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Abstract This paper examines the behavior of current and next gen-
eration microprocessors’ fetch engines while running Decision Support
Systems (DSS) workloads. We analyze the effect of the latency of in-
structions being fetched, their quality and the number of instructions
that the fetch engine provides per access. Our study reveals that a well
dimensioned fetch engine is of great importance for DSS performance,
showing gains over 100% between a conventional fetch engine and a per-
fect one. We have found that, in many cases, the I-cache size bounds the
benefits that one might expect from a better branch prediction.

The second part of our study focuses on the performance benefits of a
code reordering technique for the Database Management System (DBMS)
that runs our DSS workload. Our results show that the reordering has a
positive effect on the three parameters and can speed-up the DSS exe-
cution by 21% for a 4 issue processor, and 27% for an 8 issue one.

1 Introduction

Fetch engine performance is characterized by three different factors: the latency
of instructions being fetched from memory, the number of instructions fetched
per access, and the quality of those instructions.

Instruction latency is caused by the speed gap between processing and mem-
ory. While the pipeline needs new instructions every cycle, the memory can only
supply them at a ratio of tens or even hundreds of cycles. Reducing the I-cache
misses has been addressed using software and hardware techniques. On the soft-
ware side we have code reordering techniques, like [7,11]. On the hardware side
we have set associative caches, hardware instruction prefetching [17], and victim
caches [8], among others.

The number of instructions fetched per cycle, fetch bandwidth, is a problem
when more than one basic block has to be provided per cycle. Bandwidth is
limited by the execution of non-contiguous instructions and the hardware width
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of the fetch engine. The execution of non-contiguous basic blocks has been ad-
dressed also, both in hardware and software. The hardware solutions comprise
the branch address cache [20], the collapsing buffer [5], and the trace cache
[10,15]. Also, in our previous work [12,13] we have addressed this problem with
a software code reordering technique, the Software Trace Cache (STC), and the
interaction between the software and hardware trace cache [14].

The quality of instructions is determined by branch prediction accuracy. Dy-
namic branch prediction schemes have been used during the last years to avoid
stopping the fetch until branch resolution [16]. But the use of this prediction
mechanisms also introduces wrong path instructions in the pipeline whenever a
branch is mispredicted. A lot of work has been done during the last years to
increase branch prediction accuracy [6,16,21].

DBMSs are highly structured codes, perform many procedure calls and have
plenty of control statements to handle all types of error situations. This causes a
great level of control flow activity in the code and larger instruction working sets
when compared with other common integer codes[1,2]. Recent work has shown
that those instruction working sets can be a problem for the instruction cache
sizes used in current generation microprocessors [1].

Our results show that for DSS workloads, the fetch engine has a large influ-
ence on the IPC. In Figure 1 we compare the performance of a conventional fetch
engine against the best fetch engine possible for 4 and 8 issue superscalars. This
perfect fetch engine returns the full width of the next correct path instructions
every cycle. That is, it does not have latency problems, it uses all the possible
bandwidth, and it uses a perfect branch prediction. We can see that the perfect
fetch engine shows speedups of 98% and 59% over the 16KB and 32KB engines
for the 4 issue processor and of 116% and 70% for the 8 issue processor.

With all this evidence, we study how DBMSs exercise the different parts
of the current processors’ fetch engines, and how different improvements on the
fetch engine can help their execution. We analyze the fetch impact on the overall
performance, the isolated behavior of the three main fetch parameters, and their
effect on performance. We also analyze the effects of a code reordering technique
on each fetch engine component and its effect on performance.

The rest of the paper is structured as follows. Section 2 presents our exper-
imental setup. Sections 3, 4, and 5 study the isolated effect on performance of
fetch latency, quality and bandwidth. Section 6 addresses the effects of applying
a code reordering scheme to our workload. Finally we conclude in Section 7.

2 Experimental Setup

Our DSS workload runs on top of the PostgresSQL 6.3 DBMS [18]. Our workload
is modeled with a session that executes queries 3 and 17 of the Transaction
processing council TPC-D benchmark [19].

We set up the Alpha version of the Postgres 6.3 database on digital Unix v4.0
compiled with the -O3 flags of the Digitals’s C compiler. A TPC-D database is
used with scale factor 0.1 (100MB of raw data).
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Fig.1. Comparison between two conventional fetch engines and the perfect
one for 4 and 8 issue superscalar processors. The experiment shows results for
cache sizes of 16KB and 32KB. The conventional fetch engine uses a 2048 entries
Bimodal predictor.

The simulator used in this study is based on the sim-outorder timing sim-
ulator included in the Simplescalar-Alpha v3.0 tool set [4]. Table 1 shows the
configuration we have used for our baseline architecture. The I-cache and branch
prediction setups are varied across the study. Since the complete execution re-
quires over a billion instructions, we have used sampling in order to reduce
simulation times. Simulations are performed using the following sequence: 50
Million detailed simulation sample followed by a 150 Million fast simulation
sample where we just emulate the ISA.

We model a branch misprediction in the following way. When a branch mis-
prediction is detected, the execution engine spends a fixed number of cycles
arranging the window and other internals before re-starting the fetch in the cor-
rect path. This number of cycles is what we call misprediction recovery penalty
and it is a simulation parameter. After those cycles, fetch is re-started and the
issue of correct path instructions restarts 2 cycles later[9].

In this work we are using two different processor widths, 4 and 8. The fetch
engine for the 4 issue processor predicts a single branch per cycle, while for the
8 issue processor it can predict a second branch if the first was not taken.

3 Effect of Instruction Latency on Performance

The first parameter we explore is the latency of the instructions being fetched
from memory, and the impact that it has on the overall performance. Our anal-
ysis will be structured as follows: First we will show the perceived latency for

Parameters Values Parameters Values

Core Misprediction recovery penalty 1
Issue width 4,8 Memory
Window size 128 Inst L1 several sizes/ 32 byte/ 2 way

L/S queue size 128 Data L1 64K/ 32 byte/ 2 way
FUs Unbound fully pipelined Combined L2 2MB/ 64 byte/ 2 way

Branch prediction Latencies 1/ 7 / 80
Direction Several schemes Instruction TLB 16 4K entries/ 4 way
Address BTB 4K entries/ 4 way Data TLB 32 4K entries/ 4way

RAS 128 entries

Table1. Baseline processor
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several cache sizes, and finally we will show how those latencies affect the overall
execution performance.

Given that with the current technology trends our L2 latency could be quite
aggressive, we will also provide results for a L2 latency of 15 cycles. This latency
is more feasible for future processor clock speeds, even with integration of L2 in
the processor die. For example, in [3], where a 1GHz processor with integrated
2MB L2 cache is evaluated, the latencies for L2 are larger than 15 cycles.

Our metric for the perceived instruction latency, will be the Average Mem-
ory Access Time for instructions (AMATi). This metric will show the average
latency that our fetch engine perceives per instruction. AMATi is computed as:
Icache miss rate∗L2 latency+(Icache miss rate∗L2 instruction miss rate)∗
memory latency. With an AMATi equal to 1, the fetch engine would never block
waiting for instructions.

Figure 2(a) shows the AMATi for several I-cache sizes when we use both 7
and 15 cycles L2 latencies. We observe that with an 8KB I-cache the fetch engine
must wait more than 1.5 cycles per instruction or even 2.08 cycles for a 15 cycles
L2 latency. We can also see that for 15 cycles, even a 64KB I-cache shows a
latency that still is far from the desired 1. Our results show that the working set
starts to fit in caches with sizes of 128KB or larger. This is not strange because
the instruction footprint of our queries is larger than 230KB.

Figure 2(b) shows the IPC for different I-cache sizes using perfect branch
prediction for 7 cycles L2 latency. The perfect I-cache shown in that Figure is
used as an upper bound. Results are shown for both 4 and 8 issue processors.
We can see that the decrease in performance for I-caches smaller than 128KB
is important. This is due to the increase in exposed latency and is even more
evident if we focus on the 8 issue processor. For a 4 issue processor and caches
of 8 and 16KB it is better to double I-cache size than to double the issue width.

Figure 2(c) shows results for a 15 cycles L2 latency. We can see that the
slope for both 4 and 8 issue is steeper than the one of Figure 2(a). In this case,
the drops in IPC are significant even for large caches. For instance, we have
speedups of 18% and 23% in 4 and 8 issue processors when we go from a 64KB
to a 128KB I-cache.

4 Effect of Instruction Quality on Performance

In this section we want to quantify if the branch prediction accuracy has the same
importance as the I-cache performance. In order to inspect that, we have tested
the behavior of several branch predictors. In particular we have used Bimodal
and Gshare branch predictors of 10, 12, 14, 16, and 18 bits and Hybrid branch
predictors of 12 and 14 bits.

The branch prediction accuracy of those predictors is between 98.34% and
88.55%. In general, the branch prediction accuracy is good, compared to the
prediction rates obtained on several SpecInt95 benchmarks [6].

Figure 3(a) shows the IPC we can expect from a 4 issue processor running
the branch predictors we have tested. Results show an interesting effect. On one
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Fig.2. (a) AMATi in cycles for different L1 I-cache sizes and L2 latencies. Charts
(b),(c): IPC for several I-cache configurations. Chart (b) shows results for 7 cycle
L2 latency. Chart (c) shows results for 15 cycle L2 latency.

hand, the difference in branch prediction accuracy between the worst performing
branch predictor (G10) and the oracle one are clearly reflected in the IPC for
the results with a perfect I-cache. That is, the quality of instructions directly
enhances the overall performance. On the other hand, for the system with an
8KB I-cache, the benefits of the same increase in instruction quality are very
small. We can see that the impact on IPC of the increasing branch prediction
accuracy grows when we increase the I-cache size. So the perceived latency is
hiding the benefits of the increase in quality. Thus, for our workloads, spending a
lot of hardware in complex branch predictors is not cost effective unless AMATi

is small enough.
The results we have seen so far are for simulations where the misprediction

recovery penalty was set to 1. This leads to small branch misprediction penalties.
One question that could arise is, how the effect of latency over instruction quality
is modified by an increasing branch misprediction penalty.

Figure 3(b) shows results for branch misprediction recovery cycles equal to
6 leading to penalties of at least 8 cycles. In that Figure, we can see that,
the effect observed in the last section still exists when we have larger branch
misprediction penalties. For branch misprediction recovery of 6 cycles it is still
better to duplicate an 8KB I-cache than to have a perfect branch predictor.

If we have a design with a misprediction recovery time of 12 cycles (chart
found at [9]), it is always better to go to the perfect branch prediction than to
duplicate the cache size. However, it is interesting to note that I-cache size is still



On the Performance of Fetch Engines Running DSS Workloads 945

Perfect H14 H12 G18 G16 G14 G12 G10 B18 B16 B14 B12 B10

branch_predictors

1.0

1.5

2.0

2.5

IP
C

1_cycle_misprediction_recovery_penalty

2.39

2.16 2.14 2.17 2.15 2.12

2.01

1.85

2.09 2.09 2.08 2.07 2.04

1.86

1.73 1.71 1.73 1.72 1.70
1.64

1.53

1.68 1.68 1.68 1.67 1.66

1.45
1.38 1.37 1.38 1.38 1.36 1.32

1.26
1.35 1.36 1.35 1.34 1.34

1.10 1.06 1.06 1.06 1.06 1.06 1.04 1.00
1.05 1.05 1.05 1.05 1.04

(a)

Perfect H14 H12 G18 G16 G14 G12 G10 B18 B16 B14 B12 B10

branch_predictors

1.0

1.5

2.0

2.5

IP
C

6_cycles_misprediction_recovery_penalty

Perfect
32KB
16KB
8KB

2.39

2.03 1.99
2.04 2.01

1.95

1.78

1.54

1.91 1.91 1.90 1.89
1.831.86

1.64 1.62 1.65 1.64
1.60

1.49

1.32

1.57 1.57 1.56 1.56 1.52
1.45

1.33 1.31 1.33 1.32 1.30
1.23

1.12

1.28 1.28 1.28 1.27 1.25

1.10
1.03 1.02 1.04 1.03 1.02 0.98

0.92
1.01 1.01 1.01 1.00 0.99

(b)

Fig.3. IPC for each of the branch predictors tested. Charts (a) is for mispredic-
tion recovery penalties of 1 cycles, while chart (b) is for misprediction recovery
penalties of 6 cycles. All simulations are for a 4 issue processor and L2 latency
of 7 cycles.

having a bounding effect on the performance benefits of better branch prediction
accuracy.

5 Effect of Fetch Bandwidth on Performance

Instruction fetch bandwidth will be a major limiting factor to high performance
in next generation microprocessors. Nevertheless, fetch bandwidth could be also
a problem for 4 or 8 issue processors.

Several experiments have been performed to characterize the impact that
fetch bandwidth has on the performance. In particular we have tested the impact
of increasing the fetch bandwidth for a 4 issue processor to 8 instructions per
cycle. The complete analysis can be found at [9] and has not been shown here
due to space limitations.

Our results show that for 4 and 8 issue processors, large increases in band-
width do not reflect in such improvements in IPC. Thus, for our workload and
issue widths, increasing the fetch bandwidth is not critical. Instead, its is more
important to fetch the right path instructions.

6 Code Reordering

In the previous sections we have shown the high impact that the fetch engine
design can have in the overall execution performance of our DSS workload. From
this evidence, it seems that for our workloads, it can be interesting to use a
supplementary technique in order to help I-caches. This technique can be a code
reordering scheme.

Code reordering techniques have been used for a long time in order to reduce
the I-cache misses [11]. In our previous work, [12,13,14] we have shown that DSS
workloads are a good target for these techniques. In particular we presented a
reordering technique, the Software Trace Cache (STC), aimed at increasing the
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fetch bandwidth for future aggressive wide superscalars. This technique has been
proven as efficient increasing the number of non taken branches and reducing
the I-cache misses.

In this section we want to characterize how the application of the STC re-
ordering affects each of the fetch parameters and how the overall performance
can benefit from it. In order to do so, we have used the same PC translation
mechanisms used in [13] to simulate the reordering, and we have performed
simulations for three different I-cache sizes: 8, 16 and 32 KB.

First, we will study the impact of the STC reordering on the latency. Figure
4(a) shows the AMATi for both reordered and non reordered workloads. We
can see that for the same I-cache size, the reordered workload always shows a
lower latency. We can see that for a 32KB I-cache, the reordered workload has
an AMATi of the same order as a 64KB one with a non reordered workload.
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Fig.4. (a) AMATi for both reordered and non reordered workload. Results for
STC are shown up to 32KB I-cache. (b) Branch prediction hit rates for both
reordered and non reordered workload. The branch predictors are the same used
in Section 4. (c)Fetched Instructions per Access (FIPA) for both reordered and
non reordered workload. The 2 leftmost bars are for 4 issue, while the right ones
are for 8 issue.

The second aspect we want to analyze is the impact that the STC has in
the quality of the fetched instructions. Figure 4(b), shows the branch prediction
hit rate for both reordered and non reordered workloads, for the same branch
predictors used in Section 4. Results show that the branch prediction accuracy
improves always. This is not strange because the STC reorders the basic blocks in
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order to leave the biased branches in a not taken form. This leads to a reduction
in the destructive conflicts in the branch prediction tables.

The third parameter we want to analyze is the effect that the reordering
has in the effective fetch bandwidth. This effect has been shown in [12,13] for
aggressive superscalar processors. Here we want to study it for our 4 and 8 issue
superscalars. Figure 4(c) shows the number of fetched instructions per access to
the fetch engine (FIPA) for the baseline engine on the 4 and 8 issue superscalar
processors. In this simulations the branch prediction scheme used is the H12 and
the I-cache evaluated is 32KB.

The results show that, while the increase in bandwidth for 4 issue superscalar
is small, the increase for 8 issue is bigger (about 12%). This fact, coupled with
the branch prediction accuracy results, means that we are not only fetching more
instructions but more accurate instructions.

Finally we want to see the overall effect that our STC technique has over
the execution performance. Figure 5 shows the performance increases that a
conventional fetch engine would expect if the code was reordered with the STC.
Results show that for the three configurations we have tested with STC, we
always have similar performance to a system with double I-cache size.
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Fig.5. Comparison between the IPC of a non-reordered and a STC reordered
workload. Chart (a) show results for 4 issue while chart(b) shows results for 8
issue. Bottom line shows the IPC for the baseline issue processor with the H12
branch predictor and several cache sizes. Upper line shows the IPC of the same
configuration if the code is reordered using the STC.

7 Concluding Remarks

In this paper we have analyzed the high performance impact that the fetch engine
behavior has on the overall performance of a current superscalar processor while
running DSS workloads. We have seen that a bad tuning of the engine can lead
to high penalties in the IPC.

The impact of the three main parameters of the fetch engine has been studied.
In particular we have seen that, due to the size of the working set of our workload,
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the impact of I-cache misses is the most important. The fetch engine can not
tolerate the latencies of L2 caches. This effect can even hide the benefits of a
better branch predictor. So, for these workloads it is more important to spend
chip area in hiding L2 cache latency (bigger I-cache for example) than adding a
more complex branch predictor.

Finally, we have shown how a code reordering technique (STC) affects the
behavior of the different fetch parameters. It is specially interesting the fact that
the branch prediction accuracy is improved without extra hardware cost. Also,
we have seen that the STC can speed-up the DSS execution in more than 21%
for a 4 issue processor, and 27% for an 8 issue one.
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