coupling, cross–polarization

and mounting platform reflections. This is achieved by aug-

menting the theoretical beampattern with EADF which is

constructed from the measured antenna response in anechoic

chamber.

The results obtained from extensive measurements with

our testbed demonstrate that sub–meter 2D positioning accu-

racy of devices can be achieved with high probability (95%)

in realistic UDN scenarios by employing ULAs with at least

four antennas per TRP and properly designing the UDN.
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Future work will focus on extending the air–interface to a

5G NR standard compliant one and also incorporating data

obtained from multiple sensor measurements in order to fur-

ther improve accuracy of position information.
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