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Abstract

In the literature, coefficient of variation control charts have been introduced
under the assumption of no measurement errors. However, measurement errors
always exist in practice and they do affect the performance of control charts in
the detection of an out of control situation. In this paper, we therefore study the
performance of a coefficient of variation Shewhart type control chart (Shewhart-
CV chart) and also one-sided coefficient of variation EWMA type control charts
(EWMA-γ2 charts) using a model with linear covariates. Moreover, we propose and
study the performance of a two-sided EWMA-γ2 chart using a model with linear
covariates. Several figures and tables are provided and analyzed to evaluate the
statistical performance of these control charts for different sources of measurement
errors. The obtained results show that the precision and accuracy errors significantly
affect the performance of both the Shewhart-CV and EWMA-γ2 control charts. An
example illustrating the use of this study is finally presented.

Keywords: Measurement Errors; Coefficient of Variation; Textile manufacturing;
Shewhart Control Chart; EWMA Control Charts; Markov chain.

1 Introduction

Statistical Process Control (SPC) is an important methodology in quality control. Con-
trol charts, the simplest type of on-line SPC procedure, are very useful tools for the
detection and elimination of assignable causes shifting a process that is being moni-
tored. In the SPC literature, Shewhart-type control chart for monitoring the coefficient
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of variation (CV), which is defined as the ratio of the population standard deviation
to the population mean, has already been investigated by Kang et al. 1 ; subsequently,
several control charts have been developed in the literature for monitoring the coeffi-
cient of variation. For further details, see, for instance, Castagliola et al. 2 , Calzada and
Scariano 3 , Castagliola et al. 4 , Castagliola et al. 5 , Zhang et al. 6 , Castagliola et al. 7 ,
Castagliola et al. 8 , Amdouni et al. 9 , You et al. 10 and Tran and Tran 11 , among others.
For example, in textile manufacturing industry, the variation among tensile strength
measurements from thin thread is significantly smaller than measurements taken from
heavy thread due to the inherent physical properties of fiber. In this scenario, CV con-
trol charts are useful tools to monitor the process.

It is important to note that the control charts cited above for monitoring the CV
are designed under the assumption that the measurements on the characteristic are
made without error. However, in many industrial scenarios, there often exist significant
measurement errors that affect the performance of control charts. Since Bennet 12 inves-
tigated the effect of measurement errors on the Shewhart X̄ chart, the consequences of
the measurement errors on the performance of various control charts have been studied
by a number of authors, including Kanazuka 13 , Linna and Woodall 14 , Linna et al. 15 ,
Maravelakis 16 , Costa and Castagliola 17 , Maravelakis 18 , Hu et al. 19 , Noorossana and
Zerehsaz 20 , Tran et al. 21 , Tran et al. 22 and Tran 23 .

Quite recently, Yeong et al. 24 investigated the effect of measurement errors on the
one-sided CV charts. However, they have assumed that the ratios σM/σ and A/µ, which
will be detailed in Section 3, are constants. This assumption may not be true in practice
because when the process is out-of-control, these values do get changed. This study
is designed to address the performance of the Shewhart-CV control chart proposed by
Kang et al. 1 and the one-sided EWMA-γ2 control charts proposed by Castagliola et al. 2

in the presence of measurement errors by assuming the same measurement errors model
as the one in Linna and Woodall 14 . In addition, we propose and study the performance
of two-sided EWMA-γ2 chart in the presence of measurement errors. We also take into
account the changes of these ratios when investigating the performance of Shewhart-CV
and one-sided EWMA-γ2 control charts. The organization of the rest of this article is as
follows: In Section 2, the coefficient of variation distribution is introduced. In Section 3,
the linear covariate error model for the coefficient of variation is introduced. Section 4
provides the formulas for the control limits and the performance metrics of the Shewhart-
CV control chart. In Section 5, the effect of measurement errors on the performance of
Shewhart-CV control chart is investigated. Section 6 provides the formulas of the control
limits and the performance metrics of the one-sided and two-sided EWMA-γ2 control
charts. In Section 7, the effect of measurement errors on the performance of the one-
sided and the two-sided EWMA-γ2 control charts are investigated. Section 8 presents an
example to illustrate the methods developed here, and finally some concluding remarks
and recommendations are made in Section 9.
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2 A brief review of distribution of the sample coefficient
of variation

The goal of this section is to present a brief review of the distribution of the sample
coefficient of variation (CV). The population CV γ is defined as the ratio of the standard
deviation σ = σ(X) to the mean µ = E(X); i.e.,

γ =
σ

µ
.

Suppose we have a random sample of size n of normal i.i.d. (µ, σ) random variables
{X1, . . . , Xn}. Let X̄ and S be the sample mean and the sample standard deviation of
this sample, i.e.,

X̄ =
1

n

n∑
i=1

Xi

and

S =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2.

Based on X̄ and S, the sample coefficient of variation γ̂ is defined as (Castagliola
et al. 2)

γ̂ =
S

X̄
.

It is important to note that the probability distribution of the sample CV γ̂ has been
studied in the literature by many authors; for further details, see McKay 25 , Hendricks
and Robey 26 , Iglewicz et al. 27 , Iglewicz and Myers 28 , Warren 29 , Vangel 30 and Reh and
Scheffler 31 . Among these authors, Castagliola et al. 2 showed that the c.d.f. (cumulative
distribution function) Fγ̂(x|n, γ) of γ̂ is

Fγ̂(x|n, γ) = 1− Ft
(√

n

x

∣∣∣∣n− 1,

√
n

γ

)
, (1)

where Ft

(
.
∣∣∣n− 1,

√
n
γ

)
is the c.d.f. of the noncentral t distribution with n − 1 de-

grees of freedom and noncentrality parameter
√
n
γ . With some manipulations, inverting

Fγ̂(x|n, γ) gives the inverse c.d.f. F−1
γ̂ (α|n, γ) of γ̂ as (Castagliola et al. 2)

F−1
γ̂ (α|n, γ) =

√
n

F−1
t

(
1− α

∣∣∣n− 1,
√
n
γ

) , (2)

where F−1
t

(
.
∣∣∣n− 1,

√
n
γ

)
is the inverse c.d.f. of the noncentral t distribution.
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Moreover, Castagliola et al. 2 showed that n
γ̂2

follows a noncentral F distribution with

(1, n − 1) degrees of freedom and noncentrality parameter n
γ2

. Then, they deduced the

c.d.f. Fγ̂2(x|n, γ) of γ̂2 to be

Fγ̂2(x|n, γ) = 1− FF
(
n

x

∣∣∣ 1, n− 1,
n

γ2

)
, (3)

where FF

(
.
∣∣∣1, n− 1, n

γ2

)
is the c.d.f. of the noncentral F distribution. Castagliola

et al. 2 showed that the inverse c.d.f. F−1
γ̂2

(α|n, γ) of γ̂2 can be obtained as

F−1
γ̂2

(α|n, γ) =
n

F−1
F

(
1− α

∣∣∣1, n− 1, n
γ2

) , (4)

where F−1
F

(
.
∣∣∣1, n− 1, n

γ2

)
is the inverse c.d.f. of the noncentral F distribution.

3 Linear covariate error model for the coefficient of varia-
tion

In this section, the linear covariate error model for the sample CV is introduced. Let
us assume that, at times i = 1, 2, . . ., the quality characteristic X of n > 1 consecutive
items is equal to {Xi,1, Xi,2, . . . , Xi,n}. We assume that Xi,j ’s are independent normal
(µ0 + aσ0, bσ0) random variables, where µ0 and σ0 are the nominal mean and standard
deviation, respectively, both assumed known, while a and b are the standardized mean
and standardized deviation shifts. The process has shifted if the process mean µ0 and/or
the process standard deviation σ0 have changed (a 6= 0 and/or b 6= 1). As suggested by
Linna and Woodall 14 , let us assume that the true quality characteristic Xi,j with mean
µ0 and variance σ2

0 (when the process is in statistical control) is not directly observable,
but can only be assessed from the results {X∗i,j,1, X∗i,j,2, . . . , X∗i,j,m} of a set of m ≥ 1
measurement operations with each X∗i,j,k being equal to (linear covariate error model)

X∗i,j,k = A+BXi,j + εi,j,k,

where A and B are two known constants and εi,j,k is a normal (0, σM ) random error
term due to the measurement inaccuracy, which is independent of Xi,j . The smaller σM
is, the higher the precision is. The constants A and B for linear covariate error model
can be estimated by using nonparametric estimation; see Li and Vuong 32 .

For subgroup i = 1, 2, . . ., as j = 1, 2, . . . , n and k = 1, 2, . . . ,m, we have m× n ob-
servations X∗i,j,k and the mean X̄∗i,j of the observable quantities {X∗i,j,1, X∗i,j,2, . . . , X∗i,j,m}
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is equal to

X̄∗i,j =
1

m

m∑
k=1

X∗i,j,k

=
1

m

m∑
k=1

(A+BXi,j + εi,j,k)

= A+BXi,j +
1

m

m∑
k=1

εi,j,k. (5)

It can then be easily shown that the mean µ∗ = E(X̄∗i,j) and the standard deviation

σ∗ = σ(X̄∗i,j) of X̄∗i,j are equal to

µ∗ = A+B(µ0 + aσ0), (6)

σ∗ =

√
B2b2σ2

0 +
σ2
M

m
. (7)

The coefficient of variation of the measured quantity X̄∗i,j is then

γ∗ =
σ∗

µ∗
=

√
B2b2σ2

0 +
σ2
M
m

A+B(µ0 + aσ0)
. (8)

Let η = σM
σ0

be the square root of the ratio of the measurement system variability. If

we set γ0 = σ0
µ0

and θ = A
µ0

, the coefficient of variation of the measured quantity X̄∗i,j in
(8) can be rewritten as

γ∗ =
σ∗

µ∗
=

√
B2b2 + η2

m

θ +B(1 + aγ0)
× γ0. (9)

Let ¯̄X∗i and S∗i be the sample mean and the sample standard deviation of X̄∗1,j , . . . , X̄
∗
n,j ,

i.e.,

¯̄X∗i =
1

n

n∑
j=1

X̄∗i,j

and

S∗i =

√√√√ 1

n− 1

n∑
j=1

(X̄∗i,j −
¯̄X∗j )2.

Then, the sample coefficient of variation γ̂∗i is defined as

γ̂∗i =
S∗i
¯̄X∗i
.

The c.d.f. and i.d.f. of γ̂∗ can be obtained from (1) and (2) by simply replacing γ by
γ∗ as defined in (9), i.e., the c.d.f. Fγ∗(x|n, γ∗) and i.d.f. F−1

γ∗ (α|n, γ∗) of γ̂∗ are given
by
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Fγ∗(x|n, γ∗) = 1− Ft
(√

n

x

∣∣∣∣n− 1,

√
n

γ∗

)
(10)

and

F−1
γ∗ (α|n, γ∗) =

√
n

F−1
t

(
1− α

∣∣∣n− 1,
√
n
γ∗

) (11)

Similarly, the c.d.f. and i.d.f. of γ̂∗2 can be obtained from (3) and (4) by simply
replacing γ by γ∗ as defined in (9), i.e., the c.d.f. Fγ∗2(x|n, γ∗) and i.d.f. F−1

γ∗2
(α|n, γ∗)

of γ̂∗2 are given by

Fγ∗2(x|n, γ∗) = 1− FF
(
n

x

∣∣∣∣1, n− 1,
n

γ∗2

)
(12)

and

F−1
γ∗2

(α|n, γ∗) =
n

F−1
F

(
1− α

∣∣∣1, n− 1, n
γ∗2

) . (13)

4 Implementation of the Shewhart-CV control chart with
measurement errors

The control limits of Shewhart-CV control chart in the presence of measurement errors
are defined as

LCL = F−1
γ∗
(
α0
2 |n, γ

∗
0

)
, (14)

UCL = F−1
γ∗
(
1− α0

2 |n, γ
∗
0

)
, (15)

where F−1
γ∗ (.) is the inverse c.d.f. of γ̂∗ defined in (11) and α is the desired false alarm

probability for the control chart. In (14) and (15), the value of γ∗0 is computed as

γ∗0 =
σ∗

µ∗
=

√
B2 + η2

m

B + θ
× γ0, (16)

where γ0 is the in-control CV.

The central line CL of the Shewhart-CV chart can be defined as the median value,
i.e.,

CL = F−1
γ̂∗

(0.5|n, γ∗0) . (17)

Now, let us assume that the occurrence of an out-of-control condition shifts the in-
control CV γ0 to γ1 = τ × γ0, where τ > 0 is the size of the shift. Then, it can be easily
shown that

γ1 =
b

1 + aγ0
= τ × γ0,
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or
b

τ
= 1 + aγ0. (18)

From (18) and (9), the out-of-control coefficient of variation of the measured quantity
X̄∗i,j can be rewritten as

γ∗1 =
σ∗

µ∗
=

√
B2b2 + η2

m

θ + Bb
τ

× γ0. (19)

As with any other Shewhart control chart, the run length of the Shewhart-CV control
chart with measurement errors is defined as

β = Fγ̂∗(UCL|n, γ∗1)− Fγ̂(LCL|n, γ∗1). (20)

It is straightforward to get an expression for the out-of-control ARL as

ARL =
1

1− β
. (21)

5 The effect of measurement errors on the Shewhart-CV
control chart

In this Section, we investigate the performance of the Shewhart-CV control chart in the
presence of measurement errors. When the process is in-control, the ARL is denoted
by ARL0 and here we set α = 0.0027 corresponding to ARL0 = 370.4. Without loss of
generality, we assume in the remaining part of this section that b = 1. From Section
4, for fixed values of m, n, B and η, we can obtain the ARL and SDRL values of the
Shewhart-CV chart with linear covariate error model.

Table 1 shows the values of the probability control limits (LCL,UCL) for the values
of n ∈ {5, 7, 10, 15}, η ∈ {0.1, 0.28}, θ ∈ {0.01, 0.05}, γ0 ∈ {0.05, 0.1, 0.15, 0.2}, B = 1,
m = 1 and ARL0 = 370.4. The specific value of η = 0.28 is motivated by assuming an
acceptable value for the signal-to-noise ratio

SNR =

√√√√ 2
1+η2

1− 1
1+η2

=

√
2

η
, (22)

which is a measure of performance of the precision adequacy of the measurement system;
see Montgomery 33 . As discussed in Tran et al. 21 , assuming η = 0.28 corresponds to
SNR = 5, which is the lower bound value to get an acceptable precision of the mea-
surement system.

INSERT TABLE 1 ABOUT HERE
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Some simple conclusions can be drawn from Table 1 as follows:

• In general, given n, B and γ0, the values of LCL and UCL depend on (η, θ). In
particular, for smaller values of (η, θ), the values of LCL and UCL are smaller.
For example, when n = 5, B = 1 and γ0 = 0.05, we have LCL = 0.0081 and
UCL = 0.1053 when (η, θ) = (0.10, 0.01), and LCL = 0.0080 and UCL = 0.1047
when (η, θ) = (0.28, 0.05);

• In general, given n, γ0, η and θ, the values of LCL and UCL depend on B. In
particular, for smaller B, the values of LCL and UCL are smaller. For example,
when n = 5, γ0 = 0.1 and (η, θ) = (0.10, 0.01), we have LCL = 0.0161 and
UCL = 0.2130 when B = 1, and LCL = 0.0162 and UCL = 0.2137 when B = 5.

Table 2 shows the out-of-control ARL1 values for the Shewhart-CV for different com-
binations of the precision error ratio η ∈ {0, 0.1, 0.2, 0.3, 0.5, 1.0}, γ0 ∈ {0.05, 0.1, 0.2},
τ ∈ {0.5, 0.65, 0.8, 1.25, 1.5, 2} and n ∈ {5, 7, 10, 15} when m = 1, θ = 0.05 and B = 1.

INSERT TABLE 2 ABOUT HERE

The obtained results show that, for fixed values of n, η, γ0, m = 1 and B = 1, the
smaller the precision error ratio η is, the faster the control chart is in detecting the
out-of-control condition, demonstrating the negative effect of measurement errors on the
performance of Shewhart-CV chart. However, when η ≤ 0.3, the values of ARL in the
presence of a precision error are not significantly larger than the value of ARL without
the measurement error. For instance, when n = 5, B = 1, m = 1, γ0 = 0.05 and τ = 0.7,
we have ARL = 148.13 for η = 0 and ARL = 148.15 for η = 0.3 (see Table 2). So, we
can conclude that the precision error does not significantly affect the performance of the
Shewhart-CV control chart with a normal measurement system.

Table 3 shows the out-of-control ARL1 values for the Shewhart-CV for different com-
binations of the precision error ratio θ ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05}, γ0 ∈ {0.05, 0.1, 0.2},
τ ∈ {0.5, 0.65, 0.8, 1.25, 1.5, 2} and n ∈ {5, 7, 10, 15} when m = 1, η = 0.28 and B = 1.

INSERT TABLE 3 ABOUT HERE

The obtained results show that, for fixed values of n, τ , γ0, m = 1 and B = 1,
the performance of the Shewhart-CV control chart is influenced by the accuracy error,
measured by θ. In most cases, the larger the values of θ, the faster the control charts are
in detecting the out-of-control condition. For instance, when n = 7, γ0 = 0.1, B = 1,
m = 1 and τ = 0.7, we have ARL = 69.93 for θ = 0, and ARL = 76.32 for θ = 0.05
(see Table 3). We can thus conclude that the accuracy error significantly affects the
performance of the Shewhart-CV control chart for the usual levels of accuracy errors
provided by calibrated gauges.
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INSERT TABLE 4 ABOUT HERE

Table 4 shows the performances of Shewhart-CV chart under linear covariate error
model for different combinations of B ∈ {1, 2, 3, 4, 5}, τ ∈ {0.5, 0.65, 0.8, 1.25, 1.5, 2},
γ0 ∈ {0.05, 0.1, 0.2} and n ∈ {5, 7, 10, 15} when m = 1 and η = 0.28, θ = 0.05. It can be
noted from Table 4 that, for fixed values of n, τ , η, θ and m, the value of B significantly
affects the performance of the Shewhart-CV control chart. For instance, when n = 5,
η = 0.28, θ = 0.05, γ0 = 0.1, m = 1 and τ = 0.7, we have ARL = 148.9 for B = 1, and
ARL = 141.5 for B = 5 (see Table 4).

As discussed in Linna and Woodall 14 , it is better to take multiple measurements
per item in each sample to compensate for the effect of measurement errors. The per-
formance of the Shewhart-CV chart under linear covariate error model is shown in Ta-
ble 5 for different combinations of m ∈ {1, 3, 5, 7, 10}, τ ∈ {0.5, 0.65, 0.8, 1.25, 1.5, 2},
γ0 ∈ {0.05, 0.1, 0.2} and n ∈ {3, 5, 7, 9} when B = 1 and η = 0.28. For fixed values of
n, τ , B and η, as the number m of measurements per item increases, the value of ARL
decreases, demonstrating the positive effect of the number of repeated measurements m
per item on the performance of the Shewhart-CV chart. For instance, when n = 10,
η = 0.28 and τ = 0.7, γ0 = 0.1, we have ARL = 34.14 for m = 1, and ARL = 31.21 for
m = 5 (see Table 5).

INSERT TABLE 5 ABOUT HERE

6 Implementation of the EWMA-γ2 control charts with
measurement errors

In this Section, we propose a two-sided EWMA control chart for monitoring γ̂2 (denoted
as two-sided EWMA-γ2) with measurement errors. We also study the performance of
one-sided EWMA-γ2 control charts proposed by Castagliola et al. 2 in the presence of
measurement errors. The two-sided EWMA-γ2 control chart is useful when the direction
of the shift is not known in advance or when the detection of upward and downward
shifts is of equal importance. It is important to note that there are no closed-form
expressions for µ0(γ̂∗2) and σ0(γ̂∗2); see Castagliola et al. 2 for more details. In this case,
Breunig 34 provided accurate approximations as

µ0(γ̂∗2) = γ∗20

(
1− 3γ∗20

n

)
, (23)

σ0(γ̂∗2) =

√
γ∗40

(
2

n− 1
+ γ∗20

(
4

n
+

20

n(n− 1)
+

75γ∗20
n2

))
− (µ0(γ̂∗2)− γ∗20 )2, (24)

where γ∗0 is as defined in (9).
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The two-sided EWMA-γ2 is defined as

S∗i = (1− λ)S∗i−1 + λγ̂∗2i ,

with S∗0 = µ0(γ̂∗2) as an initial value. The control limits of a two-sided EWMA control
chart in the presence of measurement errors are defined as

LCLEWMA−γ2 = µ0(γ̂∗2)−K
√

λ

2− λ
σ0(γ̂∗2), (25)

UCLEWMA−γ2 = µ0(γ̂∗2) +K

√
λ

2− λ
σ0(γ̂∗2),

where K > 0 comes from solving ARL(γ∗0 , λ, n,m,B, η,K) = ARL0 and λ is the smooth-
ing constant of the two-sided EWMA-γ2 chart.

In order to detect shifts on a specific direction, one-sided schemes are more effective
than two-sided ones (see also Castagliola et al. 2). According to Castagliola et al. 2 , the
following two separate one-sided EWMA charts in the presence of measurement errors
may be used:

• an upward EWMA chart (denoted as“upward EWMA-γ2”) is given by

Z∗+i = max(µ0(γ̂∗2), (1− λ+)Z∗+i−1 + λ+γ̂∗2i ),

with Z∗+0 = µ0(γ̂∗2) as an initial value and with the corresponding upper control
limit

UCLEWMA−γ2 = µ0(γ̂∗2) +K+

√
λ+

2− λ+
σ0(γ̂∗2); (26)

• a downward EWMA chart (denoted as “downward EWMA-γ2”) is given by

Z∗−i = min(µ0(γ̂∗2), (1− λ−)Z∗−i−1 + λ−γ̂∗2i ),

with Z∗−0 = µ0(γ̂∗2) as an initial value and with the corresponding lower control
limit

LCLEWMA−γ2 = µ0(γ̂∗2)−K−
√

λ−

2− λ−
σ0(γ̂∗2), (27)

where µ0(γ̂∗2) and σ0(γ̂∗2) are the mean and standard deviation of γ̂2 when the process is
in-control, and λ+ (λ−) and K+ (K−) are the smoothing constant and chart coefficient
of the upward (downward) EWMA-γ2 chart.

Once the control chart parameters (in our case, λ− or λ+ and K− or K+ for the
one-sided EWMA-γ2 control charts; and λ and K for the two-sided EWMA-γ2 control
chart), are defined, the ARL can be numerically evaluated for particular shifts a and b,
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from an in-control value γ∗0 to an out-of-control value γ∗1 . Here, to calculate the ARL of
one-sided and two-sided EWMA-γ2 control charts, we use a Markov-chain approxima-
tion based on a flexible and relatively easy to use procedure given in Castagliola et al. 2 ,
originally proposed by Brook and Evans 35 ; see Castagliola et al. 2 for more details.

As in Castagliola et al. 2 , the design procedure of one-sided EWMA-γ2 charts is
implemented by determining the optimal combinations (λ+∗,K+∗) or (λ−∗,K−∗) for
particular shifts a and b, such that

• for upward EWMA-γ2 chart

(λ+∗,K+∗) = argmin
(λ+,K+)

ARL(γ∗0 , γ
∗
1 , λ

+,K+, n,m,B, η),

subject to the constraint

ARL(γ∗0 , λ
∗,K+∗, n,m,B, η) = ARL0,

• for downward EWMA-γ2 chart

(λ−∗,K−∗) = argmin
(λ−,K−)

ARL(γ∗0 , γ
∗
1 , λ
−,K−, n,m,B, η),

subject to the constraint

ARL(γ∗0 , λ
−∗,K−∗, n,m,B, η) = ARL0.

Similarly, the design procedure of two-sided EWMA-γ2 chart is implemented by
determining the optimal combination (λ∗,K∗) for particular shifts a and b, such that

(λ∗,K∗) = argmin
(λ,K)

ARL(γ∗0 , γ
∗
1 , λ,K, n,m,B, η),

subject to the constraint

ARL(γ∗0 , λ
∗,K∗, n,m,B, η) = ARL0.

In this study, we use a non-linear equation solver along with an optimization achieved
through an algorithm developed in Scicoslab software; see Tran and Tran 11 for more
details.

7 The effect of measurement errors on the EWMA-γ2 con-
trol charts

In this Section, we investigate the performance of the proposed two-sided EWMA-γ2

and the EWMA-γ2 control charts proposed by Castagliola et al. 2 in the presence of
measurement errors. When the process is in-control, we set ARL0 = 370.4. Without
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loss of generality, we assume in the remaining part of this section that b = 1. From
Section 4, for fixed values of m, n, B, λ ,K, a and η, we can obtain the ARL and SDRL
values of the proposed two-sided EWMA-γ2 and the one-sided EWMA-γ2 control charts.

Table 6 shows optimal values λ∗ and K∗ of two-sided EWMA-γ2 control charts in
the presence of measurement errors for the values of n ∈ {5, 7, 10, 15}, η ∈ {0.1, 0.28},
θ = 0.0.05, γ0 ∈ {0.05, 0.1, 0.2}, B = 1, m = 1 and ARL0 = 370.4. For the sake of
brevity, similar tables showing optimal values λ∗ and K∗ of two-sided EWMA-γ2 con-
trol charts for other scenarios are not presented here, but are available upon request
from the authors. For example, when n = 5, B = 1, γ0 = 0.05, τ = 0.8 and η = 0.2, we
have λ∗ = 0.0302, K∗ = 2.2973 when γ0 = 0.05, and λ∗ = 0.0274, K∗ = 2.2738 when
γ0 = 0.1. In this case, Table 7 shows the out-of-control ARL1 values for the two-sided
EWMA-γ2.

INSERT TABLE 6 ABOUT HERE

INSERT TABLE 7 ABOUT HERE

The obtained results show that the performance of two-sided EWMA-γ2 control
chart is influenced by the values of η with a similar behaviour as for the Shewhart-CV
control chart discussed earlier. In most cases, the two-sided EWMA-γ2 control chart
outperforms the Shewhart-CV chart. For example, when n = 5, B = 1, γ0 = 0.05,
τ = 0.8 and θ = 0.01, γ0 = 0.05 and η = 0.2, we have ARL1 = 319.60 for Shewhart-
CV chart and ARL1 = 28.08 for two-sided EWMA-γ2 control chart (see Tables 2 and 7).

Table 3 shows the out-of-control ARL1 values for the two-sided EWMA-γ2 for
different combinations of the precision error ratio θ ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05},
γ0 ∈ {0.05, 0.1, 0.2}, τ ∈ {0.5, 0.65, 0.8, 1.25, 1.5, 2} and n ∈ {5, 7, 10, 15} when m = 1,
η = 0.28 and B = 1.

INSERT TABLE 8 ABOUT HERE

The obtained results show that the performance of the two-sided EWMA-γ2 control
chart is influenced by the values of θ with a similar behaviour as for the Shewhart-CV
control chart discussed earlier. In most cases, the two-sided EWMA-γ2 control chart
outperforms the Shewhart-CV chart. For example, when n = 5, B = 1, γ0 = 0.05,
τ = 0.8, η = 0.28, γ0 = 0.05 and θ = 0.02, we have ARL1 = 312.97 for Shewhart-CV
chart and ARL1 = 27.32 for two-sided EWMA-γ2 control chart (see Tables 3 and 8).

INSERT TABLE 9 ABOUT HERE

Table 9 shows the performances of the two-sided EWMA-γ2 chart under linear covari-
ate error model for different combinations ofB ∈ {1, 2, 3, 4, 5}, τ ∈ {0.5, 0.65, 0.8, 1.25, 1.5, 2},
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γ0 ∈ {0.05, 0.1, 0.2} and n ∈ {5, 7, 10, 15} when m = 1 and η = 0.28, θ = 0.05. It can
be noted from Table 9 that the performance of the two-sided EWMA-γ2 control chart is
influenced by the values of B with a similar behaviour as for the Shewhart-CV control
chart discussed earlier. Moreover, in most cases, the two-sided EWMA-γ2 control chart
outperforms the Shewhart-CV chart. For example, when n = 5, γ0 = 0.05, τ = 0.8,
η = 0.28, γ0 = 0.05, θ = 0.01, B = 2, we have ARL1 = 314.07 for Shewhart-CV chart
and ARL1 = 27.43 for two-sided EWMA-γ2 control chart (see Tables 4 and 9).

The performance of the two-sided EWMA-γ2 chart under linear covariate error
model is shown in Table 10 for different combinations of m ∈ {1, 3, 5, 7, 10}, τ ∈
{0.5, 0.65, 0.8, 1.25, 1.5, 2}, γ0 ∈ {0.05, 0.1, 0.2} and n ∈ {3, 5, 7, 9} when B = 1 and
η = 0.28. For fixed values of n, τ , B and η, as the number m of measurements per
item increases, the value of ARL decreases, demonstrating the positive effect of the
number of repeated measurements m per item on the performance of the two-sided
EWMA-γ2 chart with similar behaviour as for the Shewhart-CV control chart discussed
earlier. Moreover, in most cases, the two-sided EWMA-γ2 control chart outperforms the
Shewhart-CV chart. For instance, when n = 5, η = 0.28, θ = 0.01, τ = 0.8, m = 5
and γ0 = 0.05, we have ARL1 = 319.59 for Shewhart-CV chart and ARL1 = 27.43 for
two-sided EWMA-γ2 control chart (see Tables 5 and 10).

INSERT TABLE 10 ABOUT HERE

Similar tables showing the effect of measurement errors for the one-sided EWMA-γ2

charts are not presented here, but are available upon request from the authors. The
performance of one-sided EWMA-γ2 control charts is influenced by measurement errors
with a similar behaviour as for the Shewhart-CV and two-sided EWMA-γ2 control charts
discussed earlier. But, in general, quality practitioners often have an interest in detecting
a range of shifts Ω = [a, b], but with no preference for any particular size of the process
shift (for instance, see Chen and Chen 36 and Celano et al. 37). In this case, the statistical
performance of the corresponding chart can be evaluated through the EARL (Expected
Average Run Length) defined as

EARL =

∫
Ω
ARL× fτ (τ)dτ. (28)

with fτ (τ) = 1
b−a for τ ∈ Ω = [a, b] and ARL is as defined in (21). In the following

section, we will consider two different ranges of shifts: ΩD = [0.9, 1) corresponding to a
decreasing case for τ and ΩI = [1, 1.1) corresponding to an increasing case for τ .

In this case, we find unique optimal couples (λ−∗,K−∗) and (λ+∗,K+∗) of the one-
sided EWMA-γ2 charts such that

(λ∗,K∗) = argmin
(λ,K)

EARL(γ∗0 , γ
∗
1 , λ,K, n,m,B, η),
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subject to the constraint

EARL(γ∗0 , λ,K, n) = ARL(γ∗0 , λ,K, n,m,B, η) = ARL0,

The optimal design parameters for the one-sided EWMA-γ2 charts in the presence
of measurement errors is presented in Table 11. For example, when n = 5, B = 1 and
γ0 = 0.05, we have λ∗ = 0.0501 and K∗ = 2.1425 for the downward EWMA-γ2 when
(η, θ) = (0.10, 0.01).

INSERT TABLE 11 ABOUT HERE

Here, in order to evaluate the overall performance of the one-sided EWMA-γ2 charts
with linear covariate error model, we will use EARL values. In the following section, we
will consider the specific range of shifts Ω = [0.5, 1) (decreasing case, denoted by ΩD)
and Ω = (1, 2] (increasing case, denoted by ΩI).

The values of EARL of EWMA-γ2 control charts are plotted in Figure 1 for η ∈ [0, 1],
θ ∈ [0, 0.05], ΩD = [0.5, 1) and ΩI = (1, 2], n ∈ {5, 15}, m = 1 and B = 1.

INSERT FIGURE 1 ABOUT HERE

The obtained results show that, for fixed values of n, γ0, m = 1 and B = 1, the smaller
the precision error ratio η and the accuracy error θ are, the faster the control chart is in
detecting the out-of-control condition, demonstrating the negative effect of measurement
errors on the performance of one-sided EWMA-γ2 chart. However, when η ≤ 0.3 and
θ ≤ 0.0115, the values of EARL in the presence of a precision error are not significantly
larger than the value of EARL without measurement error. For instance, when n = 5,
B = 1, m = 1, γ0 = 0.05, we have EARL = 36.3 for η = 0, θ = 0, and ARL = 36.7
for η = 0.3, θ = 0.01 for the downward EWMA-γ2 (see Figure 1). So, we can conclude
that the precision error does not significantly affect the performance of the one-sided
EWMA-γ2 control charts with a normal measurement system. But, the accuracy error
significantly affects the performance of the one-sided EWMA-γ2 control charts for the
usual levels of accuracy errors provided by calibrated gauges. For instance, when n = 5,
B = 1, m = 1, γ0 = 0.05, we have EARL = 36.3 for η = 0 and θ = 0, and ARL = 38.2
for η = 0 and θ = 0.05 for the downward EWMA-γ2 (see Figure 1).

The values of EARL of the one-sided EWMA-γ2 control charts are plotted in Fig-
ure 2 for η = 0.28, θ = 0.05, ΩD = [0.5, 1) and ΩI = (1, 2], n ∈ {3, 5, 7, 9}, m = 1 and
B ∈ [1, 5].

INSERT FIGURE 2 ABOUT HERE

It can be noted from Figure 2 that, for fixed values of n, τ , η, θ and m, the value of
B significantly affects the performance of the one-sided EWMA-γ2 control charts. For
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instance, when n = 5, η = 0.28, θ = 0.05, γ0 = 0.05 and m = 1, we have EARL = 38.2
for B = 1, and ARL = 36.7 for B = 5 for the downward EWMA-γ2 (see Figure 2).

The values of EARL of EWMA-γ2 control charts are plotted in Figure 3 for η = 0.28,
θ = 0.05, ΩD = [0.5, 1) and ΩI = (1, 2], n ∈ {3, 5, 7, 9}, B = 1 and m ∈ [1, 10].

INSERT FIGURE 3 ABOUT HERE

For fixed values of n, B, η and θ, as the numberm of measurements per item increases,
the values of EARL of the one-sided EWMA-γ2 control charts slightly decrease. For
instance, when n = 5, η = 0.28, θ = 0.05 and γ0 = 0.05, we have ARL = 38.2 for m = 1
and ARL = 38.2 for m = 10 for the downward EWMA-γ2 (see Figure 3).

8 Illustrative example

In this Section, we discuss the implementation of Shewhart-CV chart in the presence
of measurement errors. Let us consider a sintering process in an Italian company that
manufactures sintered mechanical parts. The context of the example presented here is
similar to the one introduced in Castagliola et al. 2 . As discussed in Castagliola et al. 2 ,
the process manufactures parts, to ensure a pressure test drop time Tpd from 2 bar
to 1.5 bar larger than 30 sec, are seen as a quality characteristic related to the pore
shrinkage. They stated that the preliminary regression study relating Tpd to the quan-
tity QC of molten copper has demonstrated the presence of a constant proportionality
σpd = γpd×µpd between the standard deviation of the pressure drop time and its mean.
The quality practitioner decided to monitor the coefficient of variation γpd = σpd/µpd to
detect changes in the process variability.

We assume that, from a Phase I dataset, the following quantity has been estimated
γ̂0 = 0.01. Concerning the parameters of the linear covariate error model, we assume
η = 0.28, θ = 0, B = 1, m = 1. For phase II, the dataset with a sample size n = 5 is
simulated and presented in Table 12. The process is assumed to run in-control up to
sample #10. Then, between samples #10 and #11, we have simulated the occurrence
of an assignable cause shifting γpd from γpd = 0.01 to γpd = 0.011, i.e., τ = 1.1.

INSERT TABLE 12 ABOUT HERE

INSERT FIGURE 4 ABOUT HERE

INSERT FIGURE 5 ABOUT HERE

INSERT FIGURE 6 ABOUT HERE

15



The values of γ̂∗i , γ̂∗2i , Z∗i (for upward EWMA-γ2 chart) and S∗i (for two-sided
EWMA-γ2 chart) are presented in Table 12. Based on (25), the control limits of
Shewhart-CV control chart (ARL0 = 370.4) with measurement errors are equal to

LCL = 0.00169,

UCL = 0.02192.

The optimal parameters λ∗ and K∗ of upward EWMA-γ2 chart are found by the
optimizing algorithm to be λ∗ = 0.05 and K∗ = 2.6743. Based on (26), the control
limits of upward EWMA-γ2 chart (ARL0 = 370.4) with measurement errors are equal
to

UCLEWMA−γ2 = 0.000140.

The optimal parameters λ∗ and K∗ of two-sided EWMA-γ2 chart are found by the
optimizing algorithm to be λ∗ = 0.064038 and K∗ = 2.588766. Based on (14) and (15),
the control limits of two-sided EWMA-γ2 chart (ARL0 = 370.4) with measurement
errors are equal to

LCLEWMA−γ2 = 0.000072,

UCLEWMA−γ2 = 0.000144.

The values of γ̂∗i and the control limits of Shewhart-CV chart are plotted in Figure 4.
This figure confirms that from sample #12 onwards, the process is clearly out-of-control.
Similarly, the values of Z∗i and the control limit of upward EWMA-γ2 are plotted in
Figure 5. This figure confirms that from sample #11 onwards, the process is clearly out-
of-control. Finally, the values of S∗i and the control limits of that two-sided EWMA-γ2

are plotted in Figure 6. This figure confirms that from sample #11 onwards, the process
is clearly out-of-control. This once again confirms the effectiveness of the application of
EWMA type control charts to monitor production processes.

9 Concluding remarks

In this paper, we have studied the effects of measurement errors on the performance of
the Shewhart-CV control chart using a linear covariate error model. We have evaluated
the performance of the Shewhart-CV control using the ARL as a performance metric.
We have found that the performance of the Shewhart-CV control chart in the presence
of measurement errors is influenced by the precision error, i.e., the smaller the value of
the precision error is, the faster the Shewhart-CV control chart is in detecting the out-of-
control condition. But, the precision error does not significantly affect the performance
of the Shewhart-CV control chart with a normal measurement system. The performance
of the Shewhart-CV control chart is influenced by the accuracy error, measured by θ and
by the value of B. Furthermore, the performance of one-sided and two-sided EWMA-γ2

control charts are influenced by measurement errors with a similar behaviour as for the
Shewhart-CV control chart discussed earlier.
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Future research about control charts monitoring the coefficient of variation should be
focused on the investigation of their Phase I implementation. We are currently looking
into this issue and hope to report the findings in a future paper.
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η θ γ0 n = 5 n = 7 n = 10 n = 15

B = 1

0.10 0.01 0.05 0.0081 0.0132 0.0185 0.0238
0.1053 0.0950 0.0865 0.0791

0.10 0.0161 0.0263 0.0368 0.0475
0.2130 0.1917 0.1743 0.1591

0.15 0.0241 0.0394 0.0550 0.0709
0.3257 0.2919 0.2646 0.2408

0.20 0.0320 0.0522 0.0729 0.0940
0.4464 0.3978 0.3589 0.3253

0.28 0.05 0.05 0.0080 0.0131 0.0183 0.0236
0.1047 0.0944 0.0860 0.0786

0.10 0.0160 0.0262 0.0366 0.0472
0.2117 0.1905 0.1732 0.1581

0.15 0.0240 0.0391 0.0547 0.0705
0.3236 0.2901 0.2629 0.2393

0.20 0.0318 0.0519 0.0725 0.0935
0.4434 0.3952 0.3565 0.3232

B = 5

0.10 0.01 0.05 0.0081 0.0132 0.0185 0.0239
0.1057 0.0953 0.0868 0.0793

0.10 0.0162 0.0264 0.0369 0.0476
0.2137 0.1923 0.1749 0.1596

0.15 0.0242 0.0395 0.0552 0.0711
0.3268 0.2929 0.2655 0.2416

0.20 0.0321 0.0524 0.0732 0.0943
0.4480 0.3992 0.3601 0.3264

0.28 0.05 0.05 0.0081 0.0132 0.0184 0.0237
0.1050 0.0947 0.0862 0.0788

0.10 0.0161 0.0263 0.0367 0.0473
0.2123 0.1910 0.1737 0.1585

0.15 0.0240 0.0392 0.0548 0.0707
0.3245 0.2909 0.2637 0.2400

0.20 0.0319 0.0520 0.0727 0.0937
0.4447 0.3963 0.3576 0.3241

Table 1: Values of LCL (first row) and UCL (second row) for the Shewhart-CV control
chart in the presence of measurement errors, for different values of η, θ, n, γ0, B and
m = 1.
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n = 5
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (56.34, 56.66, 57.91) (56.34, 56.66, 57.93) (56.34, 56.67, 57.98) (56.35, 56.69, 58.06) (56.37, 56.76, 58.32) (56.44, 57.07, 59.56)
0.7 (148.13, 148.80, 151.37) (148.14, 148.81, 151.41) (148.14, 148.83, 151.51) (148.15, 148.88, 151.68) (148.19, 149.02, 152.22) (148.36, 149.67, 154.72)
0.8 (319.58, 320.48, 323.77) (319.58, 320.49, 323.82) (319.60, 320.52, 323.94) (319.61, 320.59, 324.16) (319.66, 320.76, 324.84) (319.90, 321.60, 327.93)
1.3 (48.70, 49.20, 51.32) (48.70, 49.21, 51.35) (48.71, 49.23, 51.44) (48.72, 49.26, 51.59) (48.74, 49.37, 52.07) (48.86, 49.89, 54.42)
1.5 (12.30, 12.49, 13.32) (12.30, 12.50, 13.33) (12.30, 12.50, 13.36) (12.31, 12.52, 13.42) (12.32, 12.56, 13.61) (12.37, 12.76, 14.55)
2.0 (3.36, 3.42, 3.70) (3.36, 3.42, 3.70) (3.36, 3.43, 3.71) (3.36, 3.43, 3.73) (3.37, 3.45, 3.79) (3.38, 3.51, 4.10)

n = 7
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (20.71, 20.89, 21.61) (20.71, 20.89, 21.62) (20.72, 20.90, 21.64) (20.72, 20.91, 21.69) (20.73, 20.95, 21.84) (20.77, 21.13, 22.55)
0.7 (75.72, 76.27, 78.42) (75.72, 76.27, 78.45) (75.72, 76.30, 78.54) (75.73, 76.33, 78.68) (75.76, 76.45, 79.13) (75.90, 76.99, 81.24)
0.8 (223.38, 224.43, 228.42) (223.38, 224.44, 228.48) (223.40, 224.49, 228.63) (223.41, 224.56, 228.89) (223.47, 224.77, 229.72) (223.74, 225.78, 233.50)
1.3 (36.67, 37.16, 39.22) (36.67, 37.17, 39.25) (36.68, 37.19, 39.34) (36.68, 37.22, 39.48) (36.71, 37.33, 39.94) (36.83, 37.83, 42.18)
1.5 (8.42, 8.58, 9.27) (8.42, 8.58, 9.28) (8.42, 8.59, 9.30) (8.43, 8.60, 9.35) (8.43, 8.64, 9.51) (8.47, 8.80, 10.26)
2.0 (2.36, 2.41, 2.61) (2.36, 2.41, 2.61) (2.36, 2.41, 2.62) (2.36, 2.41, 2.63) (2.36, 2.42, 2.68) (2.37, 2.47, 2.91)

n = 10
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (7.02, 7.10, 7.41) (7.02, 7.10, 7.41) (7.02, 7.10, 7.42) (7.02, 7.11, 7.44) (7.03, 7.12, 7.51) (7.05, 7.20, 7.82)
0.7 (33.76, 34.11, 35.49) (33.76, 34.11, 35.51) (33.76, 34.12, 35.57) (33.77, 34.15, 35.66) (33.78, 34.22, 35.95) (33.87, 34.57, 37.32)
0.8 (141.35, 142.36, 146.24) (141.36, 142.37, 146.29) (141.37, 142.41, 146.44) (141.39, 142.48, 146.70) (141.44, 142.69, 147.50) (141.69, 143.67, 151.20)
1.3 (26.22, 26.65, 28.44) (26.22, 26.65, 28.46) (26.23, 26.67, 28.54) (26.23, 26.70, 28.66) (26.26, 26.79, 29.05) (26.36, 27.23, 30.96)
1.5 (5.58, 5.70, 6.21) (5.58, 5.70, 6.21) (5.58, 5.71, 6.23) (5.58, 5.71, 6.27) (5.59, 5.74, 6.38) (5.62, 5.86, 6.93)
2.0 (1.70, 1.73, 1.87) (1.70, 1.73, 1.87) (1.70, 1.73, 1.87) (1.70, 1.74, 1.88) (1.70, 1.74, 1.91) (1.71, 1.78, 2.06)

n = 15
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (2.44, 2.46, 2.57) (2.44, 2.46, 2.57) (2.44, 2.47, 2.57) (2.44, 2.47, 2.58) (2.44, 2.47, 2.60) (2.45, 2.50, 2.70)
0.7 (12.70, 12.87, 13.54) (12.70, 12.87, 13.55) (12.70, 12.88, 13.58) (12.71, 12.89, 13.63) (12.72, 12.93, 13.77) (12.76, 13.09, 14.45)
0.8 (76.97, 77.75, 80.80) (76.98, 77.76, 80.83) (76.98, 77.79, 80.96) (77.00, 77.84, 81.15) (77.04, 78.01, 81.79) (77.23, 78.78, 84.74)
1.3 (17.13, 17.46, 18.82) (17.14, 17.47, 18.84) (17.14, 17.48, 18.90) (17.14, 17.50, 18.99) (17.16, 17.57, 19.29) (17.24, 17.91, 20.74)
1.5 (3.50, 3.57, 3.90) (3.50, 3.57, 3.90) (3.50, 3.58, 3.92) (3.50, 3.58, 3.94) (3.50, 3.60, 4.01) (3.52, 3.68, 4.37)
2.0 (1.28, 1.30, 1.37) (1.28, 1.30, 1.37) (1.28, 1.30, 1.37) (1.28, 1.30, 1.38) (1.28, 1.30, 1.40) (1.28, 1.32, 1.48)

Table 2: ARL values of Shewhart-CV control chart in the presence of measurement
errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side), for different
values of η, θ = 0.05, τ , n, B = 1, m = 1.
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n = 5
τ θ = 0 θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

0.5 (51.52, 51.86, 53.24) (52.48, 52.82, 54.20) (53.44, 53.78, 55.15) (54.40, 54.75, 56.11) (55.37, 55.72, 57.07) (56.35, 56.69, 58.04)
0.7 (138.93, 139.68, 142.62) (140.78, 141.53, 144.43) (142.63, 143.38, 146.24) (144.48, 145.21, 148.05) (146.32, 147.04, 149.85) (148.15, 148.87, 151.64)
0.8 (308.39, 309.45, 313.38) (310.70, 311.73, 315.58) (312.97, 313.98, 317.75) (315.20, 316.21, 319.89) (317.42, 318.39, 322.02) (319.61, 320.57, 324.11)
1.3 (43.58, 44.14, 46.53) (44.60, 45.15, 47.53) (45.62, 46.17, 48.53) (46.65, 47.19, 49.53) (47.68, 48.22, 50.54) (48.71, 49.25, 51.55)
1.5 (10.58, 10.78, 11.66) (10.91, 11.12, 12.00) (11.25, 11.46, 12.34) (11.60, 11.80, 12.69) (11.95, 12.16, 13.05) (12.31, 12.51, 13.41)
2.0 (2.89, 2.96, 3.24) (2.98, 3.05, 3.33) (3.07, 3.14, 3.43) (3.17, 3.23, 3.52) (3.26, 3.33, 3.62) (3.36, 3.43, 3.73)

n = 7
τ θ = 0 θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

0.5 (18.45, 18.64, 19.40) (18.90, 19.09, 19.85) (19.34, 19.54, 20.30) (19.80, 19.99, 20.76) (20.26, 20.45, 21.22) (20.72, 20.91, 21.68)
0.7 (69.32, 69.93, 72.32) (70.60, 71.20, 73.58) (71.88, 72.48, 74.84) (73.16, 73.76, 76.11) (74.44, 75.04, 77.38) (75.73, 76.32, 78.65)
0.8 (212.10, 213.32, 217.97) (214.39, 215.59, 220.17) (216.67, 217.86, 222.36) (218.93, 220.10, 224.53) (221.18, 222.33, 226.69) (223.41, 224.54, 228.83)
1.3 (32.45, 32.99, 35.28) (33.28, 33.82, 36.10) (34.12, 34.66, 36.93) (34.97, 35.50, 37.76) (35.82, 36.35, 38.60) (36.68, 37.21, 39.45)
1.5 (7.21, 7.38, 8.10) (7.45, 7.61, 8.34) (7.68, 7.85, 8.58) (7.93, 8.10, 8.83) (8.17, 8.35, 9.08) (8.43, 8.60, 9.34)
2.0 (2.06, 2.11, 2.32) (2.12, 2.17, 2.38) (2.17, 2.22, 2.44) (2.23, 2.28, 2.50) (2.30, 2.35, 2.56) (2.36, 2.41, 2.63)

n = 10
τ θ = 0 θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

0.5 (6.17, 6.25, 6.57) (6.34, 6.42, 6.74) (6.51, 6.59, 6.91) (6.68, 6.76, 7.08) (6.85, 6.93, 7.26) (7.02, 7.11, 7.44)
0.7 (30.16, 30.54, 32.03) (30.87, 31.25, 32.74) (31.58, 31.96, 33.46) (32.30, 32.68, 34.18) (33.03, 33.41, 34.90) (33.76, 34.14, 35.64)
0.8 (131.70, 132.84, 137.26) (133.64, 134.77, 139.14) (135.59, 136.71, 141.02) (137.52, 138.63, 142.90) (139.46, 140.55, 144.77) (141.38, 142.46, 146.64)
1.3 (22.96, 23.42, 25.37) (23.60, 24.06, 26.01) (24.25, 24.71, 26.65) (24.90, 25.36, 27.30) (25.56, 26.02, 27.96) (26.23, 26.69, 28.63)
1.5 (4.78, 4.90, 5.43) (4.93, 5.06, 5.59) (5.09, 5.22, 5.75) (5.25, 5.38, 5.92) (5.42, 5.54, 6.09) (5.58, 5.71, 6.26)
2.0 (1.52, 1.56, 1.69) (1.56, 1.59, 1.73) (1.59, 1.62, 1.76) (1.63, 1.66, 1.80) (1.66, 1.70, 1.84) (1.70, 1.74, 1.88)

n = 15
τ θ = 0 θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

0.5 (2.18, 2.21, 2.31) (2.23, 2.26, 2.36) (2.28, 2.31, 2.41) (2.33, 2.36, 2.47) (2.39, 2.41, 2.52) (2.44, 2.47, 2.58)
0.7 (11.13, 11.30, 12.01) (11.43, 11.61, 12.32) (11.74, 11.92, 12.64) (12.06, 12.24, 12.96) (12.38, 12.56, 13.28) (12.71, 12.89, 13.62)
0.8 (70.11, 70.98, 74.35) (71.48, 72.34, 75.70) (72.85, 73.71, 77.04) (74.23, 75.08, 78.40) (75.61, 76.45, 79.75) (76.99, 77.83, 81.11)
1.3 (14.85, 15.20, 16.65) (15.29, 15.64, 17.10) (15.74, 16.10, 17.56) (16.20, 16.56, 18.02) (16.67, 17.02, 18.49) (17.14, 17.50, 18.97)
1.5 (3.02, 3.10, 3.43) (3.11, 3.19, 3.53) (3.20, 3.28, 3.63) (3.30, 3.38, 3.73) (3.40, 3.48, 3.83) (3.50, 3.58, 3.93)
2.0 (1.19, 1.21, 1.28) (1.21, 1.22, 1.30) (1.22, 1.24, 1.32) (1.24, 1.26, 1.34) (1.26, 1.28, 1.36) (1.28, 1.30, 1.38)

Table 3: ARL values of Shewhart-CV control chart in the presence of measurement
errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side), for different
values of θ, η = 0.28, τ , n, B = 1, m = 1.
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n = 5
τ B = 1 B = 2 B = 3 B = 4 B = 5

0.5 (56.35, 56.69, 58.04) (53.91, 54.24, 55.53) (53.11, 53.43, 54.71) (52.71, 53.03, 54.31) (52.47, 52.79, 54.07)
0.7 (148.15, 148.87, 151.64) (143.54, 144.24, 146.94) (142.00, 142.70, 145.39) (141.23, 141.93, 144.62) (140.77, 141.46, 144.16)
0.8 (319.61, 320.57, 324.11) (314.07, 315.03, 318.56) (312.18, 313.15, 316.71) (311.24, 312.21, 315.78) (310.67, 311.64, 315.23)
1.3 (48.71, 49.25, 51.55) (46.12, 46.64, 48.85) (45.27, 45.78, 47.98) (44.84, 45.35, 47.55) (44.58, 45.10, 47.30)
1.5 (12.31, 12.51, 13.41) (11.42, 11.62, 12.45) (11.13, 11.33, 12.15) (10.99, 11.18, 12.00) (10.91, 11.10, 11.91)
2.0 (3.36, 3.43, 3.73) (3.12, 3.18, 3.45) (3.04, 3.10, 3.37) (3.00, 3.06, 3.33) (2.98, 3.04, 3.30)

n = 7
τ B = 1 B = 2 B = 3 B = 4 B = 5

0.5 (20.72, 20.91, 21.68) (19.57, 19.75, 20.47) (19.19, 19.37, 20.08) (19.00, 19.18, 19.89) (18.89, 19.07, 19.78)
0.7 (75.73, 76.32, 78.65) (72.51, 73.08, 75.31) (71.44, 72.00, 74.22) (70.90, 71.47, 73.68) (70.58, 71.15, 73.36)
0.8 (223.41, 224.54, 228.83) (217.78, 218.90, 223.13) (215.89, 217.00, 221.25) (214.93, 216.06, 220.32) (214.36, 215.49, 219.76)
1.3 (36.68, 37.21, 39.45) (34.54, 35.04, 37.17) (33.83, 34.33, 36.45) (33.48, 33.98, 36.09) (33.27, 33.77, 35.88)
1.5 (8.43, 8.60, 9.34) (7.80, 7.96, 8.65) (7.60, 7.76, 8.44) (7.50, 7.66, 8.33) (7.44, 7.60, 8.27)
2.0 (2.36, 2.41, 2.63) (2.20, 2.25, 2.45) (2.15, 2.20, 2.40) (2.13, 2.18, 2.37) (2.11, 2.16, 2.36)

n = 10
τ B = 1 B = 2 B = 3 B = 4 B = 5

0.5 (7.02, 7.11, 7.44) (6.59, 6.66, 6.97) (6.45, 6.52, 6.82) (6.38, 6.45, 6.75) (6.34, 6.41, 6.71)
0.7 (33.76, 34.14, 35.64) (31.94, 32.29, 33.71) (31.34, 31.69, 33.09) (31.04, 31.39, 32.78) (30.86, 31.21, 32.60)
0.8 (141.38, 142.46, 146.64) (136.53, 137.59, 141.65) (134.91, 135.97, 140.03) (134.10, 135.16, 139.22) (133.62, 134.67, 138.74)
1.3 (26.23, 26.69, 28.63) (24.56, 25.00, 26.83) (24.02, 24.45, 26.26) (23.75, 24.18, 25.99) (23.59, 24.02, 25.82)
1.5 (5.58, 5.71, 6.26) (5.17, 5.29, 5.79) (5.04, 5.15, 5.65) (4.97, 5.09, 5.58) (4.93, 5.05, 5.54)
2.0 (1.70, 1.74, 1.88) (1.61, 1.64, 1.77) (1.58, 1.61, 1.74) (1.56, 1.60, 1.72) (1.56, 1.59, 1.71)

n = 15
τ B = 1 B = 2 B = 3 B = 4 B = 5

0.5 (2.44, 2.47, 2.58) (2.31, 2.33, 2.43) (2.27, 2.29, 2.39) (2.24, 2.27, 2.37) (2.23, 2.26, 2.35)
0.7 (12.71, 12.89, 13.62) (11.90, 12.07, 12.74) (11.64, 11.80, 12.47) (11.51, 11.67, 12.33) (11.43, 11.59, 12.25)
0.8 (76.99, 77.83, 81.11) (73.53, 74.33, 77.48) (72.38, 73.18, 76.31) (71.80, 72.60, 75.73) (71.46, 72.26, 75.39)
1.3 (17.14, 17.50, 18.97) (15.97, 16.30, 17.68) (15.59, 15.91, 17.28) (15.40, 15.72, 17.08) (15.28, 15.61, 16.96)
1.5 (3.50, 3.58, 3.93) (3.25, 3.33, 3.65) (3.17, 3.25, 3.56) (3.13, 3.21, 3.52) (3.11, 3.18, 3.50)
2.0 (1.28, 1.30, 1.38) (1.23, 1.25, 1.32) (1.22, 1.23, 1.30) (1.21, 1.23, 1.30) (1.21, 1.22, 1.29)

Table 4: ARL values of Shewhart-CV control chart in the presence of measurement
errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side), for different
values of B, τ , n, η = 0.28, θ = 0.01, m = 1.
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n = 5
τ m = 1 m = 3 m = 5 m = 7 m = 10

0.5 (56.35, 56.69, 58.04) (56.34, 56.67, 57.95) (56.34, 56.66, 57.94) (56.34, 56.66, 57.93) (56.34, 56.66, 57.92)
0.7 (148.15, 148.87, 151.64) (148.14, 148.82, 151.46) (148.14, 148.81, 151.43) (148.14, 148.81, 151.41) (148.14, 148.81, 151.40)
0.8 (319.61, 320.57, 324.11) (319.59, 320.51, 323.89) (319.59, 320.50, 323.85) (319.58, 320.49, 323.82) (319.59, 320.49, 323.81)
1.3 (48.71, 49.25, 51.55) (48.71, 49.22, 51.40) (48.71, 49.21, 51.37) (48.70, 49.21, 51.35) (48.71, 49.20, 51.34)
1.5 (12.31, 12.51, 13.41) (12.30, 12.50, 13.35) (12.30, 12.50, 13.34) (12.30, 12.50, 13.33) (12.30, 12.50, 13.33)
2.0 (3.36, 3.43, 3.73) (3.36, 3.43, 3.71) (3.36, 3.42, 3.70) (3.36, 3.42, 3.70) (3.36, 3.42, 3.70)

n = 7
τ m = 1 m = 3 m = 5 m = 7 m = 10

0.5 (20.72, 20.91, 21.68) (20.71, 20.90, 21.63) (20.71, 20.90, 21.62) (20.71, 20.89, 21.62) (20.71, 20.89, 21.61)
0.7 (75.73, 76.32, 78.65) (75.72, 76.29, 78.50) (75.72, 76.28, 78.47) (75.72, 76.27, 78.46) (75.72, 76.27, 78.45)
0.8 (223.41, 224.54, 228.83) (223.39, 224.47, 228.56) (223.39, 224.45, 228.51) (223.38, 224.45, 228.49) (223.38, 224.44, 228.46)
1.3 (36.68, 37.21, 39.45) (36.67, 37.18, 39.30) (36.67, 37.17, 39.27) (36.67, 37.17, 39.26) (36.67, 37.16, 39.25)
1.5 (8.43, 8.60, 9.34) (8.42, 8.59, 9.29) (8.42, 8.59, 9.28) (8.42, 8.58, 9.28) (8.42, 8.58, 9.27)
2.0 (2.36, 2.41, 2.63) (2.36, 2.41, 2.62) (2.36, 2.41, 2.61) (2.36, 2.41, 2.61) (2.36, 2.41, 2.61)

n = 10
τ m = 1 m = 3 m = 5 m = 7 m = 10

0.5 (7.02, 7.11, 7.44) (7.02, 7.10, 7.42) (7.02, 7.10, 7.41) (7.02, 7.10, 7.41) (7.02, 7.10, 7.41)
0.7 (33.76, 34.14, 35.64) (33.76, 34.12, 35.54) (33.76, 34.11, 35.52) (33.76, 34.11, 35.51) (33.76, 34.11, 35.51)
0.8 (141.38, 142.46, 146.64) (141.36, 142.39, 146.37) (141.36, 142.38, 146.32) (141.36, 142.37, 146.30) (141.36, 142.37, 146.28)
1.3 (26.23, 26.69, 28.63) (26.22, 26.66, 28.50) (26.22, 26.66, 28.48) (26.22, 26.65, 28.47) (26.22, 26.65, 28.46)
1.5 (5.58, 5.71, 6.26) (5.58, 5.70, 6.22) (5.58, 5.70, 6.22) (5.58, 5.70, 6.21) (5.58, 5.70, 6.21)
2.0 (1.70, 1.74, 1.88) (1.70, 1.73, 1.87) (1.70, 1.73, 1.87) (1.70, 1.73, 1.87) (1.70, 1.73, 1.87)

n = 15
τ m = 1 m = 3 m = 5 m = 7 m = 10

0.5 (2.44, 2.47, 2.58) (2.44, 2.47, 2.57) (2.44, 2.46, 2.57) (2.44, 2.46, 2.57) (2.44, 2.46, 2.57)
0.7 (12.71, 12.89, 13.62) (12.70, 12.88, 13.57) (12.70, 12.87, 13.56) (12.70, 12.87, 13.55) (12.70, 12.87, 13.55)
0.8 (76.99, 77.83, 81.11) (76.98, 77.78, 80.90) (76.98, 77.77, 80.86) (76.98, 77.76, 80.84) (76.97, 77.76, 80.83)
1.3 (17.14, 17.50, 18.97) (17.14, 17.47, 18.87) (17.14, 17.47, 18.85) (17.14, 17.47, 18.85) (17.14, 17.46, 18.84)
1.5 (3.50, 3.58, 3.93) (3.50, 3.58, 3.91) (3.50, 3.57, 3.91) (3.50, 3.57, 3.90) (3.50, 3.57, 3.90)
2.0 (1.28, 1.30, 1.38) (1.28, 1.30, 1.37) (1.28, 1.30, 1.37) (1.28, 1.30, 1.37) (1.28, 1.30, 1.37)

Table 5: ARL values of Shewhart-CV control chart in the presence of measurement
errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side), for different
values of m, τ , n, η = 0.28, θ = 0.05, B = 1.
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n = 5
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (2.6906, 2.7006, 2.8184) (2.6908, 2.7008, 2.8208) (2.6911, 2.7021, 2.8284) (2.6910, 2.7038, 2.8410) (2.6933, 2.7028, 2.8829) (2.6962, 2.7232, 3.1070)
(0.0793, 0.0745, 0.0610) (0.0793, 0.0744, 0.0609) (0.0793, 0.0744, 0.0606) (0.0792, 0.0742, 0.0600) (0.0792, 0.0726, 0.0583) (0.0781, 0.0686, 0.0520)

0.7 (2.5514, 2.5496, 2.6439) (2.5540, 2.5491, 2.6487) (2.5543, 2.5495, 2.6561) (2.5547, 2.5468, 2.6696) (2.5495, 2.5523, 2.7126) (2.5526, 2.5589, 2.9715)
(0.0574, 0.0533, 0.0418) (0.0578, 0.0532, 0.0419) (0.0578, 0.0531, 0.0416) (0.0578, 0.0524, 0.0412) (0.0568, 0.0522, 0.0396) (0.0563, 0.0483, 0.0350)

0.8 (2.2972, 2.2764, 2.3479) (2.2923, 2.2785, 2.3482) (2.2973, 2.2738, 2.3566) (2.2959, 2.2734, 2.3700) (2.2882, 2.2690, 2.4272) (2.2870, 2.2683, 2.7458)
(0.0302, 0.0277, 0.0209) (0.0299, 0.0278, 0.0208) (0.0302, 0.0274, 0.0206) (0.0301, 0.0273, 0.0202) (0.0295, 0.0267, 0.0195) (0.0292, 0.0247, 0.0155)

1.3 (2.7947, 2.8061, 2.9920) (2.7915, 2.8061, 2.9937) (2.7880, 2.8080, 3.0079) (2.7887, 2.8106, 3.0216) (2.7897, 2.8146, 3.0827) (2.7935, 2.8498, 3.3372)
(0.0979, 0.0916, 0.0856) (0.0972, 0.0915, 0.0854) (0.0965, 0.0915, 0.0861) (0.0965, 0.0914, 0.0858) (0.0963, 0.0903, 0.0874) (0.0949, 0.0875, 0.0892)

1.5 (3.1542, 3.2086, 3.4227) (3.1522, 3.2141, 3.4296) (3.1559, 3.2138, 3.4329) (3.1577, 3.2149, 3.4476) (3.1614, 3.2290, 3.4967) (3.1823, 3.2836, 3.7066)
(0.1741, 0.1748, 0.1749) (0.1736, 0.1760, 0.1759) (0.1744, 0.1754, 0.1745) (0.1746, 0.1748, 0.1745) (0.1749, 0.1755, 0.1750) (0.1769, 0.1760, 0.1699)

2.0 (3.7100, 3.7559, 3.9346) (3.7081, 3.7529, 3.9353) (3.7139, 3.7545, 3.9422) (3.7137, 3.7624, 3.9512) (3.7175, 3.7738, 3.9880) (3.7307, 3.8094, 4.1847)
(0.3674, 0.3642, 0.3454) (0.3664, 0.3625, 0.3444) (0.3688, 0.3623, 0.3435) (0.3684, 0.3642, 0.3408) (0.3688, 0.3642, 0.3354) (0.3688, 0.3559, 0.3160)

n = 7
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (2.8163, 2.8279, 2.9185) (2.8184, 2.8284, 2.9237) (2.8180, 2.8304, 2.9287) (2.8162, 2.8313, 2.9388) (2.8191, 2.8366, 2.9665) (2.8207, 2.8523, 3.1201)
(0.1118, 0.1063, 0.0900) (0.1123, 0.1063, 0.0905) (0.1121, 0.1064, 0.0900) (0.1115, 0.1060, 0.0896) (0.1118, 0.1054, 0.0870) (0.1101, 0.1003, 0.0780)

0.7 (2.6744, 2.6784, 2.7494) (2.6772, 2.6778, 2.7511) (2.6775, 2.6786, 2.7567) (2.6764, 2.6799, 2.7663) (2.6758, 2.6796, 2.7960) (2.6773, 2.6873, 2.9692)
(0.0802, 0.0758, 0.0621) (0.0807, 0.0756, 0.0620) (0.0807, 0.0755, 0.0617) (0.0804, 0.0754, 0.0612) (0.0800, 0.0742, 0.0593) (0.0791, 0.0698, 0.0526)

0.8 (2.4318, 2.4203, 2.4647) (2.4318, 2.4205, 2.4650) (2.4319, 2.4195, 2.4725) (2.4316, 2.4183, 2.4827) (2.4322, 2.4164, 2.5153) (2.4282, 2.4166, 2.7372)
(0.0424, 0.0396, 0.0314) (0.0424, 0.0396, 0.0312) (0.0424, 0.0394, 0.0311) (0.0423, 0.0391, 0.0308) (0.0423, 0.0385, 0.0296) (0.0415, 0.0362, 0.0256)

1.3 (2.8626, 2.8836, 3.0187) (2.8627, 2.8813, 3.0218) (2.8630, 2.8828, 3.0258) (2.8634, 2.8852, 3.0361) (2.8653, 2.8906, 3.0782) (2.8711, 2.9105, 3.2766)
(0.1232, 0.1191, 0.1102) (0.1232, 0.1184, 0.1103) (0.1232, 0.1184, 0.1096) (0.1231, 0.1184, 0.1091) (0.1231, 0.1176, 0.1094) (0.1223, 0.1127, 0.1110)

1.5 (3.2372, 3.2729, 3.4347) (3.2386, 3.2787, 3.4375) (3.2390, 3.2785, 3.4441) (3.2391, 3.2774, 3.4553) (3.2420, 3.2873, 3.4897) (3.2468, 3.3333, 3.6479)
(0.2360, 0.2333, 0.2286) (0.2365, 0.2353, 0.2288) (0.2365, 0.2346, 0.2286) (0.2363, 0.2331, 0.2283) (0.2365, 0.2333, 0.2270) (0.2343, 0.2343, 0.2185)

2.0 (3.7267, 3.7635, 3.9063) (3.7270, 3.7639, 3.9062) (3.7270, 3.7660, 3.9099) (3.7280, 3.7688, 3.9167) (3.7298, 3.7716, 3.9489) (3.7393, 3.8047, 4.1040)
(0.4917, 0.4855, 0.4560) (0.4918, 0.4854, 0.4543) (0.4914, 0.4855, 0.4519) (0.4917, 0.4854, 0.4481) (0.4912, 0.4805, 0.4426) (0.4899, 0.4716, 0.4172)

n = 10
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (2.9409, 2.9473, 3.0194) (2.9397, 2.9475, 3.0226) (2.9406, 2.9483, 3.0250) (2.9384, 2.9494, 3.0318) (2.9400, 2.9500, 3.0493) (2.9426, 2.9607, 3.1553)
(0.1625, 0.1542, 0.1348) (0.1621, 0.1542, 0.1352) (0.1623, 0.1540, 0.1342) (0.1613, 0.1537, 0.1334) (0.1613, 0.1517, 0.1296) (0.1596, 0.1448, 0.1174)

0.7 (2.7899, 2.7924, 2.8496) (2.7904, 2.7945, 2.8498) (2.7868, 2.7937, 2.8549) (2.7876, 2.7945, 2.8593) (2.7876, 2.7973, 2.8778) (2.7899, 2.8078, 2.9896)
(0.1134, 0.1074, 0.0920) (0.1135, 0.1079, 0.0916) (0.1124, 0.1074, 0.0915) (0.1125, 0.1071, 0.0904) (0.1121, 0.1064, 0.0877) (0.1112, 0.1021, 0.0781)

0.8 (2.5568, 2.5524, 2.5778) (2.5601, 2.5510, 2.5796) (2.5547, 2.5525, 2.5821) (2.5608, 2.5528, 2.5880) (2.5570, 2.5491, 2.6105) (2.5572, 2.5502, 2.7473)
(0.0596, 0.0567, 0.0466) (0.0602, 0.0565, 0.0466) (0.0593, 0.0566, 0.0462) (0.0603, 0.0565, 0.0458) (0.0595, 0.0554, 0.0446) (0.0590, 0.0527, 0.0393)

1.3 (2.9306, 2.9471, 3.0441) (2.9289, 2.9475, 3.0452) (2.9323, 2.9486, 3.0518) (2.9307, 2.9500, 3.0598) (2.9344, 2.9538, 3.0851) (2.9361, 2.9715, 3.2329)
(0.1589, 0.1542, 0.1420) (0.1583, 0.1542, 0.1418) (0.1594, 0.1541, 0.1420) (0.1586, 0.1539, 0.1416) (0.1594, 0.1529, 0.1398) (0.1574, 0.1481, 0.1397)

1.5 (3.2976, 3.3260, 3.4417) (3.2960, 3.3269, 3.4455) (3.2946, 3.3261, 3.4475) (3.2969, 3.3303, 3.4543) (3.3006, 3.3343, 3.4758) (3.3076, 3.3598, 3.5987)
(0.3195, 0.3156, 0.3010) (0.3186, 0.3159, 0.3020) (0.3176, 0.3146, 0.3000) (0.3186, 0.3156, 0.2985) (0.3195, 0.3137, 0.2938) (0.3186, 0.3082, 0.2825)

2.0 (3.6953, 3.7285, 3.8487) (3.6954, 3.7266, 3.8499) (3.6974, 3.7273, 3.8564) (3.6960, 3.7298, 3.8633) (3.6980, 3.7360, 3.8926) (3.7071, 3.7672, 4.0163)
(0.6418, 0.6359, 0.5966) (0.6418, 0.6330, 0.5958) (0.6438, 0.6320, 0.5959) (0.6413, 0.6320, 0.5922) (0.6413, 0.6296, 0.5877) (0.6408, 0.6212, 0.5526)

n = 15
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (3.0561, 3.0710, 3.1077) (3.0579, 3.0732, 3.1065) (3.0582, 3.0751, 3.1071) (3.0560, 3.0732, 3.1117) (3.0578, 3.0806, 3.1220) (3.0601, 3.0926, 3.2109)
(0.2448, 0.2390, 0.2043) (0.2458, 0.2399, 0.2031) (0.2458, 0.2404, 0.2014) (0.2443, 0.2385, 0.2001) (0.2446, 0.2395, 0.1943) (0.2424, 0.2319, 0.1845)

0.7 (2.8987, 2.9072, 2.9467) (2.8993, 2.9049, 2.9484) (2.8976, 2.9063, 2.9511) (2.8978, 2.9068, 2.9544) (2.8987, 2.9090, 2.9659) (2.9017, 2.9190, 3.0384)
(0.1650, 0.1599, 0.1392) (0.1652, 0.1588, 0.1394) (0.1644, 0.1590, 0.1389) (0.1643, 0.1586, 0.1376) (0.1643, 0.1577, 0.1339) (0.1634, 0.1528, 0.1213)

0.8 (2.6805, 2.6778, 2.6949) (2.6777, 2.6784, 2.6958) (2.6797, 2.6790, 2.6948) (2.6799, 2.6779, 2.6995) (2.6786, 2.6768, 2.7129) (2.6791, 2.6776, 2.7853)
(0.0869, 0.0831, 0.0711) (0.0861, 0.0832, 0.0710) (0.0866, 0.0832, 0.0701) (0.0866, 0.0827, 0.0698) (0.0861, 0.0817, 0.0683) (0.0855, 0.0784, 0.0603)

1.3 (2.9936, 3.0094, 3.0806) (2.9956, 3.0095, 3.0787) (2.9939, 3.0097, 3.0808) (2.9962, 3.0119, 3.0869) (2.9945, 3.0123, 3.1045) (2.9970, 3.0285, 3.2039)
(0.2110, 0.2070, 0.1921) (0.2120, 0.2069, 0.1906) (0.2110, 0.2065, 0.1896) (0.2120, 0.2068, 0.1892) (0.2105, 0.2044, 0.1867) (0.2088, 0.2002, 0.1816)

1.5 (3.3332, 3.3560, 3.4441) (3.3311, 3.3553, 3.4423) (3.3347, 3.3559, 3.4451) (3.3341, 3.3561, 3.4519) (3.3356, 3.3617, 3.4735) (3.3395, 3.3838, 3.5575)
(0.4396, 0.4343, 0.4111) (0.4377, 0.4333, 0.4084) (0.4406, 0.4328, 0.4069) (0.4396, 0.4313, 0.4062) (0.4396, 0.4309, 0.4038) (0.4367, 0.4250, 0.3800)

2.0 (3.6038, 3.6315, 3.7431) (3.6035, 3.6319, 3.7422) (3.6059, 3.6329, 3.7479) (3.6043, 3.6350, 3.7546) (3.6065, 3.6411, 3.7774) (3.6139, 3.6684, 3.8887)
(0.8186, 0.8112, 0.7824) (0.8176, 0.8111, 0.7766) (0.8234, 0.8105, 0.7781) (0.8176, 0.8107, 0.7746) (0.8190, 0.8098, 0.7664) (0.8186, 0.8010, 0.7377)

Table 6: Optimal values λ∗ (first row of each block) and K∗ (second row of each block) of
two-sided EWMA-γ2 control charts in the presence of measurement errors for γ0 = 0.05
(left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side), for different values of η, θ = 0.05,
τ , n, B = 1, m = 1.
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n = 5
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (9.50, 9.95, 12.32) (9.50, 9.96, 12.36) (9.51, 9.98, 12.47) (9.51, 10.01, 12.67) (9.54, 10.12, 13.32) (9.65, 10.64, 17.04)
0.7 (14.07, 14.75, 18.63) (14.08, 14.76, 18.69) (14.08, 14.79, 18.89) (14.09, 14.84, 19.24) (14.13, 15.00, 20.42) (14.29, 15.81, 27.51)
0.8 (28.07, 29.55, 39.49) (28.07, 29.57, 39.69) (28.08, 29.63, 40.28) (28.11, 29.74, 41.30) (28.18, 30.11, 44.89) (28.53, 32.04, 69.81)
1.3 (15.06, 15.21, 16.08) (15.06, 15.21, 16.09) (15.06, 15.22, 16.13) (15.06, 15.23, 16.20) (15.07, 15.27, 16.41) (15.11, 15.46, 17.44)
1.5 (5.93, 6.02, 6.38) (5.93, 6.02, 6.39) (5.93, 6.03, 6.40) (5.94, 6.03, 6.43) (5.94, 6.05, 6.51) (5.96, 6.14, 6.90)
2.0 (2.55, 2.59, 2.75) (2.55, 2.59, 2.75) (2.56, 2.59, 2.76) (2.56, 2.60, 2.77) (2.56, 2.61, 2.80) (2.57, 2.64, 2.97)

n = 7
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (6.99, 7.27, 8.60) (6.99, 7.27, 8.62) (7.00, 7.28, 8.68) (7.00, 7.30, 8.78) (7.01, 7.36, 9.13) (7.08, 7.67, 10.98)
0.7 (10.39, 10.81, 12.96) (10.39, 10.81, 12.99) (10.39, 10.83, 13.10) (10.40, 10.86, 13.27) (10.42, 10.95, 13.87) (10.52, 11.43, 17.26)
0.8 (20.99, 21.90, 27.22) (20.99, 21.91, 27.32) (21.00, 21.95, 27.61) (21.02, 22.02, 28.10) (21.06, 22.23, 29.80) (21.28, 23.34, 40.69)
1.3 (11.40, 11.52, 12.16) (11.40, 11.52, 12.17) (11.40, 11.53, 12.20) (11.40, 11.54, 12.25) (11.41, 11.57, 12.40) (11.44, 11.71, 13.16)
1.5 (4.45, 4.51, 4.79) (4.45, 4.51, 4.79) (4.45, 4.52, 4.80) (4.45, 4.52, 4.82) (4.45, 4.53, 4.88) (4.47, 4.60, 5.18)
2.0 (1.95, 1.98, 2.10) (1.95, 1.98, 2.11) (1.95, 1.98, 2.11) (1.95, 1.98, 2.12) (1.95, 1.99, 2.15) (1.96, 2.02, 2.28)

n = 10
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (5.13, 5.30, 6.04) (5.13, 5.30, 6.05) (5.13, 5.31, 6.09) (5.14, 5.32, 6.15) (5.14, 5.35, 6.33) (5.19, 5.52, 7.29)
0.7 (7.63, 7.88, 9.09) (7.63, 7.88, 9.10) (7.63, 7.89, 9.16) (7.63, 7.91, 9.25) (7.65, 7.97, 9.56) (7.71, 8.24, 11.25)
0.8 (15.58, 16.13, 19.02) (15.58, 16.13, 19.07) (15.58, 16.16, 19.21) (15.59, 16.20, 19.46) (15.62, 16.32, 20.29) (15.75, 16.96, 25.21)
1.3 (8.57, 8.67, 9.14) (8.57, 8.67, 9.14) (8.57, 8.67, 9.16) (8.57, 8.68, 9.20) (8.58, 8.70, 9.31) (8.60, 8.81, 9.85)
1.5 (3.33, 3.38, 3.58) (3.33, 3.38, 3.59) (3.33, 3.38, 3.60) (3.33, 3.39, 3.61) (3.33, 3.40, 3.65) (3.35, 3.45, 3.87)
2.0 (1.52, 1.54, 1.63) (1.52, 1.54, 1.63) (1.52, 1.54, 1.64) (1.52, 1.54, 1.64) (1.52, 1.55, 1.66) (1.53, 1.57, 1.76)

n = 15
τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.5 (3.62, 3.74, 4.17) (3.62, 3.74, 4.17) (3.62, 3.74, 4.19) (3.62, 3.75, 4.21) (3.63, 3.77, 4.30) (3.66, 3.89, 4.79)
0.7 (5.42, 5.56, 6.23) (5.42, 5.57, 6.24) (5.42, 5.57, 6.26) (5.42, 5.58, 6.31) (5.43, 5.61, 6.47) (5.47, 5.77, 7.30)
0.8 (11.17, 11.49, 13.02) (11.17, 11.49, 13.04) (11.17, 11.51, 13.12) (11.18, 11.53, 13.24) (11.19, 11.60, 13.64) (11.27, 11.95, 15.85)
1.3 (6.25, 6.32, 6.65) (6.25, 6.32, 6.66) (6.25, 6.33, 6.67) (6.25, 6.33, 6.70) (6.25, 6.35, 6.77) (6.27, 6.43, 7.14)
1.5 (2.44, 2.47, 2.62) (2.44, 2.47, 2.62) (2.44, 2.47, 2.63) (2.44, 2.48, 2.64) (2.44, 2.48, 2.67) (2.45, 2.52, 2.82)
2.0 (1.21, 1.23, 1.28) (1.21, 1.23, 1.28) (1.21, 1.23, 1.28) (1.21, 1.23, 1.29) (1.21, 1.23, 1.30) (1.22, 1.24, 1.36)

Table 7: ARL values of two-sided EWMA-γ2 control charts in the presence of measure-
ment errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side), for
different values of η, θ = 0.05, τ , n, B = 1, m = 1.
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n = 5
τ θ = 0 θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

0.5 (9.30, 9.84, 12.73) (9.34, 9.87, 12.71) (9.39, 9.90, 12.68) (9.43, 9.94, 12.66) (9.47, 9.97, 12.64) (9.51, 10.00, 12.62)
0.7 (13.60, 14.40, 19.17) (13.70, 14.48, 19.16) (13.80, 14.57, 19.15) (13.90, 14.65, 19.15) (13.99, 14.74, 19.15) (14.09, 14.83, 19.16)
0.8 (26.81, 28.52, 41.04) (27.06, 28.75, 41.03) (27.32, 28.99, 41.02) (27.58, 29.23, 41.02) (27.84, 29.47, 41.04) (28.10, 29.72, 41.06)
1.3 (13.85, 14.04, 15.05) (14.09, 14.27, 15.27) (14.33, 14.51, 15.50) (14.57, 14.75, 15.73) (14.82, 14.99, 15.95) (15.06, 15.23, 16.18)
1.5 (5.39, 5.49, 5.88) (5.50, 5.60, 5.99) (5.61, 5.70, 6.10) (5.72, 5.81, 6.20) (5.83, 5.92, 6.31) (5.94, 6.03, 6.42)
2.0 (2.30, 2.34, 2.51) (2.35, 2.39, 2.56) (2.40, 2.44, 2.61) (2.45, 2.49, 2.66) (2.50, 2.54, 2.71) (2.56, 2.60, 2.77)

n = 7
τ θ = 0 θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

0.5 (6.84, 7.16, 8.77) (6.87, 7.19, 8.76) (6.90, 7.22, 8.76) (6.94, 7.24, 8.76) (6.97, 7.27, 8.76) (7.00, 7.30, 8.76)
0.7 (10.03, 10.52, 13.11) (10.11, 10.58, 13.13) (10.18, 10.65, 13.15) (10.25, 10.72, 13.18) (10.33, 10.78, 13.20) (10.40, 10.85, 13.23)
0.8 (20.01, 21.06, 27.55) (20.21, 21.24, 27.63) (20.41, 21.43, 27.71) (20.61, 21.62, 27.80) (20.81, 21.81, 27.89) (21.01, 22.00, 27.98)
1.3 (10.47, 10.62, 11.36) (10.65, 10.80, 11.53) (10.84, 10.98, 11.70) (11.02, 11.16, 11.88) (11.21, 11.35, 12.06) (11.40, 11.54, 12.23)
1.5 (4.04, 4.11, 4.41) (4.12, 4.19, 4.49) (4.20, 4.27, 4.57) (4.28, 4.36, 4.65) (4.36, 4.44, 4.73) (4.45, 4.52, 4.82)
2.0 (1.77, 1.80, 1.94) (1.81, 1.84, 1.97) (1.84, 1.87, 2.01) (1.88, 1.91, 2.04) (1.91, 1.95, 2.08) (1.95, 1.98, 2.12)

n = 10
τ θ = 0 θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

0.5 (5.02, 5.22, 6.11) (5.04, 5.24, 6.11) (5.07, 5.25, 6.11) (5.09, 5.27, 6.12) (5.11, 5.29, 6.13) (5.13, 5.31, 6.13)
0.7 (7.36, 7.65, 9.08) (7.41, 7.70, 9.11) (7.47, 7.75, 9.14) (7.52, 7.80, 9.17) (7.58, 7.85, 9.20) (7.63, 7.91, 9.23)
0.8 (14.83, 15.46, 18.90) (14.98, 15.60, 19.00) (15.13, 15.75, 19.09) (15.28, 15.89, 19.19) (15.44, 16.04, 19.29) (15.59, 16.19, 19.40)
1.3 (7.86, 7.98, 8.51) (8.00, 8.12, 8.65) (8.14, 8.26, 8.78) (8.28, 8.40, 8.92) (8.43, 8.54, 9.05) (8.57, 8.68, 9.19)
1.5 (3.03, 3.08, 3.31) (3.09, 3.14, 3.37) (3.15, 3.20, 3.43) (3.21, 3.26, 3.49) (3.27, 3.32, 3.55) (3.33, 3.38, 3.61)
2.0 (1.40, 1.42, 1.52) (1.42, 1.45, 1.54) (1.45, 1.47, 1.57) (1.47, 1.49, 1.59) (1.49, 1.52, 1.62) (1.52, 1.54, 1.64)

n = 15
τ θ = 0 θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

0.5 (3.52, 3.66, 4.17) (3.54, 3.68, 4.18) (3.56, 3.70, 4.19) (3.58, 3.71, 4.19) (3.60, 3.73, 4.20) (3.62, 3.75, 4.21)
0.7 (5.22, 5.39, 6.17) (5.26, 5.43, 6.19) (5.30, 5.47, 6.22) (5.34, 5.50, 6.25) (5.38, 5.54, 6.27) (5.42, 5.58, 6.30)
0.8 (10.62, 10.98, 12.77) (10.73, 11.09, 12.86) (10.84, 11.20, 12.94) (10.95, 11.30, 13.03) (11.06, 11.41, 13.12) (11.18, 11.52, 13.21)
1.3 (5.73, 5.82, 6.19) (5.83, 5.92, 6.29) (5.94, 6.02, 6.39) (6.04, 6.12, 6.49) (6.14, 6.23, 6.59) (6.25, 6.33, 6.69)
1.5 (2.22, 2.26, 2.42) (2.27, 2.30, 2.46) (2.31, 2.35, 2.51) (2.35, 2.39, 2.55) (2.39, 2.43, 2.59) (2.44, 2.48, 2.63)
2.0 (1.15, 1.16, 1.22) (1.16, 1.17, 1.23) (1.17, 1.19, 1.24) (1.19, 1.20, 1.26) (1.20, 1.21, 1.27) (1.21, 1.23, 1.29)

Table 8: ARL values of two-sided EWMA-γ2 control charts in the presence of measure-
ment errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side), for
different values of θ, η = 0.28, τ , n, B = 1, m = 1.
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n = 5
τ B = 1 B = 2 B = 3 B = 4 B = 5

0.5 (9.51, 10.00, 12.62) (9.40, 9.88, 12.43) (9.36, 9.84, 12.40) (9.34, 9.83, 12.39) (9.33, 9.82, 12.39)
0.7 (14.09, 14.83, 19.16) (13.83, 14.55, 18.73) (13.75, 14.47, 18.65) (13.71, 14.43, 18.62) (13.68, 14.40, 18.60)
0.8 (28.10, 29.72, 41.06) (27.43, 28.98, 39.77) (27.20, 28.75, 39.52) (27.10, 28.64, 39.43) (27.03, 28.58, 39.38)
1.3 (15.06, 15.23, 16.18) (14.45, 14.61, 15.53) (14.25, 14.41, 15.33) (14.15, 14.31, 15.23) (14.09, 14.25, 15.17)
1.5 (5.94, 6.03, 6.42) (5.66, 5.75, 6.12) (5.57, 5.66, 6.02) (5.53, 5.61, 5.98) (5.50, 5.59, 5.95)
2.0 (2.56, 2.60, 2.77) (2.43, 2.46, 2.62) (2.38, 2.42, 2.58) (2.36, 2.40, 2.56) (2.35, 2.39, 2.54)

n = 7
τ B = 1 B = 2 B = 3 B = 4 B = 5

0.5 (7.00, 7.30, 8.76) (6.91, 7.21, 8.63) (6.89, 7.18, 8.61) (6.87, 7.17, 8.60) (6.87, 7.16, 8.60)
0.7 (10.40, 10.85, 13.23) (10.21, 10.65, 12.95) (10.14, 10.58, 12.88) (10.11, 10.55, 12.86) (10.10, 10.54, 12.85)
0.8 (21.01, 22.00, 27.98) (20.49, 21.45, 27.15) (20.33, 21.27, 26.96) (20.24, 21.19, 26.89) (20.19, 21.14, 26.84)
1.3 (11.40, 11.54, 12.23) (10.93, 11.06, 11.74) (10.77, 10.91, 11.58) (10.69, 10.83, 11.50) (10.65, 10.78, 11.46)
1.5 (4.45, 4.52, 4.82) (4.24, 4.31, 4.59) (4.17, 4.24, 4.52) (4.14, 4.21, 4.48) (4.12, 4.19, 4.46)
2.0 (1.95, 1.98, 2.12) (1.86, 1.89, 2.02) (1.83, 1.86, 1.98) (1.81, 1.84, 1.97) (1.81, 1.84, 1.96)

n = 10
τ B = 1 B = 2 B = 3 B = 4 B = 5

0.5 (5.13, 5.31, 6.13) (5.07, 5.25, 6.05) (5.05, 5.23, 6.03) (5.04, 5.22, 6.02) (5.04, 5.22, 6.02)
0.7 (7.63, 7.91, 9.23) (7.49, 7.76, 9.04) (7.44, 7.71, 8.99) (7.42, 7.69, 8.97) (7.41, 7.67, 8.96)
0.8 (15.59, 16.19, 19.40) (15.20, 15.77, 18.85) (15.07, 15.64, 18.70) (15.00, 15.58, 18.64) (14.97, 15.54, 18.61)
1.3 (8.57, 8.68, 9.19) (8.21, 8.32, 8.81) (8.09, 8.20, 8.69) (8.03, 8.14, 8.63) (8.00, 8.11, 8.59)
1.5 (3.33, 3.38, 3.61) (3.18, 3.23, 3.44) (3.13, 3.18, 3.39) (3.10, 3.15, 3.36) (3.09, 3.14, 3.35)
2.0 (1.52, 1.54, 1.64) (1.46, 1.48, 1.57) (1.44, 1.46, 1.55) (1.43, 1.45, 1.54) (1.42, 1.44, 1.53)

n = 15
τ B = 1 B = 2 B = 3 B = 4 B = 5

0.5 (3.62, 3.75, 4.21) (3.57, 3.70, 4.16) (3.55, 3.68, 4.15) (3.55, 3.67, 4.14) (3.54, 3.67, 4.14)
0.7 (5.42, 5.58, 6.30) (5.32, 5.47, 6.17) (5.29, 5.44, 6.14) (5.27, 5.42, 6.12) (5.26, 5.41, 6.12)
0.8 (11.18, 11.52, 13.21) (10.89, 11.22, 12.84) (10.80, 11.13, 12.74) (10.75, 11.08, 12.69) (10.72, 11.05, 12.67)
1.3 (6.25, 6.33, 6.69) (5.99, 6.07, 6.41) (5.90, 5.98, 6.32) (5.86, 5.94, 6.28) (5.83, 5.91, 6.25)
1.5 (2.44, 2.48, 2.63) (2.33, 2.37, 2.52) (2.29, 2.33, 2.48) (2.27, 2.31, 2.46) (2.26, 2.30, 2.45)
2.0 (1.21, 1.23, 1.29) (1.18, 1.19, 1.25) (1.17, 1.18, 1.23) (1.16, 1.18, 1.23) (1.16, 1.17, 1.22)

Table 9: ARL values of two-sided EWMA-γ2 control charts in the presence of measure-
ment errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side), for
different values of B, τ , n, η = 0.28, θ = 0.01, m = 1.
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n = 5
τ m = 1 m = 3 m = 5 m = 7 m = 10

0.5 (9.51, 10.00, 12.62) (9.51, 9.97, 12.42) (9.50, 9.96, 12.38) (9.50, 9.96, 12.36) (9.50, 9.96, 12.35)
0.7 (14.09, 14.83, 19.16) (14.08, 14.78, 18.80) (14.08, 14.77, 18.73) (14.08, 14.76, 18.70) (14.08, 14.76, 18.68)
0.8 (28.10, 29.72, 41.06) (28.08, 29.60, 40.00) (28.07, 29.58, 39.80) (28.07, 29.57, 39.71) (28.07, 29.56, 39.64)
1.3 (15.06, 15.23, 16.18) (15.06, 15.21, 16.11) (15.06, 15.21, 16.10) (15.06, 15.21, 16.09) (15.06, 15.21, 16.09)
1.5 (5.94, 6.03, 6.42) (5.93, 6.02, 6.40) (5.93, 6.02, 6.39) (5.93, 6.02, 6.39) (5.93, 6.02, 6.39)
2.0 (2.56, 2.60, 2.77) (2.56, 2.59, 2.75) (2.56, 2.59, 2.75) (2.56, 2.59, 2.75) (2.55, 2.59, 2.75)

n = 7
τ m = 1 m = 3 m = 5 m = 7 m = 10

0.5 (7.00, 7.30, 8.76) (6.99, 7.28, 8.65) (6.99, 7.27, 8.63) (6.99, 7.27, 8.62) (6.99, 7.27, 8.61)
0.7 (10.40, 10.85, 13.23) (10.39, 10.82, 13.05) (10.39, 10.81, 13.01) (10.39, 10.81, 12.99) (10.39, 10.81, 12.98)
0.8 (21.01, 22.00, 27.98) (21.00, 21.93, 27.47) (20.99, 21.92, 27.37) (20.99, 21.91, 27.33) (20.99, 21.91, 27.30)
1.3 (11.40, 11.54, 12.23) (11.40, 11.53, 12.18) (11.40, 11.52, 12.17) (11.40, 11.52, 12.17) (11.40, 11.52, 12.17)
1.5 (4.45, 4.52, 4.82) (4.45, 4.51, 4.80) (4.45, 4.51, 4.79) (4.45, 4.51, 4.79) (4.45, 4.51, 4.79)
2.0 (1.95, 1.98, 2.12) (1.95, 1.98, 2.11) (1.95, 1.98, 2.11) (1.95, 1.98, 2.11) (1.95, 1.98, 2.11)

n = 10
τ m = 1 m = 3 m = 5 m = 7 m = 10

0.5 (5.13, 5.31, 6.13) (5.13, 5.30, 6.07) (5.13, 5.30, 6.06) (5.13, 5.30, 6.06) (5.13, 5.30, 6.05)
0.7 (7.63, 7.91, 9.23) (7.63, 7.89, 9.13) (7.63, 7.88, 9.11) (7.63, 7.88, 9.11) (7.63, 7.88, 9.10)
0.8 (15.59, 16.19, 19.40) (15.58, 16.15, 19.14) (15.58, 16.14, 19.09) (15.58, 16.13, 19.07) (15.58, 16.13, 19.06)
1.3 (8.57, 8.68, 9.19) (8.57, 8.67, 9.15) (8.57, 8.67, 9.15) (8.57, 8.67, 9.14) (8.57, 8.67, 9.14)
1.5 (3.33, 3.38, 3.61) (3.33, 3.38, 3.59) (3.33, 3.38, 3.59) (3.33, 3.38, 3.59) (3.33, 3.38, 3.59)
2.0 (1.52, 1.54, 1.64) (1.52, 1.54, 1.64) (1.52, 1.54, 1.63) (1.52, 1.54, 1.63) (1.52, 1.54, 1.63)

n = 15
τ m = 1 m = 3 m = 5 m = 7 m = 10

0.5 (3.62, 3.75, 4.21) (3.62, 3.74, 4.18) (3.62, 3.74, 4.18) (3.62, 3.74, 4.17) (3.62, 3.74, 4.17)
0.7 (5.42, 5.58, 6.30) (5.42, 5.57, 6.25) (5.42, 5.57, 6.24) (5.42, 5.57, 6.24) (5.42, 5.57, 6.23)
0.8 (11.18, 11.52, 13.21) (11.17, 11.50, 13.08) (11.17, 11.49, 13.06) (11.17, 11.49, 13.05) (11.17, 11.49, 13.04)
1.3 (6.25, 6.33, 6.69) (6.25, 6.33, 6.67) (6.25, 6.33, 6.66) (6.25, 6.32, 6.66) (6.25, 6.32, 6.66)
1.5 (2.44, 2.48, 2.63) (2.44, 2.47, 2.62) (2.44, 2.47, 2.62) (2.44, 2.47, 2.62) (2.44, 2.47, 2.62)
2.0 (1.21, 1.23, 1.29) (1.21, 1.23, 1.28) (1.21, 1.23, 1.28) (1.21, 1.23, 1.28) (1.21, 1.23, 1.28)

Table 10: ARL values of two-sided EWMA-γ2 control charts in the presence of mea-
surement errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side), for
different values of m, τ , n, η = 0.28, θ = 0.05, B = 1.
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η θ γ0 n = 5 n = 7 n = 10 n = 15

0.10 0.01 0.05 (0.0501,2.1425) (0.0502,2.1942) (0.0578,2.2619) (0.0690,2.3348)
(0.0501,2.6910) (0.0502,2.6473) (0.0579,2.6755) (0.0720,2.7294)

0.10 (0.0500,2.0801) (0.0501,2.1401) (0.0552,2.2101) (0.0683,2.2989)
(0.0500,2.7439) (0.0509,2.7007) (0.0598,2.7286) (0.0725,2.7632)

0.15 (0.0500,1.9813) (0.0500,2.0545) (0.0530,2.1307) (0.0651,2.2344)
(0.0500,2.8353) (0.0531,2.7996) (0.0610,2.8025) (0.0732,2.8188)

0.20 (0.0500,1.8526) (0.0500,1.9425) (0.0502,2.0234) (0.0610,2.1454)
(0.0501,2.9688) (0.0556,2.9316) (0.0634,2.9100) (0.0740,2.8951)

0.28 0.05 0.05 (0.0500,2.1426) (0.0501,2.1940) (0.0560,2.2566) (0.0675,2.3311)
(0.0501,2.6908) (0.0502,2.6471) (0.0574,2.6714) (0.0696,2.7150)

0.10 (0.0500,2.0811) (0.0501,2.1409) (0.0540,2.2065) (0.0656,2.2924)
(0.0500,2.7430) (0.0501,2.6929) (0.0588,2.7205) (0.0704,2.7505)

0.15 (0.0500,1.9833) (0.0500,2.0563) (0.0520,2.1279) (0.0627,2.2281)
(0.0500,2.8333) (0.0519,2.7876) (0.0593,2.7887) (0.0710,2.8054)

0.20 (0.0500,1.8560) (0.0500,1.9455) (0.0500,2.0248) (0.0595,2.1419)
(0.0501,2.9650) (0.0545,2.9199) (0.0615,2.8945) (0.0725,2.8848)

Table 11: Optimal couples (λ∗,K∗) for downward EWMA-γ2 (first row of each block)
and optimal couples (λ∗,K∗) for upward EWMA-γ2 (second row of each block), in the
presence of measurement errors, for different values of η, θ, n, γ0, B = 1 and m = 1.

Phase II

k X∗1 X∗2 X∗3 X∗4 X∗5 S∗i X̄∗i γ̂∗ γ̂∗2 Z∗i S∗i
1 50.67 49.45 49.88 49.91 50.26 0.4571 50.0320 0.0091 0.00008 0.000108 0.000106
2 49.59 50.21 50.23 49.58 49.76 0.3240 49.8757 0.0065 0.00004 0.000108 0.000102
3 49.69 50.46 49.21 50.26 50.08 0.4969 49.9386 0.0100 0.00010 0.000108 0.000102
4 49.48 50.71 50.04 49.99 50.54 0.4898 50.1502 0.0098 0.00010 0.000108 0.000102
5 50.73 50.00 51.16 49.76 50.52 0.5624 50.4334 0.0112 0.00013 0.000109 0.000103
6 49.42 51.25 50.28 51.85 49.45 1.0830 50.4510 0.0215 0.00046 0.000126 0.000126
7 49.17 49.95 48.98 49.72 49.86 0.4307 49.5358 0.0087 0.00008 0.000124 0.000123
8 50.09 50.43 50.02 49.77 49.41 0.3800 49.9448 0.0076 0.00006 0.000121 0.000119
9 50.40 49.27 50.01 50.58 50.25 0.5100 50.1019 0.0102 0.00010 0.000120 0.000118
10 49.11 50.28 51.22 49.79 51.21 0.9145 50.3215 0.0182 0.00033 0.000130 0.000131
11 48.48 50.49 50.65 49.78 51.03 1.0047 50.0863 0.0201 0.00040 0.000144 0.000149
12 48.01 49.34 50.71 48.00 49.21 1.1244 49.0523 0.0229 0.00052 0.000163 0.000173
13 50.22 50.25 49.89 51.80 51.64 0.8886 50.7615 0.0175 0.00031 0.000170 0.000181
14 51.01 49.21 49.24 50.81 49.37 0.9035 49.9282 0.0181 0.00033 0.000178 0.000191
15 49.33 48.82 49.02 50.28 49.67 0.5734 49.4236 0.0116 0.00013 0.000176 0.000187
16 51.16 50.11 48.63 50.64 50.32 0.9481 50.1721 0.0189 0.00036 0.000185 0.000198
17 51.04 49.48 50.35 49.19 50.22 0.7336 50.0560 0.0147 0.00022 0.000186 0.000199
18 49.22 50.91 50.43 51.80 51.35 0.9919 50.7413 0.0195 0.00038 0.000196 0.000211
19 49.99 49.58 50.38 50.07 49.44 0.3815 49.8924 0.0076 0.00006 0.000189 0.000201
20 49.26 49.01 50.17 49.55 51.07 0.8249 49.8131 0.0166 0.00028 0.000194 0.000206

Table 12: Illustrative example of Phase II dataset.
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λ = 0.2; B = 1; m = 1; ΩD = [0.5; 1)

γ = 0.05 γ = 0.2
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Figure 1: The effect of η and θ on the overall performance of the EWMA-γ2 control
charts in the presence of measurement errors for λ = 0.2, ARL0 = 370.4, B = 1, m = 1,
n ∈ {5, 15}, γ0 ∈ {0.05, 0.2}
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λ = 0.2; η = 0.28; θ = 0.05; m = 1; ΩD = [0.5; 1)

γ = 0.05 γ = 0.2
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λ = 0.2; η = 0.28; θ = 0.05; m = 1; ΩI = (1; 2]
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Figure 2: The effect of B on the overall performance of the EWMA-γ2 control charts in
the presence of measurement errors for n = 5 (-�-) and n = 15 (-�-), λ = 0.2, m = 1,
ARL0 = 370.4, η = 0.28, θ = 0.05, n ∈ {1, 15}, γ0 ∈ {0.05, 0.2}
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λ = 0.2; η = 0.28; θ = 0.05; B = 1; ΩD = [0.5; 1)

γ = 0.05 γ = 0.2
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λ = 0.2; η = 0.28; θ = 0.05; B = 1; ΩI = (1; 2]
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Figure 3: The effect of m on the overall performance of the EWMA-γ2 control charts
in the presence of measurement errors for n = 5 (-�-) and n = 15 (-�-), λ = 0.2, B = 1,
ARL0 = 370.4, η = 0.28, θ = 0.05, n ∈ {1, 15}, γ0 ∈ {0.05, 0.2}
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Figure 4: Shewhart-CV control chart applied to the sintering process (Phase II).
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Figure 5: Upward EWMA-γ2 control chart applied to the sintering process (Phase II).
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Figure 6: Two-sided EWMA-γ2 control chart applied to the sintering process (Phase
II).
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