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On the Performance of Indirect Encoding Across
the Continuum of Regularity

Jeff Clune, Kenneth O. Stanley, Robert T. Pennock, and Charles Ofria

Abstract—This paper investigates how an evolutionary al-
gorithm with an indirect encoding exploits the property of
phenotypic regularity, an important design principle found in
natural organisms and engineered designs. We present the first
comprehensive study showing that such phenotypic regularity
enables an indirect encoding to outperform direct encoding con-
trols as problem regularity increases. Such an ability to produce
regular solutions that can exploit the regularity of problems is
an important prerequisite if evolutionary algorithms are to scale
to high-dimensional real-world problems, which typically contain
many regularities, both known and unrecognized. The indirect
encoding in this case study is HyperNEAT, which evolves artificial
neural networks (ANNs) in a manner inspired by concepts
from biological development. We demonstrate that, in contrast
to two direct encoding controls, HyperNEAT produces both
regular behaviors and regular ANNs, which enables HyperNEAT
to significantly outperform the direct encodings as regularity
increases in three problem domains. We also show that the types
of regularities HyperNEAT produces can be biased, allowing
domain knowledge and preferences to be injected into the search.
Finally, we examine the downside of a bias toward regularity.
Even when a solution is mainly regular, some irregularity may
be needed to perfect its functionality. This insight is illustrated
by a new algorithm called HybrID that hybridizes indirect and
direct encodings, which matched HyperNEAT’s performance on
regular problems yet outperformed it on problems with some
irregularity. HybrID’s ability to improve upon the performance
of HyperNEAT raises the question of whether indirect encodings
may ultimately excel not as stand-alone algorithms, but by being
hybridized with a further process of refinement, wherein the
indirect encoding produces patterns that exploit problem regu-
larity and the refining process modifies that pattern to capture
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irregularities. This paper thus paints a more complete picture
of indirect encodings than prior studies because it analyzes the
impact of the continuum between irregularity and regularity on
the performance of such encodings, and ultimately suggests a
path forward that combines indirect encodings with a separate
process of refinement.

Index Terms—Artificial neural networks, developmental en-
codings, generative encodings, HyperNEAT, indirect encodings,
regularity.

I. Introduction and Motivation

A
LONG-STANDING challenge for those who work with

evolutionary algorithms (EAs) is to synthetically evolve

entities that rival or surpass the complexity of both natural or-

ganisms and designs produced through human engineering. A

key design principle critical to the success of both is regularity.

Regularity refers to the compressibility of the information de-

scribing a structure, and typically involves symmetries and the

repetition of modules or other design motifs [1]. Regularities

allow solutions to sub-problems to be reused in a design, as

in the cells of a body or the wheels of a car.

The level of regularity that an EA tends to produce is

affected by the encoding, which is how information is stored

in the genome and the process by which that information

produces the phenotype. Regularity in evolved solutions is

less likely to emerge with direct encodings, wherein each

element in the genotype encodes an independent aspect of

the phenotype. In contrast, regularities are common with

indirect encodings (also known as generative or developmental

encodings), wherein information in the genome can be reused

to affect many parts of the phenotype [2]. Natural organisms

are regular largely because they are encoded indirectly [3]–[5].

Reusing genetic information also facilitates scalability. With

indirect encodings, evolution can search in a low-dimensional

space yet produce phenotypes with many more dimensions.

For example, only about 25 000 genes encode the information

that produces the trillions of cells that make up a human [6].

Many prior studies have shown that indirect encodings

often outperform direct encodings [2], [7]–[14]. However,

in each case the problem domain is highly regular, or the

regularity of the problem is unspecified and ambiguous. To

date, no systematic study has been performed on how indirect

encodings perform across a continuum from regular problems

to irregular problems. This gap in our knowledge raises the

question of whether indirect encodings achieve their increased

performance on regular problems at the expense of performing
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poorly on problems with intermediate or low regularity. To fill

that gap, this paper provides a systematic comparison of an

indirect encoding and two direct encoding controls on multiple

problems as problem regularity is varied from high to low.

The indirect encoding in this paper is motivated by a key

concept from developmental biology. Nature builds complex

organisms by producing increasingly complex geometric co-

ordinate frames, and then determining the fate of pheno-

typic elements as a function of their location within such

frames [3]. This process produces phenotypes with regularity,

modularity, and hierarchy [3], [15], which are beneficial design

principles [1]. Yet the exploitation of geometric information

in natural organisms is challenging because each phenotypic

element (e.g., a cell) does not have access to its global

geometric position. Developing organisms therefore first have

to generate such positional information via chemical gradients

before exploiting it. In synthetic evolution, however, we can

skip this first step by assigning geometric coordinates to

phenotypic elements and allowing a genome to determine

the fates of phenotypic elements as a function of these

coordinates [16]. This technique allows evolution to start with

geometric information and immediately exploit it, instead of

first needing to discover how to produce geometric information

before exploiting it.

One encoding that harnesses this idea is hypercube-

based neuroevolution of augmenting topologies (HyperNEAT).

HyperNEAT’s explicit incorporation of geometry enables it

to exploit geometric relationships in a problem domain [14],

[17]–[19]. HyperNEAT has performed well on a wide range

of problems, such as generating gaits for legged robots [20],

pattern recognition [14], controlling multiagent teams [21],

[22], and evaluating checkers boards [18], [19]. Additionally,

on a soccer keepaway task that is a common benchmark for

reinforcement learning algorithms, HyperNEAT produced the

highest score to date for any type of algorithm [23]. Because

HyperNEAT abstracts a key geometric ingredient that drives

the success of natural development, and because empirically

it has been shown to be a promising encoding, it is interesting

to observe the regularities that HyperNEAT produces. Specific

questions can be addressed, such as what types of regularities

HyperNEAT generates (e.g., repeating, symmetric, and so on),

whether it can create variations on repeated themes instead

of being restricted to identical repetitions, and what kinds of

irregular exceptions it can make to the patterns it generates.

An additional question of interest is whether the experimenter

can bias the regularities that HyperNEAT produces to inject

domain knowledge into the algorithm. All of these questions

are addressed in this paper.

Results in this paper show that HyperNEAT exploits even

intermediate problem regularity, and thus increasingly outcom-

petes direct encoding controls as problem regularity increases.

HyperNEAT achieves this success by producing regular ar-

tificial neural networks (ANNs) that in turn produce regular

behaviors. HyperNEAT also proves more evolvable than direct

encoding controls and its solutions generalize better.

However, an important accompanying result is that Hyper-

NEAT’s performance decreases on irregular problems, partly

because of its bias toward producing regularities. To investi-

gate this effect further, we introduce a new algorithm called

HybrID that allows the HyperNEAT indirect encoding to

produce regular patterns in concert with a direct encoding that

can modify these patterns to produce irregularities. HybrID

matches HyperNEAT’s performance on regular problems, but

outperforms HyperNEAT on problems with irregularity, which

demonstrates that HyperNEAT struggles to generate certain

kinds of irregularity on its own. The success of HybrID raises

the interesting question of whether indirect encodings may

truly excel not as stand-alone algorithms, but in combination

with a further process that refines their regular patterns.

Intriguingly, this further process in nature could be lifetime

adaptation via learning.

In the following sections, we introduce HyperNEAT, two

direct encoding controls, and the three problem domains. We

then relate the experimental results and discuss them before

offering concluding remarks.

II. HyperNEAT and the Direct Encoding Controls

In this section, we describe the indirect encoding Hyper-

NEAT and two direct encodings that serve as controls.

A. HyperNEAT

In 2007 an encoding was introduced called compositional

pattern producing networks (CPPNs), which abstracts the

process of natural development without requiring the sim-

ulation of diffusing chemicals [16]. When CPPNs encode

ANNs, the algorithm is called HyperNEAT [14], which is

described in detail below. A key idea behind CPPNs is that

complex patterns can be produced by determining attributes of

their phenotypic components as a function of their geometric

location. This idea is based on the belief that cells (or

higher-level modules) in nature often differentiate into their

possible types (e.g., kidney, liver, and so on) as a function of

where they are situated in geometric space. For example, for

some insects, a segment at the anterior pole should produce

antennae and a segment at the posterior pole should produce

a stinger.

Components of natural organisms cannot directly deter-

mine their location in space, so organisms have evolved

developmental processes that create chemical gradients that

organismal components use to figure out where they are and,

thus, what to become [3]. For example, early in the develop-

ment of embryos, different axes (e.g., anterior-posterior) are

indicated by chemical gradients. Additional gradients signaled

by different proteins can exist in the same area to represent a

different pattern, such as a repeating motif. Downstream genes,

such as Hox genes, can then combine repeated and asymmetric

information to govern segmental differentiation [3]. Further

coordinate frames can then be set up within segments to govern

intra-module patterns.

1) CPPNs: One of the key insights behind CPPNs is

that cells in silico can be directly given their geometric

coordinates. The CPPN genome is a function that takes

geometric coordinates as inputs and outputs the fate of an

organismal component. When CPPNs encode 2-D pictures, the

coordinates of each pixel on the canvas (e.g., x = 2, y = 4)
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Fig. 1. Compositional pattern producing networks. CPPNs compose math-
ematical functions to generate regularities, such as symmetries and repeated
modules, with and without variation. This figure is adapted from Stanley [16].

Fig. 2. Images evolved with CPPNs. Displayed are pictures from
picbreeder.org [24], a website where visitors select images from a population
evolved with the CPPN indirect encoding, which is also used in HyperNEAT.
The bottom row shows images from a single lineage. Arrows represent
intermediate forms that are not pictured.

are iteratively passed to the CPPN genome, and the output of

the function is the color or shade of the pixel (Fig. 1).

Each CPPN is a directed graph in which every node is

itself a single function, such as sine or Gaussian. The na-

ture of the functions can create a wide variety of desirable

properties, such as symmetry (e.g., a Gaussian function) and

repetition (e.g., a sine function) that evolution can exploit.

Because the genome allows functions to be made of other

functions, coordinate frames can be combined and hierarchies

can develop. For instance, a sine function early in the network

can create a repeating theme that, when passed into the

symmetrical Gaussian function, creates a repeating series of

symmetrical motifs (Fig. 1). This procedure is similar to the

natural developmental processes described above [3].

The links that connect and allow information to flow be-

tween nodes in a CPPN have a weight that can magnify or di-

minish the values that pass along them. Mutations that change

these weights may, for example, give a stronger influence to a

symmetry-generating part of a network while diminishing the

contribution from another part.

When CPPNs are evolved artificially with humans perform-

ing the selection, the evolved shapes look complex and natural

(Fig. 2) [24]. Moreover, these images display the features in

natural organisms that indirect encodings were designed to

produce, namely, symmetries and the repetition of themes,

with and without variation.

Fig. 3. HyperNEAT produces ANNs from CPPNs. Weights are specified as
a function of the geometric coordinates of the source node and the target node
for each connection. The coordinates of these nodes and a constant bias are
iteratively passed to the CPPN to determine each connection weight. If there
is no hidden layer, the CPPN has only one output, which specifies the weight
between the source node in the input layer and the target node in the output
layer. If there is a hidden layer in the ANN, the CPPN has two output values,
which specify the weights for each connection layer as shown. This figure is
adapted from Gauci and Stanley [18].

2) Encoding ANNs with CPPNs: In the HyperNEAT algo-

rithm, CPPNs encode ANNs instead of pictures, and evolution

modifies the population of CPPNs [14], [19]. HyperNEAT

evolves the weighs for ANNs with a fixed topology. The ANNs

in the experiments in this paper feature a 2-D, m×n Cartesian

grid of inputs and a corresponding m×n grid of outputs. If an

experiment uses an ANN with hidden nodes, the hidden nodes

are placed in their own 2-D layer between the input and output

grids. Recurrence is disabled, so each of the m×n nodes in a

layer has a link of a given weight to each of the m × n nodes

in the proximate layer, excepting output nodes, which have no

outgoing connections. Link weights can be zero, functionally

eliminating a link.

The inputs to the CPPNs are a constant bias value and

the coordinates of both a source node (e.g., x1 = 0, y1 = 0)

and a target node (e.g., x2 = 1, y2 = 1) (Fig. 3). The CPPN

takes these five values as inputs and produces one or two

output values, depending on the ANN topology. If there is

no hidden layer in the ANN, the single output is the weight

of the link between a source node on the input layer and a

target node on the output layer. If there is a hidden layer, the

first output value determines the weight of the link between

the associated input (source) node and hidden-layer (target)

node, and the second output value determines the weight of

the link between the associated hidden-layer (source) node

and output-layer (target) node. All pairwise combinations of

source and target node coordinates are iteratively passed as

inputs to the CPPN to determine the weight of each ANN

link. HyperNEAT can thus produce patterns in weight space

similar to the patterns it produces in 2-D pictures (Fig. 2).

An additional novel aspect of HyperNEAT is that it is

one of the first neuroevolutionary algorithms capable of ex-

ploiting the geometry of a problem [14], [17]–[19]. Because

the connection weights between nodes are a function of

the geometric positions of those nodes, if those geometric

positions represent aspects of the problem that are relevant

to its solution, HyperNEAT can exploit such information. For

example, when playing checkers, the concept of adjacency
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(on the diagonals) is important. Connection weights between

neighboring squares may need to be different than weights

between distant squares. HyperNEAT can create this kind of

connectivity motif and repeat it across the board [18], [19].

Producing such a regularity would be more difficult with an

encoding that does not include geometric information, because

there would be no easy way for such an algorithm to identify

which nodes are adjacent.

Variation in HyperNEAT occurs when mutations or

crossover change the CPPNs. Mutations can add a node, which

results in the addition of a function to the network, or change

its link weights. The allowable functions for CPPNs in this

paper are sine, sigmoid, Gaussian, and linear. The evolution

of the population of CPPN networks in HyperNEAT occurs ac-

cording to the principles of the widely used neuroevolution of

augmenting topologies (NEAT) algorithm [25]. NEAT, which

was originally designed to evolve ANNs, can be fruitfully

applied to CPPNs because a population of CPPNs is similar

in structure to a population of ANNs.

The NEAT algorithm contains three major components [25],

[26]. First, it starts with small genomes that encode simple

networks and slowly complexifies them via mutations that add

nodes and links to the network. This complexification enables

the algorithm to evolve the network topology in addition to

its weights. Second, NEAT uses a fitness-sharing mechanism

that preserves diversity in the population and allows new

innovations time to be tuned by evolution before forcing them

to compete against rivals that have had more time to mature.

Finally, historical information stored in genes helps to perform

crossover in a way that is effective, yet avoids the need for

expensive topological analysis. A full explanation of NEAT

can be found in Stanley and Miikkulainen [25].

B. FT-NEAT, a Direct Encoding Control for HyperNEAT

A common direct encoding control for HyperNEAT is fixed-

topology NEAT (FT-NEAT, also called perceptron NEAT or

P-NEAT when it does not have hidden nodes) [14], [17],

[20], [27]–[29]. FT-NEAT is similar to HyperNEAT in all

ways, except it directly evolves each weight in the ANN

independently instead of determining link weights via an

indirect CPPN. In other words, for FT-NEAT there is no

distinction between the genotype and phenotype, in contrast to

HyperNEAT (where the CPPN genome network encodes a dif-

ferent ANN phenotype). All other elements from NEAT (e.g.,

its crossover and diversity preservation mechanisms) remain

the same between HyperNEAT and FT-NEAT. Additionally,

the number of nodes in the ANN phenotype is the same

between HyperNEAT and FT-NEAT. Mutations in FT-NEAT

cannot add nodes, making FT-NEAT a degenerate version

of NEAT. Recall that the complexification in HyperNEAT is

performed on the CPPN genome, but that the number of nodes

in the resultant ANN is fixed. The end product of HyperNEAT

and FT-NEAT are thus ANNs with the same number of nodes,

whose weights are determined in different ways.

C. NEAT, a Second Direct Encoding Control for HyperNEAT

While FT-NEAT is a good control for HyperNEAT be-

cause it holds the number of nodes in the ANN constant,

HyperNEAT should also be compared against a cutting-edge

direct encoding neuroevolution algorithm, such as regular

NEAT [25]. The only difference between FT-NEAT and NEAT

is that in NEAT hidden nodes and connections can be added

during evolution. In those experiments in this paper where the

optimal number of hidden nodes is not known a priori, we

compare HyperNEAT to NEAT in addition to FT-NEAT.

D. Parameter Settings

The parameters for all of the experiments below

follow standard HyperNEAT and FT-NEAT conventions

[14], [17], [20], [27]–[29] and can be found online at

http://devolab.msu.edu/SupportDocs/Regularity. The results in

this paper were found to be robust to moderate variations of

these parameters.

III. The Three Experimental Problem Domains

The first two problem domains are diagnostic problems

that are designed to determine how the algorithms perform as

regularity is varied from low to high. The first problem, called

target weights, enables regularity to be scaled from zero to

complete. However, this problem has no interactions between

the different problem components. The second problem, bit

mirroring, adds such interactions between problem compo-

nents, making it a challenging problem with different types of

regularity that can each be adjusted, yet the optimal solution in

each case is known. The third problem, called the quadruped

controller problem, is a challenging, real-world problem in

which the regularity can be scaled and the optimal solution is

not known. While we have previously reported some results in

these domains [17], [20], [28], [29], this paper provides a more

extensive investigation of the performance of HyperNEAT and

direct encoding controls on these problems, including addi-

tional experiments, analyses, controls, and alternate versions

of the problems.

A. Target Weights Problem

One way to create a completely irregular problem is to

challenge evolution to evolve an ANN phenotype (P) that is

identical to a target neural network (T ), where T is completely

irregular. Regularity can then be scaled by increasing the

regularity of T (Fig. 4). We call this the target weights

problem because evolution is attempting to match a target

vector of weights (recall that the number of nodes is constant,

so the vector of weights in T fully describes T ). Fitness is

a function of the difference between each weight in P and

the corresponding weight in T , summed across all weights.

The lower this summed error is, the higher the fitness value.

Specifically, the proximity to the target is calculated as

proximity to target =

N∑

i=1

M − |Pi − Ti| (1)

where N is the number of weights, M is the maximum error

possible per weight (which is 6 because weights could range

from −3 to 3), Pi is the value of the ith weight in the

phenotype, and Ti is the value of the ith weight in the target
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Fig. 4. Scaling regularity in the target weights problem. Regularity is scaled by changing the percentage of weights S (which increases from right to left) that
are set to Q, a single randomly-chosen value (shown as dark/blue lines). The remaining weights are each set to a random number (shown as light/orange lines).

ANN. To amplify the importance of small improvements,

fitness is then calculated as

fitness = 2proximity to target. (2)

To scale the regularity of this problem, some randomly

chosen subset of the target weight values, S, are assigned Q,

a single randomly-chosen value. All remaining weight values

are independently assigned a random value. Changing the

number of weights in S scales the regularity of the problem.

When S is set to 0%, all of the target weight values are

chosen independently at random. When S is set to 50%,

half the weights have the value Q and the rest have values

independently chosen at random. In the most regular version

of the problem, S is set to 100% and all weights have the value

Q. There are 11 treatments, with S values of 0, 10, 20...100,

and ten runs per treatment. Target vectors are constant for

each evolutionary run, but are different between runs (due

to differences in randomly-generated weight values, including

Q). Trials last 1000 generations with a population size of

1000. The ANNs have 3×3 grids of input and output neurons.

Because the number of nodes in this problem does not change,

only FT-NEAT is tested as a direct encoding control.

The target weights problem is useful because it allows

regularity to be scaled from zero to complete, and because

the regularity of the solution is known a priori. It is also a

simplistic problem because it has no interactions (epistasis)

between weight elements (i.e., changing a given weight will

not affect the optimal value of other weights). While this

property makes it a good starting point for investigating

regularity, other more epistatic problems are also required to

understand performance in more realistic scenarios.

B. The Bit Mirroring Problem

The bit mirroring problem is intuitively easy to understand,

yet provides multiple types of regularities, each of which can

be scaled independently. For each input, a target output is

assigned [e.g., the input x1 = −1, y1 = −1 could be paired with

output x2 = 0, y2 = 1, Fig. 5(a)]. A value of one or negative

one is randomly provided to each input, and the fitness of an

organism is incremented if that one or negative one is reflected

in the target output. Outputs greater than zero are considered

1, and values less than or equal to zero are considered −1.

The correct wiring is to create a positive weight between each

input node and its target output and, importantly, to set to zero

all weights between each input node and its non-target output

nodes [Fig. 5(a)]. To reduce the effect of randomness in the

inputs, in every generation each organism is evaluated on ten

different sets of random inputs and these scores are summed to

produce the fitness for that organism. The max fitness is thus

10n2, where n is the number of nodes in the input sheet. Each

Fig. 5. Bit mirroring problem. (a) The correct wiring motif for the links pro-
jecting from each input node is to create an excitatory connection (light/green)
to the correct target output node, and to turn off all other links (dark/gray).
(b) Within-column regularity (Type 1) is highest when all targets are in the
same column, and can be lowered by decreasing the number of targets in
the same column (by assigning unconstrained targets to columns at random).
For the experiments in this paper, within-column regularity is scaled while
keeping within-row regularity at its highest possible level, with all targets
in the same row. Within-row regularity (Type 2) is reduced by constraining
fewer targets to be in the same row. By first reducing within-column regularity,
then further reducing within-row regularity, the overall regularity of the bit
mirroring problem can be smoothly scaled from high to low. Note that the
treatment with the lowest Type 1 regularity and the highest Type 2 regularity
have identical constraints.

run lasted 2000 generations and had a population size of 500.

As in target weights, the number of nodes does not change on

this problem (additional nodes would only hurt performance),

so only FT-NEAT is tested as a control.

The first type of regularity in the problem is within-column

regularity. This regularity is high when targets are in the same

column, and low when there is no expectation about which col-

umn a target will be in [Type 1 in Fig. 5(b)]. The second type

of regularity is within-row regularity, which is the likelihood

that a target is in the same row [Type 2 in Fig. 5(b)]. While

these two regularities are intuitively related, evolutionary algo-

rithms must compute them independently, which means they

are distinct. Each of these types of regularity can be scaled

by constraining a certain percent of targets to be in the same

column or row, and assigning the remaining targets randomly.

The third type of regularity, called inherent regularity, arises

from the fact that, for each node, the same pattern needs to

be repeated: turning one link on and all other links off. This

type of regularity can be reduced by decreasing the number

of nodes in the network, and hence the number of times that

pattern needs to be repeated.

While the bit mirroring problem is easy to conceptualize,

it is challenging for evolutionary algorithms. It requires most

links to be turned off, and only a few specific links to be turned

on. Moreover, links between input nodes and non-target nodes,

which are likely to exist in initial random configurations and

to be created by mutations, can complicate fitness landscapes.

Imagine, for example, that a mutation switches the weight
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on a link between an input node and its target output from

zero to a positive number. The organism is now closer to the

ideal wiring, but it may not receive a fitness boost if other

incorrect links to that output node result in the wrong net

output. The bit mirroring problem is useful, therefore, because

it is challenging, yet its three main regularities are known, and

can be independently adjusted.

C. Quadruped Controller Problem

The quadruped controller problem is to evolve fast gaits

for simulated four-legged robots. This problem is challeng-

ing because creating dynamic gaits for legged robots is a

complicated non-linear problem that is infeasible to compute

mathematically; for example, effective gaits are difficult and

time-consuming for human engineers to program [30], [31].

Given how sensitive gait controllers are to slight changes in

the configuration of a robot, a new gait must be created each

time a robot is changed, which can lead to substantial delays

in the prototyping stage of robotic development [32]. It would

therefore be beneficial to automate the process of gait creation.

The problem of legged locomotion also contains many

regularities; each leg is a repeated module and various gaits

have different regularities, such as left-right or front-back

symmetry. The regularity of this problem can also be scaled by

changing the number of legs that are slightly different, as can

happen due to inconsistencies in manufacturing processes. The

quadruped controller problem is thus a challenging real-world

problem that has regularities that can be varied. It will help val-

idate whether conclusions drawn from target weights and bit

mirroring generalize to more challenging real-world problems.

Before describing the specific implementation of the

quadruped controller problem in this paper, we will review

previous work in this area. Many researchers have successfully

evolved controllers for legged robots, typically by evolving

neural network controllers [32]–[39]. Evolved gaits are often

better than those produced by human designers; one was even

included on the commercial release of Sony’s AIBO robotic

dog [32], [39]. However, many researchers have found that

evolutionary algorithms cannot handle the entire problem be-

cause the number of parameters that need to be simultaneously

tuned to achieve success is large [32], [38]–[43]. Many of

these scientists report that while it is possible to evolve a

controller to manage the inputs and outputs for a single leg,

once evolution is challenged with the inputs and outputs of

many legs, it fails to make progress.

One solution that has worked repeatedly is to help the

evolutionary algorithm “see” that there are regularities and

symmetries to the problem. This approach involves manually

decomposing the problem by, for example, evolving a con-

troller for one leg and then copying that controller to every

other leg, with some variation in phase. Unfortunately, this

tactic imposes a specific type of regularity on the network

instead of allowing evolution to produce different regularities.

It would be better to completely automate the process and

thereby remove the need for human engineers to spend time

decomposing the problem. Furthermore, such manual de-

composition potentially introduces constraints and biases that

could preclude the attainment of better solutions [44]. Finally,

Fig. 6. The simulated robot in the quadruped controller problem. (a) Two
joints (HipFB and HipIO, see the text) approximate a universal hip joint
that can move in any direction. (b) The knee joint can swing forward and
backward.

if we can employ algorithms that can automatically discover

and exploit the regularities in a problem, such algorithms may

be able to do the same for complex problems with regularities

humans are not aware of. Indirect encodings should be well-

suited to this task of automatically discovering regularities, so

it is worthwhile to study their capabilities on this front.

While it has not been the norm, indirect encodings have

occasionally been used to evolve the gaits of legged creatures.

In at least two cases, an indirect encoding evolved both the

gaits and the morphologies of creatures [11], [37]. In both

cases, the morphologies and behaviors were regular. While

the regularity of these ANNs was not systematically studied,

one of these papers contained an anecdotal report of a regular

ANN [11]. However, the regularity of the problem was not

scaled in either of these works. In another study, an indirect

encoding and a direct encoding were compared for their

ability to evolve a gait for a legged creature in an attempt

to determine whether the indirect encoding can exploit the

regularity of the domain without the problem being simplified

or manually decomposed [34]. However, this project used a

simple model of a six-legged insect that had only two degrees

of freedom per leg. Nevertheless, the work showed that the

indirect encoding could automatically discover the regularity

of the problem and decompose it by encoding a neural

submodule once and expressing it repeatedly. The indirect

encoding also outperformed a direct encoding by solving the

problem faster. Unfortunately, computational limits at the time

meant that such results were anecdotal and not statistically

significant because so few trials could be performed.

The quadruped controller problem is a challenging engi-

neering problem with scalable regularity. Investigating the

performance of HyperNEAT and direct encoding controls will

therefore illuminate how an indirect encoding handles problem

regularities differently than direct encodings. We next describe

the implementation details of the specific quadruped controller

problem in this paper.

The robots (Fig. 6) are evaluated in the open dynamics en-

gine (ODE) physics simulator (www.ode.org). The rectangular

torso of the organism is (in arbitrary ODE units) 0.15 wide,

0.3 long, and 0.05 tall. For a point of reference, the right

side of the robot from the viewer’s perspective in Fig. 6 is

designated as the robot’s front. Each of four legs is composed

of three cylinders (length 0.075, radius 0.02) and three hinge

joints. The first cylinder functions as a hip bone. It is parallel to
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the proximal-distal axis of the torso and barely sticks out from

it. The second cylinder is the upper leg and the last cylinder is

the lower leg. There are two hip joints and one knee joint. The

first hip joint (HipFB) allows the legs to swing forward and

backward (anterior-posterior) and is constrained to 180° such

that at maximum extension it is parallel with the torso. The

second hip joint (HipIO) allows the leg to swing in and out

(proximal-distal). Together, the two hip joints approximate a

universal joint. The knee joint swings forward and backward.

The HipIO and knee joints are unconstrained.

Each quadruped is simulated for 6 seconds (6000 time

steps). Trials are cut short if any part of the robot save its

lower leg touches the ground or if the number of direction

changes in joints exceeds 960. The latter condition is an

attempt to roughly reflect that servo motors cannot be vibrated

incessantly without breaking. The fitness of a controller is

fitness = 2d2

(3)

where d is the maximum distance traveled during the allotted

time. An exponential fitness function is used so that even small

increases in the distance traveled result in a sizable selective

advantage.

For HyperNEAT and FT-NEAT, the ANN configuration

on this problem features three 2-D, 5 × 4 Cartesian grids

forming input, hidden, and output layers (Fig. 7). The NEAT

control has the same number of inputs and outputs, but the

number of hidden nodes can evolve. There are no recurrent

connections. All possible connections between adjacent layers

exist (although weights can be zero, functionally eliminating

the link). There are thus 800 links in the ANN of each

individual for HyperNEAT and FT-NEAT. The number of links

in NEAT can evolve. Link weights are in the range of [−3, 3].

The inputs to the ANN are the current angles (from −π to

π) of each of the 12 joints of the robot, a touch sensor that

provides a 1 if the lower leg is touching the ground and a 0 if

it is not, the pitch, roll and yaw of the torso, and a modified

sine wave (which facilitates periodic behavior). The sine wave

function is

sin(t/120)π (4)

where t is the number of milliseconds that have passed

since the start of the experiment. Multiplying by π produces

numbers between −π and π, which is the range of the uncon-

strained joints. The constant 120 was chosen because it was

experimentally found to produce fast yet natural gaits. While

changing this constant can affect the types of gaits produced,

doing so never altered any of the qualitative conclusions of this

paper. Preliminary tests determined that the touch, pitch, roll,

yaw, and sine inputs all improved the ability to evolve fit gaits.

The outputs of the ANNs are the desired joint angles for

each joint, which are fed into a PID controller that simulates

a servo. The controller subtracts the current joint angle from

the desired joint angle. This difference is then multiplied by a

constant force (2.0), and a force of that magnitude is applied

to the joint such that the joint moves toward the desired

angle. Such PID-based control systems have been shown to

be effective in robot control [32], [36], [45].

Fig. 7. ANN configuration for HyperNEAT and FT-NEAT treatments. The
first four columns of each row of the input layer receive information about
a single leg (the current angle of each of its three joints, and a 1 or 0
depending on whether the lower leg is touching the ground). The final column
provides the pitch, roll, and yaw of the torso as well as a sine wave. Evolution
determines how to use the hidden-layer nodes. The nodes in the first three
columns of each of the rows in the output layer specify the desired new joint
angle. The joints move toward that desired angle in the next time step as
described in the text. The outputs of the nodes in the rightmost two columns
of the output layer are ignored.

Regularity in the quadruped controller problem can be

scaled by changing the number of faulty joints. A faulty joint

is one in which, if an angle A is requested, the actual desired

angle sent to the PID controller is A + E, where E is an

error value in degrees within the range [−2.5, 2.5]. The value

of E is chosen from a uniform random distribution in this

range for each faulty joint at the beginning of a run, and is

constant throughout the run. Such errors are analogous to the

inconsistencies of robotic joints produced by manufacturing

processes. The more faulty joints, the less regularity there is in

the problem because fewer legs behave identically. The default

version of this problem [20] is the most regular version with

zero faulty joints, which is the version referred to throughout

the rest of the paper unless the regularity is specified. Each

algorithm was run 50 times for experiments with 0, 1, 4, 8,

and 12 faulty joints. Runs lasted 1000 generations and had a

population size of 150.

IV. Results

The following sections describe experiments and analyses

that investigate how the HyperNEAT indirect encoding com-

pares to direct encodings with respect to exploiting problem

regularities and producing phenotypic regularities.

A. HyperNEAT Outcompetes Direct Encodings as Problem

Regularity Increases

1) Target Weights: The results from the target weights

experiments (Fig. 8) reveal that HyperNEAT performs better

as the regularity of the problem increases, especially in early

generations, where mean performance perfectly correlates with
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Fig. 8. Mean performance of HyperNEAT and FT-NEAT on a range of
problem regularities for the target weights problem. HyperNEAT lines are
colored for each regularity level, and in early generations are perfectly ordered
according to the regularity of the problem (i.e., regular treatments have
less error). The performance of FT-NEAT (black lines) is unaffected by the
regularity of the problem, which is why the lines are overlaid and mostly
indistinguishable.

problem regularity. Interestingly, after 1000 generations of

evolution, the performance of HyperNEAT is statistically in-

distinguishable below a certain regularity threshold (p > 0.051

comparing the final performance of the S = 0% treatment to

treatments with S ≤ 30%). Above that regularity threshold,

however, HyperNEAT performed significantly better at each

increased level of regularity (p < 0.01 comparing treatment

with values of S > 30% to the treatment with a value of

S 10% higher). FT-NEAT, on the other hand, is blind to the

regularity of the problem: the results from different treatments

are visually and statistically indistinguishable (p > 0.05).

Early on HyperNEAT outperformed FT-NEAT on regular

versions of the problem (p < 0.01 comparing treatments

of S ≥ 60% at generation 100), but at 1000 generations

FT-NEAT outperforms HyperNEAT on all but the two most

regular versions of the problem (p < 0.001). HyperNEAT

outperforms FT-NEAT on the most regular version of the

problem at generation 1000 (p < 0.001), and the algo-

rithms are statistically indistinguishable on the S = 90%

treatment (p > 0.05).

Overall, this experiment provides evidence for several inter-

esting observations. While this evidence comes from only the

target weights problem, which is a simple diagnostic problem,

we highlight them here because they will also be supported by

data from the bit mirroring and quadruped controller problems.

They are given as follows.

1) FT-NEAT outcompetes HyperNEAT when problem reg-

ularity is low.

2) As problem regularity increases, HyperNEAT’s perfor-

mance rises to, and then surpasses, that of FT-NEAT,

demonstrating that HyperNEAT can exploit problem

regularity.

3) FT-NEAT is blind to problem regularity.

4) HyperNEAT exploits problem regularity only above a

certain regularity threshold.

A final result of interest from this experiment is the lack of

progress HyperNEAT makes after the early generations on the

1This p value and all others in this paper were generated with MATLAB’s
non-parametric Mann-Whitney U-test, unless otherwise specified.

problems that are mostly regular, but have some irregularity

(e.g., S = 90%). HyperNEAT is easily able to produce

weights similar to the repeated weight Q, and thus exploits

the regularity of the problem, but over hundreds of generations

HyperNEAT did not discover how to make exceptions to the

pattern to produce the irregular link values. This evidence sug-

gests HyperNEAT is biased toward producing regular solutions

and has difficulty producing certain irregular patterns, a subject

we will revisit later in the paper.

2) Bit Mirroring: The first two bit mirroring experiments

have 7 × 7 grids of input and output nodes. In the first exper-

iment, both within-column and within-row regularity start at

100%, and within-column regularity decreases per treatment

by constraining fewer targets to be in the same column

as their respective inputs [Type I in Fig. 5(b)]. The most

irregular treatment in this experiment features zero within-

column regularity, but has 100% within-row regularity. The

second experiment picks up where the first left off by lowering

within-row regularity per treatment [Type II in Fig. 5(b)].

The least regular treatment in experiment two has no within-

column or within-row regularity. For each treatment, ten runs

of evolution are performed.

The results from the bit mirroring experiment support

many of the conclusions from the target weights experiment.

Initially, FT-NEAT is blind to both within-column and within-

row regularity (Fig. 9, right two columns, p > 0.05 com-

paring all within-column and within-row treatments to the

treatments with no column or row constraints, respectively).

The performance of HyperNEAT, however, increases with

the regularity of the problem (Fig. 9, left two columns).

HyperNEAT perfectly solves the problem in all but two runs

on the most regular version of the problem, where targets are

in the same column and row. Once again, the performance of

HyperNEAT within a type of regularity does not increase until

that type of regularity is above a threshold. For both within-

column and within-row regularity, HyperNEAT’s performance

advantage is statistically significant only once that type of

regularity is above 50% (only treatments with more than 50%

of targets column-constrained or row-constrained statistically

outperform treatments with 0% of targets column-constrained

or row-constrained, respectively: p < 0.05).

It is also interesting that the magnitude of the range of

fitness values is correlated with the regularity of the problem

for HyperNEAT. This phenomenon might occur because, when

regularity is present, the indirect representation either discov-

ers and exploits it, which would result in high fitness values,

or it fails to fully discover the regularity, at which point its

fitness more closely resembles lower-performing, less-regular

treatments.

HyperNEAT outperforms FT-NEAT in all versions of this

problem (p < 0.05). This result is likely due to the inherent

regularity of the problem, which arises because the same

pattern (turning one link on and the rest off) must be repeated

for each of the 49 input nodes. Inherent regularity should

decrease with the number of nodes in the network, a hypothesis

we test in experiment three, where experiments are performed

on grid sizes from 8 × 8 down to 3 × 3 (Fig. 10). For all grid

sizes, both within-column and within-row regularity levels are
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Fig. 9. HyperNEAT and FT-NEAT on versions of the bit mirroring problem with different levels of regularity. For each treatment, from left to right, within-
column regularity is first decreased (left panel) and then within-row regularity is further decreased (right panel). The data plotted are collected from populations
at the end of evolutionary runs, but plots over time (not shown) reveal the same qualitative story: HyperNEAT’s performance is consistently higher on more
regular problems and the performance of FT-NEAT is unaffected by the regularity of the problem. For HyperNEAT, the performance gaps between more and
less regular treatments are evident early and increase across evolutionary time.

Fig. 10. HyperNEAT versus FT-NEAT as the inherent regularity of the bit
mirroring problem is decreased. Reducing the grid size reduces the amount of
inherent regularity in the problem. Error bars show one standard error of the
mean. Ratios are used instead of absolute differences because the allowable
fitness ranges change with grid size.

0%, leaving only the inherent regularity of the problem. Due

to the high variance between runs, 40 runs are conducted per

treatment.

As the grid size is lowered, the relative performance of Hy-

perNEAT degrades to and then falls below that of FT-NEAT.

The general trend is significant (p < 0.05 comparing the ratios

on the 3×3 problem versus those with 6×6 and larger grids).

It is not clear why HyperNEAT performed relatively better on

the 3 × 3 grid than the 4 × 4 grid. This experiment reinforces

the conclusion that once problems become irregular enough,

FT-NEAT can outperform HyperNEAT. It also provides a

further demonstration that HyperNEAT can exploit increasing

problem regularity to gain a relative edge over FT-NEAT.

3) Quadruped Controller: The data from the quadruped

controller problem also generally support the conclusions from

target weights and bit mirroring. HyperNEAT outperforms

both FT-NEAT and NEAT on the two most regular versions

of this problem, where there are 0 or 1 faulty joints (Fig. 11,

p < 0.001). That HyperNEAT outperforms NEAT is note-

worthy, given that NEAT is one of the most successful direct

encoding neuroevolution algorithms.

As with target weights and bit mirroring, HyperNEAT’s

performance increases with the regularity of the problem, but

only above a certain threshold: the 0 faulty joint treatment

significantly outperforms the 1 faulty joint treatment (p <

0.001) which, in turn, outperforms the 4 faulty joint treatment

(p < 0.001) which, in turn, outperforms the 8 faulty joint

treatment (p < 0.001). However, the 8 and the 12 faulty joint

treatments are statistically indistinguishable (p > 0.05). In

contrast to target weights and bit mirroring, FT-NEAT is not

blind to the regularity of this problem, although it is less

sensitive to the regularity than HyperNEAT. The treatment

with 0 faulty joints is statistically indistinguishable from the 1

faulty joint treatment (p > 0.05), but performance on both of

these treatments is higher than on the 4 faulty joint treatment

(p < 0.001) which is, in turn, higher than the 8 faulty

joint treatment. As is the case for HyperNEAT, performances

for FT-NEAT on the treatments with 8 and 12 faulty joints

are statistically indistinguishable (p > 0.05). The statistical

comparisons for NEAT are the same as those for FT-NEAT.

One reason that regularity may affect the direct encod-

ings on this problem is because weights tend to be near
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Fig. 11. Performance of HyperNEAT, FT-NEAT, and NEAT on the
quadruped controller problem with 0, 1, 4, 8, and 12 faulty joints.

the maximum or minimum allowable value, which is partly

because mutations that create links outside of this range are

set to the maximum or minimum value. This method makes

extreme values more likely, which can facilitate coordination

in the joints because different joints are controlled by links

with similar weights. If normal joints are controlled by links

with the maximum or minimum link value, to have faulty

joints behave the same as normal joints, link values would

either have to be outside the allowable range, or inside the

range at non-extreme (and thus harder to set) values. Faulty

joints thus increase the difficulty of the problem for both

indirect and direct encodings, and can help explain why the

problem regularity appears to benefit the direct encodings.

Exploring ways to reduce this bias is an interesting avenue

for future work.

As with bit mirroring and target weights, FT-NEAT is

able to outperform HyperNEAT on the quadruped controller

problem once the regularity of the problem is sufficiently low.

FT-NEAT and NEAT outperformed HyperNEAT on both the 8

and 12 faulty joint treatments. On the treatment with 8 faulty

joints, the difference is significant for FT-NEAT (p < 0.05),

but not for NEAT. On the treatment with 12 faulty joints, the

difference for FT-NEAT is almost significant (p = 0.066), but

the difference for NEAT is highly significant (p < 0.01).

The difference in fitness in the first generation of randomly-

generated organisms is interesting. HyperNEAT begins with

an advantage over FT-NEAT because even randomly-generated

CPPNs are sometimes able to produce the coordination of legs

that facilitates movement. Some of these randomly-generated

organisms in HyperNEAT display impressive coordination and

appear to be on the road toward rudimentary locomotion.

Randomly-generated FT-NEAT and NEAT organisms do not

provide this impression.

Overall, the results from the target weights, bit mirroring,

and quadruped controller problems show that the direct en-

codings outperform HyperNEAT when problem regularity is

low. They also show that as problem regularity increases,

HyperNEAT can exploit that regularity whereas the direct

encodings mostly do not. This ability to exploit problem

Fig. 12. A time series of images from typical gaits produced by HyperNEAT
and FT-NEAT. HyperNEAT robots typically coordinate all of their legs,
whether all legs are in phase (as with this robot) or with one leg in anti-
phase. A short sequence involving a bound or gallop is repeated over and
over in a stable, natural gait. FT-NEAT robots display far less coordination
among legs, are less stable, and do not typically repeat the same basic motion.
NEAT gaits are qualitatively similar to FT-NEAT gaits.

regularity means that HyperNEAT increasingly outperforms

direct encoding controls as problem regularity increases. We

now investigate further how HyperNEAT is able to exploit

regularity.

B. HyperNEAT Produces More Regular Behaviors

We focus our analysis of regularity in ANNs and behaviors

on the quadruped controller problem because target weights

and bit mirroring are diagnostic problems wherein regularity is

explicitly built into the problem (i.e., any phenotypic regularity

in fit solutions is unsurprising). Moreover, there is no mean-

ingful behavior associated with the two diagnostic problems.

The quadruped controller problem, on the other hand, does

have interesting behaviors with different levels of regularity.

Moreover, the problem does not explicitly require or reward

regularity, which means that any regularities that develop do so

because of the encoding and because such regularities happen

to produce fast gaits.

The first method we employ to analyze the behaviors

produced by the different algorithms is based on videos of

the highest performing gaits from all 50 runs in the treat-

ment with 0 faulty joints (available at http://devolab.msu.edu/

SupportDocs/Regularity). The HyperNEAT gaits are all regu-

lar. They feature two separate types of regularity: coordination

between legs, and repetition of the same movement pattern

across time. Generally, the gaits are one of two types. The

first type has four-way symmetry, wherein each leg moves in

unison and the creature bounds forward repeatedly (Fig. 12,

top row). This gait implies that HyperNEAT is reusing neural

information in a regular way to control all of the robot’s legs.

The second gait resembles a horse gallop and features the back

three legs moving in unison, with the fourth leg moving in

opposite phase. This 3-1 gait demonstrates that HyperNEAT

can reuse neural information with some variation, because the

same behavioral pattern exists in each leg, but is inverted in

one leg. The ability to produce repetition with variation is a

desirable feature in genetic encodings [2].

Overall, the HyperNEAT gaits resemble those of running

natural organisms because they are coordinated and graceful.

These observations are noteworthy because they indicate that

HyperNEAT is automatically exploiting the regularities of

a challenging, real-world problem. This accomplishment is

significant given that researchers have previously needed to
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Fig. 13. HipFB joint angles observed in robots evolved with HyperNEAT, FT-NEAT, and NEAT. The possible range for this joint is −0.5π to 0.5π. The
y-axis shows radians from the initial down (0) position. For clarity, only the first 2 s are depicted. For HyperNEAT, the best gait is an example of the 3-1
gait, where three legs are in phase and one leg is in opposite phase, which resembles the four-beat gallop gait. The other two HyperNEAT gaits are four-way
symmetric, with all legs coordinated in a bounding motion (Fig. 12). The best direct encoding gaits are mostly regular. However, the median and worst gaits,
which are representative of most direct encoding gaits, are irregular: while some legs are synchronized, other legs prevent the coordinated repetition of a
pattern.

manually decompose legged locomotion tasks for evolutionary

algorithms to perform well [32], [38]–[43].

The gaits of FT-NEAT and NEAT, on the other hand, are

mostly uncoordinated and erratic, with legs often appearing to

operate independently of one another (Fig. 12, bottom row).

A few of the best-performing gaits do exhibit coordination be-

tween the legs, and the repetition of a basic movement pattern,

but most of the gaits are irregular. Even the regular gaits are

not as natural and impressive as the HyperNEAT gaits, which

is reflected in their lower objective fitness values. For most

gaits, some legs flail about, others trip the organism, and some

work against each other by pushing in opposite directions. The

robots frequently cartwheel and trip in unstable positions until

they finally fall over. There is much less repetition of a basic

movement pattern across time. Coordination between legs is

often rare and temporary.

The few examples of regular gaits produced by FT-NEAT

and NEAT show that it is sometimes possible for direct en-

codings to produce regularities. Overall, however, HyperNEAT

is much more consistent at producing regular gaits. All of

the HyperNEAT gaits are regular, whereas only a few FT-

NEAT and NEAT gaits are. It is important for algorithms to

be consistent, especially when computational costs are high, so

that high-quality results can be obtained without performing

many runs. A test of the reliability of each encoding is to

watch the median- and least-fit gaits of the 50 champions for

each encoding: for HyperNEAT these gaits are coordinated

and effective, whereas for FT-NEAT and NEAT they are

discombobulated.

In general, the gaits reveal a greater gap in performance

between HyperNEAT and the direct encodings than is sug-

gested by the fitness scores, especially for all but the best runs

for each algorithm. Most of the direct encoding gaits do not

resemble stable solutions to quadruped locomotion, whereas

HyperNEAT produces a natural gait in all trials with a small

variety of different solutions.

A second method for investigating how HyperNEAT is able

to outperform the direct encodings is to look at the angles of

the leg joints during locomotion. This technique is a different

way of estimating the coordination, or lack thereof, of the

different legs for each encoding. Plots of each leg’s HipFB

joint from the best, median, and worst runs for each algorithm

corroborate the descriptive evidence (Fig. 13). The legs in

all HyperNEAT organisms exhibit a high degree of both of

the two main regularities: at any point in time most legs

are in similar positions (except the out-of-phase leg in the

3-1 gait, which is opposite), and a basic movement pattern

is repeated across time. The direct encoding gaits are less

regular in both ways, except for the highest-performing gaits.

The median and worst gaits are representative of most of

the direct encoding gaits: there is little coordination between

legs or across time (Fig. 13). While only the HipFB joint is

shown, plots of the other two joints are consistent with these

results.
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Fig. 14. Gait generalization. HyperNEAT gaits generalize better than FT-
NEAT and NEAT gaits, which means that they run for longer before
falling over. The allotted time during evolution experiments is 6 s (dashed
horizontal line). Only the HyperNEAT gaits exceed that amount of time in
the generalization tests. For clarity, outliers are not shown.

C. HyperNEAT Behaviors are More General

One of the benefits of regularity is generalization. On the

quadruped controller problem, for example, repeating the same

basic pattern of motion is a type of regularity that is likely to

generalize, because its success in one cycle makes it probable

that it will be successful in the next cycle. A non-repeating

sequence of moves, however, may be less likely to generalize

because its past is less likely to predict its future. Generality,

then, can be a test of regularity. It is also a desirable property

in its own right.

During the evolution experiment, the robots are evaluated

for six simulated seconds. One test of generality is to remove

the time limit of 6 s and measure how long the evolved robots

are able to move before they fall. Fig. 14 reports that Hyper-

NEAT champion gaits are significantly more general than FT-

NEAT and NEAT champion gaits (p < 0.001). HyperNEAT

gaits are the only ones on average that keep moving beyond

the number of seconds simulated during evolution.

D. HyperNEAT Regularities can be Influenced, Allowing

Domain Knowledge to be Injected

HyperNEAT genomes create regularities in geometric space

that affect phenotypic elements based on the geometric coor-

dinates of those elements. Changing the geometric arrange-

ment of these elements may make it easier for HyperNEAT

to produce one type of behavior versus another [17]. For

example, it might be easier to group two elements together if

those elements are close to each other, whereas this grouping

may be more difficult if the elements are far away from each

other, especially if elements that should not be included in the

group lie in-between. If this hypothesis is correct, arranging

phenotypic elements such as sensors or outputs in different

geometric configurations may be a way for the experimenter

to influence the types of regularities HyperNEAT produces.

The ordering of the legs in HyperNEAT for the quadruped

controller problem offers a way to test this hypothesis. In

the default configuration (Fig. 7) the legs are ordered, from

lowest to highest Y coordinate value, FL-BL-BR-FR, where

TABLE I

Resultant Gait Types for Different Leg Orderings

4way Sym L-R Sym F-B Sym One Leg Out of Phase

FL BL BR FR

FL-BL-BR-FR
(default)

36 4 9

FL-BR-FR-BL 47 2 1

FL-FR-BL-BR 44 3 1

FL-FR-BR-BL 36 4 9 1

Gaits are placed into the following categories: 4way Sym(metry) (all legs
in synchrony), L-R Sym (the left legs are in phase and the right legs out of
phase), F-B Sym (the front legs are in phase and the back legs are out of
phase), and one leg out of phase (three legs moved in synchrony and one
is out of phase, which resembles a gallop). If two legs are motionless, they
are considered in synchrony. Two gaits do not fit into these categories and
are not tabulated. FL: front left, BL: back left, BR: back right, and FR:
front right.

F = front, B = back, L = left, and R = right. This ordering

may make it easier to group the left legs into one group and

the right legs into another, since they are closer to each other.

To test this hypothesis, we performed experiments with the

following alternate orderings: FL-FR-BL-BR and FL-FR-BR-

BL, which may encourage front-back symmetry, and FL-BR-

FR-BL, which may encourage diagonal symmetry. For each

of these four orderings, we performed 50 runs, each with a

population size of 150 that lasted 1000 generations. Table I

reports the classifications of the highest performing gait at the

end of each run.

The most common gait in all runs exhibits four-way sym-

metry, which is not expected to be biased by leg ordering. The

other gaits, however, do tend to reflect the geometric ordering

of the legs in each treatment. For example, all four examples

of left-right symmetry evolved in the *L*L*R*R treatment

(where * stands for any symbol), and all seven cases of front-

back symmetry evolved in the treatments that ordered the legs

F*F*B*B*. It appears it is easier for HyperNEAT to bisect

the Y dimension once to group neighboring legs, instead of

creating the more complex pattern required to group legs with

non-adjacent Y coordinate values.

It is interesting to observe which is the exception leg in the

gaits that had three legs in synchrony and one leg in opposite

phase. In 23 out of 25 cases, the exception leg is the one

with the highest Y coordinate value, although which leg that

is changes based on the geometric ordering (Table I). Different

geometric representations, therefore, can probabilistically bias

evolution to make different legs be the exception leg, which is

an example of how a HyperNEAT user can inject a preference

into the algorithm. It is not clear why exceptions are typically

made for the leg with the highest Y coordinate value. This

result may be due to the nature of the mathematical functions

in the CPPNs.

E. HyperNEAT ANNs are More Regular, Which is Visually

Apparent

Beyond behavioral regularities, it is also interesting to

examine the ANNs produced by HyperNEAT and FT-NEAT.

NEAT ANNs are not visualized because their variable num-

ber of hidden-node layers make such visualization difficult.
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Fig. 17. Correlating ANN regularities to different behaviors. It is possible to recognize ANN patterns that produce different robotic gaits. The ANNs in the
top row all generate a four-way symmetric gait. The weight patterns in these ANNs appear similar for all rows (legs are controlled by separate rows of nodes).
The ANNs in the bottom row have three legs moving together and one leg in anti-phase. That exception leg is controlled by the nodes in the top row, which
have a different pattern of weights than the other three rows. These views are from the back (looking at the outputs), as indicated by the color/shade scheme
described in the caption of Fig. 15.

number of links in NEAT ANNs can vary, which means

that compressibility alone is not isolated. This analysis is

performed on the quadruped controller problem because it

does not have regularity explicitly built in, as opposed to target

weights and bit mirroring, where fitness scores already indicate

ANN regularity.

The gzip algorithm is a conservative test of regularity

because it looks for repeated symbols, but does not compress

all mathematical regularities (e.g., each link weight increasing

by a constant amount). Nevertheless, gzip is able to compress

HyperNEAT ANNs on the regular quadruped controller prob-

lem significantly more than FT-NEAT ANNs: p < 0.001,

comparing the difference between each uncompressed and

compressed HyperNEAT file (mean 4488 bytes ±710 SD)

and each FT-NEAT file (mean 3349 bytes ±37 SD). This

quantifiable result confirms the clear yet subjective observation

from visually inspecting HyperNEAT and FT-NEAT ANNs

(Fig. 15), namely, that HyperNEAT ANNs are more regular.

G. Regularity of HyperNEAT ANNs Correlates with the

Regularity of the Problem

Another measure of the regularity of HyperNEAT ANNs

is the number of nodes or links in the CPPN genome. Some

of the HyperNEAT end-of-run champions on the quadruped

controller problem, for example, have as few as 9 nodes and

26 links in their genome. Given that this genome encodes an

ANN with 60 nodes and 800 links, the compression in this

case is 6.6-fold and 30.8-fold, respectively. Unfortunately, this

measure of regularity cannot be used for comparisons between

HyperNEAT and direct encodings. It is unfair to compare

genome sizes between HyperNEAT and FT-NEAT, given that

the FT-NEAT genome is the same size as the final ANN. A

comparison to NEAT is similarly unfair, because its genomes

at least need to contain one node for every input and output

node in the final ANN.

It is interesting, however, to investigate whether Hyper-

NEAT genomes are smaller on more regular problems. As

expected, the number of CPPN nodes in end-of-run champions

tends to increase with the irregularity of the problem, meaning

there is more compression (i.e., smaller genomes) on more

regular problems. We focused this analysis on genomic nodes

only, because the number of genomic links is correlated with

the number of nodes. In target weights, the correlation between

problem irregularity and number of CPPN nodes is positive

(r = 0.54), although the trend is slightly insignificant (p = 0.08,

using MATLAB’s corrcoef correlation coefficients test). In bit

mirroring, the correlation is more dramatic (Fig. 18). For both

the experiment that reduces column regularity, and the exper-

iment that further reduces row regularity, the trend is positive

(r = 0.91) and highly significant (p < 0.001, using MATLAB’s

corrcoef correlation coefficients test). On the quadruped con-

troller problem the trend is also positive (r = 0.58), although

insignificant (p > 0.05, using MATLAB’s corrcoef correlation

coefficients test).

We also performed this same analysis on data from a

previous publication that created irregularity in the quadruped
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Fig. 18. Genome size increases with problem irregularity. The number of
nodes in the CPPN genomes for HyperNEAT on the bit mirroring problem as
irregularity is scaled from low (left) to high (right). The number of genomic
nodes increases as the problem becomes more irregular.

controller problem in a different way, by randomizing the

geometric locations of each of the input and output nodes [17].

In the regular version of the problem, the nodes are laid out

in a configuration that appears regular to a human engineer

(e.g., the representation in Fig. 7). In the irregular version,

the geometric locations of the nodes are randomized in each

trial. We analyze data from three different experiments, where

the nodes are represented with geometric coordinates in one,

two, and three dimensions, respectively [17]. We previously

reported that the performance of HyperNEAT is significantly

higher in all three experiments on the regular version of

the problem [17]. An analysis of the number of nodes in

the CPPN genomes reveals that, for all three experiments,

genome sizes are significantly smaller in the regular treatment

than the irregular treatment (p < 0.05).

H. HyperNEAT is More Evolvable

One of the touted benefits of indirect encodings is that

the reuse of genetic information that produces regularity also

enables coordinated mutational effects, which can be beneficial

[20], [35]. It has previously been shown that a different indi-

rect encoding based on L-systems produces more beneficial

mutations than a direct encoding control [35]. This section

investigates whether HyperNEAT similarly tends to produce a

higher distribution of fitness values in mutated offspring than

its direct encoding controls.

We analyzed the difference in fitness between organisms and

their offspring in the quadruped controller problem in all cases

where offspring were produced solely by mutation. While the

majority of organisms were produced by crossover and mu-

tation, this analysis isolates the impact of mutational effects.

Over 1.3 million, 1.7 million, and 1.5 million organisms were

produced solely via mutation for HyperNEAT, FT-NEAT, and

NEAT treatments, respectively, providing a substantial sample

size.

Overall, the indirect encoding HyperNEAT produces a wider

range of fitness changes than the direct encodings (Fig. 19).

HyperNEAT also has a distribution of fitness values with a

higher median than both FT-NEAT and NEAT (p < 0.001).

While HyperNEAT also produces more extreme negative

fitness changes, they are balanced by more extreme positive

fitness changes. For example, with respect to the ratio of parent

Fig. 19. Fitness changes caused by mutations with different encodings. Each
circle represents the ratio of parent fitness over offspring fitness. Positive
values indicate an offspring that is more fit than its parents, and higher
numbers indicate larger fitness improvements. The inverse is true for negative
numbers.

fitness to offspring fitness, 5.8% of HyperNEAT offspring

have a positive value greater than 20, whereas for FT-NEAT

and NEAT only 0.35% and 0.21% do, respectively (Fig. 19).

Despite the many extreme negative fitness changes, it appears

that the continuous production of organisms that are much

more fit than their parents fuels the success of HyperNEAT

over FT-NEAT and NEAT on this problem.

I. HyperNEAT’s Bias Toward Regularity Hurts its Perfor-

mance on Problems with Irregularity, as Demonstrated by a

New Algorithm Called HybrID

The previous sections have documented that HyperNEAT’s

performance decreases as the irregularity of a problem in-

creases. One explanation is that HyperNEAT’s bias toward

producing regular solutions makes it less likely to create the

phenotypic irregularities necessary to account for problem-

irregularities. The clearest example of this phenomenon is on

the target weights problem in the treatment in which 90%

of the weights had the same value, but 10% of the weights

had different randomly-assigned values (Fig. 8). In a few

generations, HyperNEAT discovers and exploits the regularity

of the problem by setting 100% of its weights to the value

that is correct for 90% of them. For the remaining hundreds

of generations in the experiment, however, HyperNEAT fails

to make exceptions to that regular pattern to account for the

10% of irregular link values. While the patterns observed in

visualizations of the ANNs produced by HyperNEAT demon-

strate that HyperNEAT can in fact produce some variation

on overall patterns, many of those exceptions are themselves

regular and affect whole geometric regions (Section IV-E). The

target weights problem shows that changing specific weights

to match an irregular target is challenging for HyperNEAT.

However, such fine-tuning of neural connections may be

required for real-world problems that have some degree of

irregularity.

That HyperNEAT’s performance generally decreases with

problem irregularity suggests the hypothesis that HyperNEAT
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Fig. 20. Hybridizing indirect and direct encodings in the HybrID algorithm.
The HybrID implementation in this paper evolves with HyperNEAT in the
first phase until a switch is made to FT-NEAT. The idea is that the indirect
encoding phase can produce regular weight patterns that can exploit problem
regularity, and the direct encoding phase can fine tune that pattern to account
for problem irregularities. In this hypothetical example, large fitness gains are
initially made by the indirect encoding because it exploits problem regularity,
but improvement slows because the indirect encoding cannot adjust its regular
patterns to handle irregularities in the problem. Fitness increases again,
however, once the direct encoding begins to fine-tune the regular structure
produced by the indirect encoding.

would perform better on such problems if it were able to both

generate regularities and irregularities. An alternate explana-

tion for the performance drop is that the less-regular problems

are simply harder. One way to test whether the first hypothesis

is correct is to create an algorithm that can generate regularities

and then adjust those regularities to create irregularities.

Because indirect encodings excel at producing regular

patterns, and direct encodings excel at producing irregular

patterns, the combination of the two may produce both.

The hybridization of indirect and direct encodings (HybrID)

algorithm [28] is based on this idea (Fig. 20).

While we are not aware of any prior work that specifi-

cally combines direct and indirect encodings, researchers have

previously altered representations during evolutionary search,

primarily to change the precision of values being evolved by

genetic algorithms [47]. Other researchers have employed non-

evolutionary optimization techniques to fine-tune the details

of evolved solutions [48]. However, such techniques do not

leverage the benefits of indirect encodings.

While the name HybrID applies to any combination of

indirect and direct encodings, this paper reports results for

one specific implementation called a switch-HybrID [28],

wherein an indirect encoding is run first and then a switch

is made to a direct encoding. Specifically, HyperNEAT is

the encoding for each generation until the switch point,

when each HyperNEAT ANN phenotype is converted into an

FT-NEAT genome. Evolution then continues as normal with

FT-NEAT until the end of the experiment. HyperNEAT

and FT-NEAT serve as the indirect and direct encodings

in the HybrID implementation in this paper to provide fair

comparisons to the results from previous sections. For each of

the HybrID experiments in this paper, a different switch point

is chosen for illustrative purposes. In future applications of

the HybrID algorithm, it may be more effective to choose a

separate switch point for each run automatically based on the

rate of fitness improvement (or lack thereof).

1) Target Weights: HybrID’s performance on the target

weights problem reveals that it does combine the regularity-

Fig. 21. Comparison of HyperNEAT, FT-NEAT, and HybrID on a range of
problem regularities for the target weights problem. For each regularity level,
a HybrID line (dashed gray) departs from the corresponding HyperNEAT line
(colored) at the switch point (generation 100). The performance of FT-NEAT
(black lines) is unaffected by the regularity of the problem, which is why
the lines are overlaid and indistinguishable. HybrID outperforms HyperNEAT
and FT-NEAT in early generations on versions of the problem that are mostly
regular but have some irregularities.

generating attribute of indirect encodings with the irregularity-

generating attribute of direct encodings (Fig. 21). At the

switch point of 100 generations, HybrID immediately makes

noticeable gains over HyperNEAT, and 150 generations later

these gains are significant on all treatments except the perfectly

regular one (p < 0.001). This result confirms the hypothesis

that HyperNEAT can do better on some irregular problems

if a further process of refinement creates some irregularity

within its regular patterns. It is additionally interesting that Hy-

brID significantly outperforms the direct encoding FT-NEAT

on regular versions of the problem early in the experiment

(p < 0.01 at generation 250 on the 70%, 80% and 90% regular

problems); The HyperNEAT phase of HybrID first discovers

the regularity of the problem, giving the FT-NEAT phase

of HybrID a head start over FT-NEAT on these problems.

While the performance of HybrID and FT-NEAT is similar by

the end of the experiment, that result is likely because this

problem is simple and has no interactions (epistasis) between

individual link weight values. Direct encodings are expected

to perform well on problems without epistasis, but most real

world problems are highly epistatic.

2) Bit Mirroring: On the bit mirroring problem, which

does have epistasis, HybrID’s performance ties HyperNEAT’s

performance on regular versions of the problem, and signifi-

cantly outperforms HyperNEAT on problems with a certain

level of irregularity (Fig. 22, see figure for statistical sig-

nificance per treatment). This result further highlights that

HyperNEAT produces regular patterns that can benefit from

a refining process that generates irregularity. The performance

gap between HybrID and HyperNEAT is largest on problems

with intermediate levels of regularity. The gap in performance

narrows on the most irregular treatments because such config-

urations are difficult and both algorithms perform poorly.

These data are pooled across ten runs per treatment on a

7 × 7 grid. Each experiment lasted 5000 generations with a

switch point at 2500 generations. A comparison to FT-NEAT

is not shown because HyperNEAT outperforms FT-NEAT on

all versions of this problem (Section IV-A2).
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Fig. 22. Performance of HybrID versus HyperNEAT on the bit mirroring
problem. Regularity decreases from left to right. Plotted are median values ±

the 25th and 75th quartiles. Asterisks indicate p < 0.05.

Fig. 23. Performance of HybrID versus HyperNEAT on the quadruped
controller problem. Error bars show one standard error of the median. HybrID
outperforms HyperNEAT on all versions of the quadruped controller problem.
The increase generally correlates with the number of faulty joints.

3) Quadruped Controller: HybrID outperforms Hyper-

NEAT on every version of the quadruped controller prob-

lem (Fig. 23), although the difference is significant only on

problems with a certain amount of irregularity (p < 0.01 on

treatments with four or more faulty joints). HybrID increases

performance over HyperNEAT by 5%, 10%, 27%, 64%, and

44%, respectively, for the treatments with 0, 1, 4, 8, and

12 faulty joints. These substantial performance improvements

on the quadruped controller problem, which is a challenging

engineering problem, highlight the degree to which Hyper-

NEAT’s inability to produce irregularity on its own can harm

its performance.

HybrID also outperforms both direct encodings on all treat-

ments of the problem (p < 0.05). HyperNEAT significantly

outperforms both direct encodings only on the two most

regular versions of the problem (p < 0.01). That HybrID

outperforms the direct encodings on irregular problems un-

derscores that it does not just act like a direct encoding

on irregular problems, but instead first leverages the indirect

encoding’s ability to exploit available regularities and then

improves upon those by accounting for problem irregularities

via the direct encoding.

It is instructive to examine how the FT-NEAT phase of

HybrID changes the patterns provided to it by the Hyper-

NEAT phase. Visualizations of ANNs at the end of each

HyperNEAT phase and the ANN for that same run after the

FT-NEAT phase can provide clues to how HybrID generates

its performance improvements. Examples from runs in the

treatment with one faulty joint are shown in Fig. 24. In

all cases, the FT-NEAT phase of HybrID makes no major

changes to the overall regular pattern produced by the Hyper-

NEAT phase (visualizations of ANNs after the HyperNEAT

and FT-NEAT phases for each HybrID run are available

at http://devolab.msu.edu/SupportDocs/Regularity). Evolution

thus maintains the regular pattern HyperNEAT generates

even while that pattern is being fine-tuned by the direct

encoding.

The types of exceptions HybrID produces are different from

those seen by HyperNEAT alone. In many cases, only a few

weights are noticeably changed by the FT-NEAT phase of

HybrID, and these changes occur in an irregular distribution.

For example, in the run depicted in the left column of

Fig. 24, HyperNEAT produces the regular pattern of inhibitory

connections to all of the output nodes. FT-NEAT switches

some of those to excitatory connections, which may have

been difficult for HyperNEAT to do without changing many

other weights. In another example run, depicted in the middle

column of Fig. 24, the only noticeable change FT-NEAT

made is the creation of a single, strong, excitatory connection.

Of course, in both cases there are subtle changes in many

of the link weights that do not stand out to the human

eye.

In the third example run, changes were made during the FT-

NEAT phase to many different weights, yet the overall patterns

remained (Fig. 24, right column). Many of these changes are

irregular, such as the weights switched from excitatory to

inhibitory and vice versa in the top-left node, and the few

links that switch to excitatory in the bottom row. What is

unusual and fascinating about this example run, however, is

that the direct encoding makes many regular changes. For

example, most of the links in the top row proportionally in-

crease in strength, which preserves the regular patterns. These

visualizations demonstrate a rare case of a direct encoding

producing coordinated phenotypic changes. It might be the

case that the indirect encoding discovered regularities that put

this organism on the side of a hill in a fitness landscape,

but climbing that hill is difficult for the indirect encoding

because mutations to the genome that increase the strength

of connections in these nodes may change other weights and

thus decrease fitness overall. The direct encoding does not

have such constraints, and thus can increase the magnitude

of all of these links. This hypothetical explanation illustrates

how evolution can produce coordinated change through direct

encodings if it starts in a place in the fitness landscape where

there is a positive fitness gradient in the same direction for

many link values. Interestingly, it is unlikely that the direct

encoding would have discovered this starting point without

the indirect encoding.
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Fig. 24. Visualizations of the ANNs produced at the end of the HyperNEAT phase and FT-NEAT phase of HybrID for three example runs.

V. Discussion

While it is well-established that indirect encodings can

outperform direct encodings on regular problems [2], [7]–

[14], no prior studies have investigated how indirect encodings

compare to direct encodings on problems as regularity scales

from high to low. Given that most realistic problems will not

be at the extreme regular end of this continuum, it is important

to understand how indirect encodings perform on problems

with different levels of regularity.

On three different problems we have shown that indirect en-

codings are able to automatically exploit intermediate amounts

of problem regularity, and that their performance improves

as the regularity of the problem increases. Moreover, the

indirect encodings outperform direct encoding controls on

regular problems. We have also shed light on why indirect

encodings perform better, which is because they produce both

regular ANNs and regular behaviors that exploit problem

regularity. These results suggests that indirect encodings may

be an attractive alternative to direct encodings as evolutionary

algorithms are applied to increasingly complicated engineering

problems, because such problems are likely to contain regu-

larities. The results from the bit mirroring problem also reveal

that HyperNEAT is able to independently exploit different

types of regularity within the same problem; scaling three

different regularities (within-row, within-column, and inherent)

independently contributes to overall performance [29]. One

interesting caveat we discovered on all three problems, how-

ever, is that HyperNEAT does not exploit a particular type of

regularity until the level of regularity within that type is above

a threshold. Tests on additional problems and with different

indirect encodings are required to discover how general this

finding is. Additionally, further quantitative analyses of regu-

larity in both evolved solutions and in the problems themselves

would shed additional light on how general the findings in this

paper are.

It is particularly noteworthy that HyperNEAT is able to au-

tomatically exploit the regularity of the challenging quadruped

controller problem. This result is important because evolu-

tionary algorithms have previously performed poorly when

evolving gaits for legged robots because they could not

automatically exploit the problem’s regularities: to perform

well, researchers needed to manually identify such regularities

and force the encoding to exploit them [32], [38]–[43]. This

manual approach is time consuming, restrictive, and may fail

to identify helpful regularities.

Because indirect encodings are biased toward producing

regular patterns in solutions, it is important to understand

the degree to which they can vary and make exceptions to

these patterns. Two separate lines of evidence confirm that

HyperNEAT has difficulty making certain types of exceptions.

Initially, its performance decreases as a problem becomes more

irregular. Second, the HybrID algorithm boosts performance

over HyperNEAT on intermediately regular problems, con-

firming that HyperNEAT is not creating some irregularities

that would aid performance. On the other hand, visualizations

of HyperNEAT ANNs reveal that HyperNEAT can create vari-

ations on patterns, and even exceptions for single nodes. How-

ever, these variations and exceptions themselves are regular,

suggesting that HyperNEAT creates its exceptions by adding

one regularity to another, with the result being an overall

regularity with a regular variation within it. The HyperNEAT

visualizations rarely demonstrate cases where single weights

violate the prevailing pattern. HybrID, on the other hand,

does provide examples of such single-link exceptions. The

significant boost in performance by HybrID implies that the

ability to make such radical exceptions at the single-link level

is sometimes important.

HybrID’s performance increase over HyperNEAT, combined

with investigations into the different types of exceptions Hy-

brID and HyperNEAT make, suggest that HyperNEAT can

benefit from a process of refinement that adjusts individual

link patterns in an irregular way. While a direct encoding pro-

vides such refinement in this paper, there are other candidate

refinement processes. One intriguing possibility is that lifetime
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adaptation via learning can play a similar role [44], [49]–

[51]. Lifetime learning algorithms could adjust the overall

regular patterns produced by HyperNEAT to account for

necessary irregularities. Having a learning algorithm serve as

the refining process may be superior to a direct encoding,

especially as ANNs scale closer to the size of brains in nature.

While HybrID works well on the problems in this paper,

its direct encoding component may ultimately encounter the

same scaling challenges that all direct encodings face on high-

dimensional problems.

The ANN weight patterns produced by HyperNEAT alone

are also interesting because they demonstrate the types of

regularities that can be produced by an indirect encoding that

incorporates geometric concepts from developmental biology.

The pictures evolved with CPPNs reveal that CPPNs can

encode many features observed in natural animal bodies,

such as symmetry and serial repetition, with and without

variation (Fig. 2) [24]. The visualizations presented here of

ANNs evolved with CPPNs demonstrate that HyperNEAT can

generate these same properties in ANNs. It is clear by looking

at the different visualizations that different geometric patterns

are being created and combined to produce complex neural

patterns, which is reminiscent of how nature produces complex

brains and bodies [3].

Outside the field of neuroevolution, other techniques have

improved performance by biasing neural networks toward

regular weight patterns, such as weight sharing [52], [53] and

convolutional networks [54]. However, such methods typically

involve the researcher imposing a certain regularity on the

ANN (such as a subset of weights all being identical). The fact

that these techniques were successful demonstrates that regular

patterns in neural connections can be beneficial. However,

these methods typically do not automatically discover which

regularities to create. HyperNEAT is novel because it explores

a large space of possible geometric regularities to find those

that enhance performance. This ability to discover and encode

different regularities suggests that HyperNEAT can potentially

adapt the regularities it produces to different domains, instead

of needing to be manually tuned for each domain.

VI. Conclusion

This paper contains the first extensive study in the field of

evolutionary computation comparing an indirect encoding to

direct encoding controls across a continuum of problems with

different levels of regularity. On three different problems the

performance of the indirect encoding improved with the regu-

larity of the problem, and the indirect encoding outperformed

the direct encodings on more regular versions of problems.

The indirect encoding was able to exploit problem regularity

by generating regular neural networks that produced regular

behaviors. The specific indirect encoding studied is based

on concepts from developmental biology involving geometric

patterning, which enabled domain knowledge and preferences

to be injected into the algorithm. Moreover, this generation and

combination of geometric coordinate frames created regular

weight patterns in neural networks that are visually complex

and resemble regularities seen in natural brains.

The indirect encoding’s bias toward regularity hurt its

performance on problems that contained some irregularity. A

new algorithm that first evolves with an indirect encoding and

then switches to a direct encoding was able to outperform the

indirect encoding alone. This HybrID algorithm outperformed

the indirect encoding because it made subtle adjustments to

regular patterns to account for problem irregularities. The

success of this approach suggests that indirect encodings

may be most effective not as stand-alone algorithms, but

in combination with a refining process that adjusts regular

patterns in irregular ways to account for problem irregularities.

Overall, this paper provides a more comprehensive picture

of how indirect encodings compare to direct encodings by

evaluating them across a continuum from high to low problem

regularity. This paper also suggests a path forward that com-

bines the pattern-producing power of indirect encodings with

a process of refinement to account for the irregularities that

are likely to exist in challenging problems.
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