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Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm
optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of
premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to
do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying
LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. �e major goal
of this paper is to experimentally establish the fact that LDIW-PSO is very much e
cient if its parameters are properly set. First,
an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in
LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values,
�ve well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its
competitors which have in the past claimed superiority over it. Two other recent PSO variants with di�erent inertia weight strategies
were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted.

1. Introduction

�e idea of Particle Swarm Optimization (PSO) stems from
biology where a swarm of birds coordinates itself in order
to achieve a goal. When a swarm of birds looks for food,
its individuals will spread in the environment and move
around independently with some degree of randomness
which enables it to discover food accumulations. A�er a
while, one of them will �nd something digestible and, being
social, communicates this to its neighbors. �ese can then
approach the source of food, thus leading to the convergence
of the swarm to the source of food. Following this analogy,
PSO was largely derived from sociopsychology concept and
transferred to optimization [1], where each particle (bird)
uses the local information regarding the displacement of its
reachable closer neighbors to decide on its own displacement,
resulting to complex and adaptive collective behaviors.

Since the inception of PSO technique, a lot of work has
been done by researchers to enhance its e
ciency in handling

optimization problems. One such work is the introduction
of linear decreasing inertia weight (LDIW) strategy into the
original PSO to control its exploration and exploitation for
better performance [2–4]. However, LDIW-PSO algorithm
from the literature is known to have the shortcoming of
premature convergence in solving complex (multipeak) prob-
lems due to lack of enough momentum for particles to do
exploitation as the algorithm approaches its terminal point.
�e challenge of addressing this shortcoming has been on for
a long time and has attracted much attention of researchers
in the �eld of global optimization. Consequently upon this,
many other inertia weight PSO variants have been proposed
[2, 5–16], with di�erent levels of successes. Some of these
variants have claimed better performances over LDIW-PSO,
therebymaking it lookweak or inferior. Also, since improving
on the performance of PSO is an area which still attractsmore
researchers, this paper strives to experimentally establish the
fact that LDIW-PSO is very much e
cient if its parameters,
like velocity limits for the particles, are properly set. Using
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the experimentally obtained values for particle velocity limits
in LDIW-PSO, results show that LDIW-PSO outperformed
other PSO variants adopted for comparison.

In the sections that follow, inertia weight PSO technique
is described in Section 2, LDIW-PSO and the PSO variants
adopted for comparison are reviewed in Section 3, parameter
settings were experimentally conducted in Section 4, presen-
tations and discussions of the experimental results of LDIW-
PSO and its competing variants are made in Section 5, while
Section 6 concludes the paper.

2. Particle Swarm Optimization

�is technique is a simple but e
cient population-based,
adaptive, and stochastic technique for solving simple and
complex optimization problems [17, 18]. It does not need the
gradient of the problems to work with, so the technique can
be employed for a host of optimization problems. In PSO, a
swarm of particles (set of solutions) is randomly positioned
(distributed) in the search space. For every particle, the
objective function determines the food at its place (value of
the objective function). Every particle knows its own actual
value of the objective function, its own best value (locally best
solution), the best value of the whole swarm (globally best
solution), and its own velocity.

PSOmaintains a single static population whose members
are tweaked (adjust slightly) in response to new discoveries
about the space. �e method is essentially a form of directed
mutation. It operates almost exclusively in multidimensional
metric, and usually real-valued, spaces. Because of its origin,
PSO practitioners tend to refer to candidate solutions not
as a population of individuals but as a swarm of particles.
Generally, these particles never die [19], but are moved about
in the search space by the directed mutation.

Implementing PSO involves a small number of di�erent
parameters that regulates the behavior and e
cacy of the
algorithm in optimizing a given problem. �ese parameters
are particle swarm size, problem dimensionality, particle
velocity, inertia weight, particle velocity limits, cognitive
learning rate, social learning rate, and the random factors.
�e versatility of the usage of PSO comes at a price because for
it to workwell on any problem at hand, these parameters need
tuning and this could be very laborious. �e inertia weight
parameter (popularly represented as �) has attracted a lot of
attentions and seems to be themost important comparedwith
other parameters.�emotivation behind its introductionwas
the desire to better control (or balance) the scope of the
(local and global) search and reduce the importance of (or
eliminate) velocity clamping, �max, during the optimization
process [20–22]. According to [22], the inertia weight was
successful in addressing the former objective, but could not
completely eliminate the need for velocity clamping. �e
feature of the divergence or convergence of particles can be
controlled only by parameter�, however, in conjunctionwith
the selection of values for the acceleration constants [22, 23]
as well as other parameters.

Each individual in the particle swarm is composed of
three �-dimension vectors (current position, previous posi-
tion, and velocity), where � is the dimensionality of the search

If �� < min��� = min�
else if �� > max��� = max�
end if

Algorithm 1: Particle position clamping.

If V� < min�
V� = min�

else if �� > max�
V� = max�

end if

Algorithm 2: Particle velocity clamping.

space. �us, in a physical �-dimensional search space, the
position and velocity of each particle � are represented as the
vectors�� = (��1, . . . , ���) and �� = (V�1, . . . , V��), respectively.
In course of movement in the search space looking for
the optimum solution of the problem being optimized, the
particle’s velocity and position are updated as follows:

��+1� = ���� + �1	1 (�best�� − ��� )
+ �2	2 (
best�� − ��� ) , (1)

��+1� = ��� + ��+1� , (2)

where, �1 and �2 are acceleration (weighting) factors known
as cognitive and social scaling parameters that determine the
magnitude of the random forces in the direction of �best
(previous best) and
best (global previous best); 	1 and 	2 are
random numbers between 0 and 1; � is iteration index; � is
inertia weight. It is common that the positions and velocities
of particles in the swarm, when they are being updated, are
controlled to be within some speci�ed bounds as shown
in Algorithms 1 and 2, respectively. An inertia weight PSO
algorithm is shown in Algorithm 3.

3. A Review of LDIW-PSO and Some of Its
Competing PSO Variants

Despite the fact that LDIW-PSO algorithm, from the lit-
erature, is known to have a shortcoming of premature
convergence in solving complex (multipeak) problems, itmay
not always be true that LDIW-PSO is as weak or inferior as it
has been pictured to be by some PSO variants in the literature
[2, 7, 13]. Reviewed below are some of these variants and other
variants, though not directly compared with LDIW-PSO in
the literature, but have been adopted for comparison with
LDIW-PSO.

3.1. Linear Decreasing Inertia Weight PSO (LDIW-PSO). �e
inertia weight parameter was introduced into the original
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Begin Algorithm
Input: function to optimize, �

swarm size, ��
problem dimension, �
search space range, [min�,max�]
velocity range, [min�,max�]

Output: �∗: the best value found
Initialize: for all particles in problem space�� = (��1, . . . , ���) and

V� = (V�1, . . . , V��),
Evaluate �(��) in � variables and get �best�, (� = 1, . . . , ��)�best← best of �best�
Repeat

Calculate �
Update V� for all particles using (1)
Update �� for all particles using (2)
Evaluate �(��) in � variables and get �best�, (� = 1, . . . , ��)
If �(��) is better than �best� then �best� ← ��
If the best of �best� is better than �best then �best← best of �best�

Until Stopping criteria (e.g., maximum iteration or error tolerance is met)�∗ ← �best
Return �∗

End Algorithm

Algorithm 3: Inertia weight PSO algorithm.

version of PSO by [20]. By introducing a linearly decreas-
ing inertia weight into the original version of PSO, the
performance of PSO has been greatly improved through
experimental study [24]. In order to further illustrate the
e�ect of this linearly decreasing inertiaweight, [4] empirically
studied the performance of PSO. With the conviction that a
large inertia weight facilitates a global search while a small
inertia weight facilitates a local search, a linearly decreasing
inertia weight was used with an initial value of 0.9 and
a �nal value of 0.4. By reason of these values, the inertia
weight can be interpreted as the �uidity of the medium in
which a particle moves [21], showing that setting it to a
relatively high initial value (e.g., 0.9) makes particles move in
a low viscosity medium and performs extensive exploration.
Gradually reducing it to a much lower value (e.g., 0.4) makes
the particle moves in a high viscosity medium and performs
more exploitation. �e experimental results in [4] showed
that the PSO converged quickly towards the optimal positions
but slowed down its convergence speed when it is near the
optima.�us, by using the linearly decreasing inertia weight,
the PSO lacks global search ability at the end of run even
when the global search ability is required to jump out of the
local minimum in some cases. As a result, employing adapt-
ing strategy for adjusting the inertia weight was suggested
to improve PSO’s performance near the optima. Towards
achieving this, there are many improvements on LDIW-PSO
in the literature [2, 3, 16, 24–26], which have made PSO to
perform with varying degree of successes. Represented in (3)
is the LDIW:

�� = (�start − �end) (�max − ��max

) + �end, (3)

where �start and �end are the initial and �nal values of
inertia weight, � is the current iteration number, �max is the
maximum iteration number, and �� ∈ [0, 1] is the inertia
weight value in the �th iteration.

3.2. Chaotic Descending Inertia Weight PSO (CDIW-PSO).
Chaos is a nonlinear dynamic system which is sensitive
to the initial value. It has the characteristic of ergodicity
and stochastic property. Using the idea of chaotic mapping,
CDIW-PSO was proposed by [2] as shown in (5) based on
logistic mapping in (4). �e goal was to improve on the
LDIW-PSO to avoid getting into local optimum in searching
process by utilizing the merits of chaotic optimization��+1 = � × �� × (1 − ��) , (4)

where � = 4 and �� is the �th chaotic number. �e map
generates values between 0 and 1, provided that the initial
value �0 ∈ (0, 1) and that �0 ∉ (0.0, 0.25, 0.5, 0.75, 1.0):

�� = (�start − �end) (�max − ��max

) + �end × ��+1, (5)

where �start and �end are the initial and �nal values of
inertia weight, and rand() is a uniform random number
in [0, 1]. �e experimental results in [2] show that CDIW-
PSO outperformed LDIW-PSO in all the test problems used
in the experiment in terms of convergence precision, quick
convergence velocity, and better global search ability.

3.3. Random Inertia Weight and Evolutionary Strategy PSO
(REPSO). �is variant proposed in [7] used the idea of sim-
ulated annealing and the �tness of particles to design another
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inertia weight represented by (6). A cooling temperature
was introduced to adjust the inertia weight based on certain
probability to facilitate jumping o� local optimal solutions.

It was experimentally proven that REPSO is signi�cantly
superior LDIW-PSO in terms of convergent speed and
accuracy:

�� = {{{{{
#1 + 	2.0 , � ≥ 	,#2 + 	2.0 , � < 	, (6)

where #1, #1 ∈ [0, 1] are constants with #1 > #2 and 	 ∈%[0, 1]. �e simulated annealing probability is de�ned as
follows:

� =
{{{{{{{{{

1, min1≤�≤���−�� ≤ min1≤�≤���� ,
exp(−min1≤�≤���−�� −min1≤�≤������ ) , min1≤�≤���−�� > min1≤�≤���� ,

(7)

where & is the number of particles, ��� is the �tness value
of particle � in the �th iteration, and the adaptive cooling
temperature in the �th iteration,��, is de�ned as shown in (8):

�� = ��avg��
best

− 1, (8)

where ��best is the current best �tness value, and ��avg which is

de�ned in (9), is the average �tness value in the �th iteration:

��avg = 1& �∑�=1��� . (9)

�e combined e�orts of the simulated annealing idea and
�tness variance of particles improved the global search ability
of PSO. In all the experiments performed, REPSO was
recorded superior to LDIW-PSO in convergence velocity and
precision.

3.4. Dynamic Adaptive Particle Swarm Optimization
(DAPSO). DAPSO was introduced by [3] with the aim
of pro�ering solution to the PSO premature convergence
problem associated with typical multipeak, high dimensional
function optimization problems so as to improve its global
optimum and convergence speed. A dynamic adaptive
strategy was introduced into the variant to adjust the inertia
weight value based on the current swarm diversity and
congregate degree as well as the impact on the search
performance of the swarm. �e experimental results
recorded showed that DAPSO was more e�ective compared
with LDIW-PSO.�e inertia weight formula that was used is
represented in (10):

�� = �min + (�max − �min) × *� × -�, (10)

where�min and�max are theminimum andmaximum inertia
weight values, � is the current number of iterations, the

diversity function *� and adjustment function -�, both in the�th iteration, are represented in (11) and (12), respectively:

*� = 1 − 2/arc tan (3) , (11)

where 3 is the group �tness as shown in (13):

-� = 6(−�2/(2�2)), (12)

where 8 = �/3 and � are the total numbers of iterations:

3 = 1; �∑�=1(� (��) − �avg)2, (13)

where ; is the swarm size, �(��) is the �tness of particle �,
and �avg represented in (14) is the current average �tness of
the swarm:

�avg = 1; �∑�=1� (��) . (14)

3.5. Adaptive Particle SwarmOptimization (APSO). �isPSO
variant was proposed in [5], in which an adaptive mutation
mechanism and a dynamic inertia weight were incorporated
into the conventional PSO method. �ese mechanisms were
employed to enhance global search ability and convergence
speed and to increase accuracy, while the mutation mech-
anism a�ected the particle position updating formula, the
dynamic inertia weight a�ected the inertia weight formula
shown in (15). �ough APSO was not compared with LDIW-
PSO, it outperformed all its competitors as evidenced by all
the experimental results:

�� = 0.5 {1 + tanh [ 1# × * (����)]} , (15)

where *(����) is the �tness of current best solution in the�th iteration, and the parameter # is prede�ned which
could be set equal to the �tness of the best particle in the
initial population. For the updating of the particle’s position,
when a particle is chosen for mutation, a Gaussian random
disturbance was added as depicted in (16):

��� = ��� +C × D��, (16)

where ��� is the �th component of the Eth particle, D�� is a
random variable with Gaussian distribution with zero mean
and unit variance, and C is a variable step size which
dynamically decreases according to current best solution
�tness.C is de�ned in �th iteration according to

C� = �max × tanh [ 1# × * (����)] . (17)

3.6. Dynamic Nonlinear and Dynamic Logistic Chaotic Map
PSO (DLPSO2). In [11], two types of variants were proposed
to solve the premature convergence problem of PSO. In
this variant, two dynamic nonlinear methods and logistic
chaotic map were used to adjust the inertia weight in parallel
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Table 1: Settings for parameter F in LDIW-PSO.

Problem �1 �2 �3 �4 �5 �6F 0.05 0.0075 0.05 0.015 0.075 0.015

according to di�erent �tness values. One of the dynamic
nonlinear inertiaweights is represented by (18) and (19), while
the other is represented by (20) and (21). �ey are meant to
achieve tradeo� between exploration and exploitation:

�� = ��min + (��max − ��min) ( iter

itermax

) , (18)

� = �min + (�max − �min) ( iter

itermax

)��, (19)

�� = ��max − (��max − ��min) ( iter

itermax

) , (20)

� = �max − (�max − �min) ( iter

itermax

)��, (21)

where �� is the dynamic nonlinear factor, � is the inertia
weight, �max and �min are the maximum and minimum
values of �, respectively, ��max and ��min are the maximum
and minimum values of ��, respectively, and iter and itermax

are the current iteration numbers and themaximum iteration
number, respectively.

A dynamic logistic chaotic map in (4) was incorporated
into the PSO variant inertia weight as shown in (23) to
enrich searching behaviors and avoid being trapped into local
optima:

# = #max − (#max − #min) ( iter

itermax

) , (22)

� = # + (1 − #) Lmap, (23)

where # is the dynamic chaotic inertia weight adjustment
factor, #max and #min are the maximum and minimum values
of #, respectively, and Lmap is the result of logistic chaotic
map. In this variant, using (19) and (23) was labeled DLPSO1,
while using (21) and (23) was captioned DLPSO2.

For the purpose of achieving a balance between global
exploration and local exploitation and also avoiding prema-
ture convergence, (19), (21), and (23) were mixed together
to dynamically adjust the inertia weight of the variant as
shown in Algorithm 4, where �� is the �tness value of
particle � and �avg is the average �tness value of the swarm.
Experiments and comparisons showed that the DLPSO2
outperformed several other well-known improved particle
swarm optimization algorithms on many famous benchmark
problems in all cases.

3.7. Discussions. LDIW-PSO is relatively simple to implement
and fast in convergence. When [4] experimentally ascer-
tained that LDIW-PSO is prone to premature convergence,
especially when solving complex multimodal optimization

if �� ≤ �avg
compute � using (19) or (21)
elseif �� > �avg
compute � using (23)

end if

Algorithm 4

problems, a new area of research was opened up for improve-
ments on inertia weight strategies in PSO, and LDIW-PSO
became a popular yard stick for many other variants.

From the variants described previously, there are ample
expectations that they should outperform LDIW-PSO judg-
ing by the various additional strategies introduced into the
inertia weight strategies used by them. For example, CDIW-
PSO introduced chaotic optimization characteristic, REPSO
introduced a combined e�ort of simulated annealing idea and
�tness variance of particles, DAPSO introduced a dynamic
adaptive strategy based on swarm diversity function, APSO
introduced an adaptive mutation to the particle positions
and made the inertia weight dynamic based on the best
global �tness, while DLPSO2 used di�erent formulas coupled
with chaotic mapping. �e general aims of remedying the
problem of premature convergence by these variants were not
achieved, rather they only struggled tomove a bit further than
LDIW-PSO in trying to optimize the test problems because a
total solution to this problem is for an algorithm to escape all
possible local optima and obtain the global optimum. With
this, it is possible that LDIW-PSO was subjected to settings,
for example, the particles velocity limits [24], which were not
appropriate for it to operate e�ectively.

4. Testing with Benchmark Problems

To validate the claim in this paper, 6 di�erent experiments
were performed for the purpose of comparing the LDIW-
PSO with 6 other di�erent PSO variants, namely, AIW-PSO,
CDIW-PSO, REPSO, SA-PSO, DAPSO, and APSO. Di�erent
experiments, relative to the competing PSO variants, used
di�erent set of test problems which were also used to test
LDIW-PSO. Brief descriptions of these test problems are
given next. Additional information on these problems can be
found in [27–29]. �e application so�ware was developed in
Microso� Visual C# programming language.

4.1. Benchmark Problems. Six well studied benchmark prob-
lems in the literature were used to test the performance
of LDIW-PSO, AIW-PSO, CDIW-PSO, REPSO, SA-PSO,
DAPSO, and APSO. �ese problems were selected because
their combinations were used to validate the competing
PSO variants in the respective literature referenced. �e
test problems are Ackley, Griewank, Rastrigin, Rosenbrock,
Scha�er’s f6, and Sphere.

�e Ackley problem is multimodal and nonseparable. It
is a widely used test problem, and it is de�ned in (24). �e
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Table 2: Test problems search and initialization ranges for the PSO variants.

Label CDIW-PSO REPSO DAPSO APSO DLPSO2�1 — — [−32, 32] — [−32, 32]�2 [−600, 600] [−600, 600] [−600, 600] [−600, 600] [−600, 600]�3 [−5.12, 5.12] [−10, 10] [−5.12, 5.12] [−5.12, 5.12] [−10, 10]�4 [−30, 30] [−100, 100] — [−30, 30] —�5 [−100, 100] [−10, 10] — — [−1.0, 1.0]�6 [−100, 100] [−10, 10] — — [−100, 100]
Table 3: Goals for the test problems in CDIW-PSO.

Label �2 �3 �4 �5 �6
Goal 0.05 50.0 100.0 0.00001 0.01

global minimum �1(�⃗) = 0 is obtainable at �⃗ = 0, and the
number of local minima is not known:

�1 (�⃗) = −20 exp(−0.2√ 1� �∑�=1�2�)
− exp(1� �∑�=1 cos (2/��)) + 20 + 6.

(24)

�e Griewank problem is similar to that of Rastrigin. It
is continuous, multimodal scalable, and nonseparable with
many widespread local minima regularly distributed. �e
complexity of the problem increases with its dimensionality.
Its global minimum �2(�⃗) = 0 is obtainable at �⃗ = 0, and the
number of local minima for arbitrary � is not known, but in
the two-dimensional case, there are some 500 local minima.
�is problem is represented by

�2 (�⃗) = 14000 ( �∑�=1�2�) − (
�∏
�=1

cos( ��√�)) + 1. (25)

�e Rastrigin problem represented in (26) is continuous,
multimodal, scalable, and separable with many local minima
arranged in a lattice-like con�guration. It is based on the
Sphere problem with the addition of cosine modulation so
as to produce frequent local minima.�ere are about 50 local
minima for two-dimensional case, and its global minimum�3(�⃗) = 0 is obtainable at �⃗ = 0:

�3 (�⃗) = �∑�=1 (�2� − 10 cos (2/��) + 10) . (26)

Shown in (27) is the Rosenbrock problem. It is continu-
ous, unimodal, scalable, and nonseparable. It is a classic opti-
mization problem also known as banana function, the second
function of De Jong, or extended Rosenbrock function. Its
global minimum �4(�⃗) = 0 obtainable at �⃗ = 1, lies inside a
long narrow, parabolic shaped valley. �ough it looks simple

to solve, yet due to a saddle point it is very di
cult to converge
to the global optimum:

�4 (�⃗) = �−1∑�=1 (100(��+1 − �2� )2) + (�� − 1)2. (27)

�e Scha�er’s f6 problem represented in (28) is 2-
dimensional, continuous, multimodal, and nonseparable
with unknown number of many local minima. Its global
minimum �5(�⃗) = 0 is obtainable at �⃗ = 0:

�5 (�⃗) = �−1∑�=1(0.5 +
sin2 (√�2�+1 + �2� ) − 0.5(0.001 (�2�+1 + �2� ) + 1)2). (28)

�e Sphere problem also known as the �rst De Jong
function is continuous, convex, unimodal, scalable, and
separable. It is one of the simplest test benchmark problems.
Its global minimum �6(�⃗) = 0 is obtainable at �⃗ = 0, and the
problem is represented by

�6 (�⃗) = �∑�=1�2� . (29)

4.2. Parameter Settings. �e limits of particle velocity could
negatively a�ect the performance of PSO algorithm if it is
not properly set. As a result, di�erent work has been done to
determine the velocity limits of particles in order to improve
on the performance of PSO. Researches in this direction
are [4, 24, 30] the three major methods that appear in the
literature, for computing the velocity clamping (�min and�max) are (i) multiplying the search space range with certain
percentage (F); that is, �max = F(�max − �min) and �min =−�max; (ii) multiplying both the minimum and maximum
limits of the search space separately with certain percentage
(F); that is, �max = F(�max) and �min = F(�min); (iii)
assigning the search space upper limit to �max. It is obvious
from (i) and (ii) that the parameter F is very important. As
a result, di�erent values have been used by di�erent authors
[5, 6, 13, 30] for F to determine velocity clamping for particles.

In trying to substantiate the fact that LDIW-PSO is not
as weak or inferior as many authors claimed it to be, an
experiment was conducted to investigate the e�ect of the
parameter F on the performance of LDIW-PSO using the
benchmark problems described previously. �e results were
used as a guide to set F in LDIW-PSO before embarking on
some experimental comparison, between it and some other
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Table 4: Experimental results for LDIW-PSO compared with CDIW-PSO.

Criteria
Griewank Rastrigin Rosenbrock Scha�er’s f6 Sphere

CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO

Mean
�tness

0.014773 0.007609 40.044561 33.055877 44.305058 31.148789 0.007732 0.000117 0.000092 0.000000

Std. Dev. 0.002959 0.008439 8.028912 10.498048 8.861012 20.832263 0.001546 0.001058 0.000016 0.000000

SR (%) 96.2 100 83.6 92.8 99.6 98.0 22.0 98.6 100 100

Table 5: Experimental results for LDIW-PSO compared with REPSO.

Iteration
Griewank1 Rastrigin Rosenbrock2 Sphere

REPSO LDIW-PSO REPSO LDIW-PSO REPSO LDIW-PSO REPSO LDIW-PSO

50 — — — — — — — —

100 0.6705 0.7859 30.7320 44.2732 — — 0.00671 0.00493

200 0.4922 0.6437 — — — — — —

300 0.2487 0.5607 — — — — 2.1142e − 04 2.97926 − 04
400 0.2345 0.4318 20.6671 16.5414 — — — —

500 0.1658 0.3185 17.3751 10.4621 570.7681 352.1663 7.11446 − 05 9.1853e − 07
800 — — 15.5611 3.9143 — — 6.87516 − 06 5.8431e − 17
1000 0.1461 0.0967 10.8120 3.2609 300.1407 218.9924 5.63676 − 07 1.2425e − 28
1500 0.1353 0.0842 — — 260.8421 138.2756 — —

2000 0.1089 0.0794 — — 170.2157 79.9941 — —

3000 — — — — 60.4418 21.5586 — —
1�is problem is slightly di�erent from the one in (25).2�is problem is slightly di�erent from the one in (27).

PSO variants described previously to prove that LDIW-PSO
is superior to many of the variants that have been claimed to
be better that it.�e results of the experiments are listed in the
Appendix. Using the results as guide, the value of Fwas set in
LDIW-PSO for the various test problems as listed in Table 1.
However, F was set to 0.015 for �2 in Experiment 2 and 0.25
for �3 in Experiments 2 and 5.

4.3. Experimental Setup. �e settings for the di�erent exper-
iments carried out for the comparisons are described next
one a�er the other. In all the experiments, LDIW-PSO was
subjected to the settings of its competitors as recorded in
the literature. For LDIW-PSO, �1 = �2 = 2.0, �max = 0.9,�min = 0.4, �min = F�min, and �max = F�max. Table 2
shows the respective search and initialization ranges for all
the algorithms, the symbol “–” means that the corresponding
test problem was not used by the algorithm under which the
symbol appears.

Experiment 1.�epurpose of this experimentwas to compare
LDIW-PSO with CDIW-PSO [2]. All the test problems
described previously were used in this experiment, except �1.
�e dimension for �5 was 2, while it was 30 for others. �e
maximum numbers of iterations were set to 1500 with swarm
size of 20, and the experiment was repeated 500 times. Stated
in Table 3 are the set goals (criteria) of success for each of the
problems.

Experiment 2. �e purpose of this experiment was to com-
pare LDIW-PSO with REPSO [7]. All the test problems in
Table 1 except �1 were used. �e dimension for �5 was 2,
while it was 10 for others.�e performances of the algorithms
were considered at di�erent number of iterations as shown in
Section 5, in line with what is recorded in the literature [7].
�e swarm size usedwas 30, and the experiment was repeated
50 times.

Experiment 3. �e purpose of this experiment was to com-
pare LDIW-PSOwithDAPSO [13]. Test problems�1−�3 were
used with four di�erent problem dimensions of 20, 30, 40,
and 50. �e maximum number of iterations and swarm size
was set to 3000 and 30, respectively, and the experiment was
repeated 50 times.

Experiment 4. �e purpose of this experiment was to com-
pare LDIW-PSO with APSO [5]. �2, �3, and �4 were used
as test problems with three di�erent problem dimensions
of 10, 20, and 30. �e respective maximum numbers of
iterations associated with these dimensions are 1000, 1500,
and 2000, respectively. �e experiment was carried out over
three di�erent swarm sizes, 20, 40, and 80 for each problem
dimension, and the experiment was repeated 30 times.

Experiment 5. �is experiment compared LDIW-PSO with
DLPSO2 [11]. All the test problems except �4 were used in the
experiment with two di�erent problem dimensions of 2 (for
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Table 6: Experimental results for LDIW-PSO compared with DAPSO.

Dim
Ackley Griewank Rastrigin

DAPSO LDIW-PSO DAPSO LDIW-PSO DAPSO LDIW-PSO

20 3.9062096 − 014 8.970602e − 015 8.6052806 − 002 1.649481e − 002 2.1590596 + 001 2.040020e + 001
30 4.1595416 − 008 1.527799e − 010 2.5833386 − 002 9.258783e − 003 3.2634636 + 001 2.996404e + 001
40 7.0460936 − 005 2.578715e − 007 1.0878686 − 002 4.875733e − 003 3.890287e + 001 4.1098656 + 001
50 1.0255686 − 003 1.629095e − 005 1.3467326 − 002 4.335978e − 003 4.8235596 + 001 4.606947e + 001

Table 7: Experimental results for LDIW-PSO compared with APSO.

Swarm size Dim Maximum iteration
Griewank Rastrigin Rosenbrock

APSO LDIW-PSO APSO LDIW-PSO APSO LDIW-PSO

20

10 1000 0.0983 0.2347 5.1565 12.4602 5.8467 4.3695

20 1500 0.0237 0.0150 16.0456 27.6708 47.9842 19.1223

30 2000 0.0117 0.0103 42.2325 33.2050 100.4528 29.3482

40

10 1000 0.0952 0.2231 2.9468 10.5713 4.5431 3.9145

20 1500 0.0201 0.0211 15.3678 19.3199 38.3464 16.5186

30 2000 0.0105 0.0099 33.7538 26.3453 72.5473 26.9638

80

10 1000 0.0689 0.1294 2.0457 9.0800 4.1680 6.5127

20 1500 0.0199 0.0184 10.0563 16.4368 27.9547 17.6043

30 2000 0.0102 0.0080 25.3473 23.2303 69.0609 24.6653

Table 8: Experimental results for LDIW-PSO compared with
DLPSO2.

Criteria Best �tness Mean �tness Std. Dev.

Ackley

DLPSO2 8.62096 − 06 0.4743 0.6527

LDIW-PSO 2.0441e − 07 0.0000 0.0000

Griewank

DLPSO2 7.75896 − 06 0.0086 0.0114

LDIW-PSO 3.5694e − 13 0.0083 0.0088

Rastrigin

DLPSO2 −2 −2 0

LDIW-PSO −2 −2 0

Scha�er’s f6

DLPSO2 7.52066 − 07 5.63006 − 06 2.89696 − 06
LDIW-PSO 0.0000e + 00 0.0000e + 00 0.0000e + 00

Sphere

DLPSO2 7.69416 − 06 9.50016 − 06 4.95576 − 07
LDIW-PSO 4.1289e − 14 0.0000e + 00 0.0000e + 00

�3 and �5) and 30 (for �1, �2, and �6).�emaximum number
of iterations was set to 2000 and swarm sizes to 20, and the
experiment was repeated 20 times.

5. Results and Discussions

Presented in Tables 4–8 are the results obtained for all the
experiments. �e results for all the competing PSO variants
were obtained from the respective referenced papers, and
they are presented here the way they were recorded. �us,
the recording of the results for LDIW-PSO was patterned
a�er them. In each of the tables, bold values represent the

best results. In the tables, mean best �tness (solution) is a
measure of the precision that the algorithm can get within
a given number of iterations, standard deviation (Std. Dev.)
is a measure of the algorithm’s stability and robustness, while
success rate (SR) [31] is the rate at which an algorithm obtains
optimum �tness result in the criterion range during a given
number of independent runs.

Experiment 1 (comparison of LDIW-PSO with CDIW-PSO).
�e results in Table 4 clearly reveal a great di�erence in
performance between LDIW-PSO and CDIW-PSO [2]. �e
results are compared based on the �nal accuracy of the aver-
aged best solutions, success rate (SR), and standard deviation
(Std. Dev.) of the best solutions. In all the test problems,
the result indicates that LDIW-PSO can get better optimum
�tness result, showing better convergence precision. LDIW-
PSO is also more stable and robust compared with CDIW-
PSO, because its standard deviation is comparatively lesser
in three of the test problems. Besides, LDIW-PSO has better
global search ability and could easily get out of local optima
than CDIW-PSO.

Experiment 2 (comparison of LDIW-PSO with REPSO). In
Table 5, the comparison between LDIW-PSOandREPSOwas
based on the �nal accuracy of the averaged best solutions
relative to the speci�ed number of iterations and convergence
speed as recorded in [7]. From the results, REPSO appears to
converge faster in Griewank and Rastrigin at the beginning
butwas overtaken by LDIW-PSOwhich eventually converged
faster and had better accuracy. In Rosenbrock and Sphere
problems, LDIW-PSO had better convergence speed and
accuracy in comparisonwith REPSO.�e symbol “—”means
that the corresponding iteration number was not considered
for the test problem under which the symbol appears.



�e Scienti�c World Journal 9

Table 9: Di�erent values of parameter F and respective mean best �tness for Griewank test problem.

F Dimension 10 Dimension 30 Dimension 50

Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 9.9136 − 02 9.1256 − 02 1.1576 + 01 5.6076 + 00 6.2696 + 01 3.9416 + 01
0.75 9.6456 − 02 8.8256 − 02 3.0886 + 00 1.4516 − 02 1.5196 + 01 6.8756 + 00
0.5 9.9836 − 02 9.0186 − 02 1.9726 − 01 1.6016 − 02 2.0036 + 00 5.5226 − 01
0.25 1.0026 − 01 2.925e − 02 1.6026 − 02 1.4586 − 02 1.2006 − 02 9.8856 − 03
0.15 9.7726 − 02 9.2766 − 02 1.5566 − 02 1.4506 − 02 9.9256 − 03 8.6546 − 03
0.1 1.0446 − 01 9.1416 − 02 1.4896 − 02 1.5646 − 02 1.0276 − 02 9.3396 − 03
0.075 1.0646 − 01 1.0066 − 01 1.3286 − 02 1.3896 − 02 8.9376 − 03 7.9636 − 03
0.05 1.0116 − 01 9.4176 − 02 1.5216 − 02 1.5806 − 02 8.2246 − 03 7.8216 − 03
0.025 9.6826 − 02 8.7386 − 02 1.6046 − 02 1.6686 − 02 7.1086 − 03 7.3546 − 03
0.015 9.028e − 02 8.6486 − 02 1.3796 − 02 1.4446 − 02 5.7196 − 03 6.2266 − 03
0.01 1.2746 − 01 1.2656 − 01 1.1486 − 02 1.1416 − 02 5.0056 − 03 4.7686 − 03
0.0075 2.2516 − 01 2.0786 − 01 7.160e − 03 7.595e − 03 4.2376 − 03 4.021e − 03
0.005 5.5466 − 01 3.7516 − 01 8.0066 − 03 8.0306 − 03 4.025e − 03 4.5266 − 03
0.0025 1.2586 + 00 6.8336 − 01 1.2036 − 02 1.2186 − 02 6.8086 − 03 6.0136 − 03
0.0015 1.8956 + 01 9.6426 − 01 1.4156 − 02 1.4346 − 02 7.2266 − 03 7.4196 − 03
0.001 4.0616 + 00 2.0836 + 00 1.3666 − 02 1.6226 − 02 7.1846 − 03 7.4626 − 03

Table 10: Di�erent values of parameter F and respective mean best �tness for Rastrigin test problem.

F Dimension 10 Dimension 30 Dimension 50

Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 4.5516 + 00 3.400e + 00 9.9596 + 01 8.4626 + 01 2.6946 + 02 2.3616 + 02
0.75 4.537e + 00 3.6196 + 00 6.9246 + 01 5.8666 + 01 1.9356 + 02 1.7296 + 02
0.5 4.6466 + 00 3.4766 + 00 5.2536 + 01 4.2826 + 01 1.3306 + 02 1.1516 + 02
0.25 6.4846 + 00 5.2476 + 00 4.5346 + 01 4.1976 + 01 8.9436 + 01 8.4626 + 01
0.15 1.0436 + 01 9.0136 + 00 4.1426 + 01 3.7986 + 01 7.2046 + 01 6.5906 + 01
0.1 1.1496 + 01 9.4706 + 00 3.7026 + 01 3.3806 + 01 6.1836 + 01 5.6536 + 01
0.075 1.0776 + 01 9.3976 + 00 3.3286 + 01 2.9176 + 01 5.3946 + 01 4.8246 + 01
0.05 1.1626 + 01 1.0226 + 01 3.302e + 01 2.943e + 01 5.370e + 01 4.704e + 01
0.025 1.3736 + 01 1.1606 + 01 3.6076 + 01 3.1946 + 01 5.4746 + 01 4.8606 + 01
0.015 1.3876 + 01 1.1596 + 01 3.8936 + 01 3.5216 + 01 5.7626 + 01 5.0876 + 01
0.01 1.4316 + 01 1.2216 + 01 4.0106 + 01 3.5656 + 01 5.9956 + 01 5.3906 + 01
0.0075 1.4756 + 01 1.2136 + 01 4.1646 + 01 3.6926 + 01 6.2566 + 01 5.4766 + 01
0.005 1.8686 + 01 1.3986 + 01 4.3006 + 01 3.6636 + 01 6.4516 + 01 5.4646 + 01
0.0025 3.3376 + 01 2.5076 + 01 7.2946 + 01 4.9176 + 01 9.2156 + 01 6.0736 + 01
0.0015 4.7946 + 01 4.0276 + 01 1.1686 + 02 7.8036 + 01 1.3966 + 02 8.9226 + 01
0.001 5.7926 + 01 5.2206 + 01 1.8986 + 02 1.5486 + 02 2.1026 + 02 1.3906 + 02
Experiment 3 (comparison of LDIW-PSO with DAPSO). �e
results for DAPSOwere obtained from [13]. Comparing these
results with that of LDIW-PSO were measured using the
�nal accuracy of the respective mean best solutions across
the di�erent problems dimensions as shown in Table 6. In
all the problems and dimensions except dimension 40 of
Rastrigin, LDIW-PSO outperformed DAPSO getting better
�tness quality and precision. �is is a clear indication that
LDIW-PSO has better global search ability and is not easily
trapped in local optima compared with DAPSO.

Experiment 4 (comparison of LDIW-PSO with APSO).
Recorded in Table 7 are the results for LDIW-PSO and APSO

[5] over di�erent swarm sizes, dimensions, and iterations.
�e basis for comparison is the �nal accuracy and quality
of their mean best �tness. �e two variants put up a good
competition. In Griewank and Rastrigin, APSO performed
better in smaller dimensions, while LDIW-PSO performed
better in higher dimensions. But in Rosenbrock, LDIW-PSO
outperformed APSO in locating better solutions to the
problem.

Experiment 5 (comparison of LDIW-PSO with DLPSO2).
�e results for LIDIW-PSO and DLPSO2 [11] in Table 8
are compared based on the best �tness, mean best �tness,
convergence speed, aswell as standard deviation (Std.Dev.) of
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Table 11: Di�erent values of parameter F and respective mean best �tness for Rosenbrock test problem.

F Dimension 10 Dimension 30 Dimension 50

Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 1.1656 + 04 1.0406 + 04 1.8516 + 05 2.8736 + 04 3.0756 + 06 1.1486 + 06
0.75 6.0206 + 03 4.0206 + 03 2.0096 + 04 1.7116 + 04 8.2406 + 05 1.8376 + 05
0.5 2.5856 + 03 2.1896 + 03 1.1286 + 04 8.2146 + 03 1.1756 + 04 1.3606 + 04
0.25 1.8726 + 01 5.5716 + 00 4.3076 + 02 4.4456 + 02 2.3156 + 03 1.0566 + 03
0.15 1.0756 + 01 4.2296 + 00 4.9106 + 01 4.7506 + 01 1.1566 + 02 9.7106 + 01
0.1 4.7986 + 00 4.2416 + 00 4.2486 + 01 4.1476 + 01 9.2176 + 01 8.6996 + 01
0.075 4.680e + 00 4.099e + 00 4.5316 + 01 3.6076 + 01 1.0736 + 02 7.7016 + 01
0.05 5.1826 + 00 4.5346 + 00 3.4536 + 01 3.2826 + 01 6.8586 + 01 6.3836 + 01
0.025 5.7706 + 00 5.5986 + 00 3.1486 + 01 3.0356 + 01 5.4506 + 01 5.2156 + 01
0.015 7.8186 + 00 6.8006 + 00 2.956e + 01 2.832e + 01 5.207e + 01 5.2186 + 01
0.01 7.7486 + 00 6.4806 + 00 2.9626 + 01 2.8916 + 01 5.4876 + 01 5.154e + 01
0.0075 8.0856 + 00 7.9456 + 00 2.9986 + 01 2.9486 + 01 5.5056 + 01 5.1646 + 01
0.005 6.4916 + 00 6.8966 + 00 3.1346 + 01 3.0156 + 01 5.5446 + 01 5.2636 + 01
0.0025 7.9436 + 01 7.6826 + 00 3.0526 + 01 2.9156 + 01 5.6566 + 01 5.1636 + 01
0.0015 5.0036 + 01 1.4086 + 01 3.0956 + 01 2.6726 + 01 5.3986 + 01 5.1746 + 01
0.001 2.4176 + 04 3.4266 + 03 3.0206 + 01 2.9496 + 01 5.6146 + 01 5.2226 + 01

Table 12: Di�erent values of parameter F and respective mean best �tness for Sphere test problem.

F Dimension 10 Dimension 30 Dimension 50

Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 1.0436 − 20 3.6796 − 23 1.1406 + 03 5.4006 + 02 7.3806 + 03 4.4006 + 03
0.75 9.4906 − 21 1.5546 − 23 1.6006 + 02 4.0006 + 01 1.4606 + 03 7.6006 + 02
0.5 5.1086 − 21 1.0486 − 23 1.3496 − 08 4.0156 − 10 1.0006 + 02 2.0006 + 01
0.25 8.5616 − 22 5.8596 − 24 3.5476 − 09 6.1106 − 11 1.5386 − 05 4.9766 − 07
0.15 5.3046 − 21 9.1446 − 25 1.5036 − 09 2.9636 − 11 6.9526 − 06 2.1146 − 07
0.1 6.6796 − 23 1.2036 − 24 4.4326 − 10 1.1936 − 11 2.2246 − 06 7.6566 − 08
0.075 8.5776 − 23 2.1496 − 25 2.3976 − 10 8.8136 − 12 1.3066 − 06 4.9546 − 08
0.05 3.9216 − 23 1.7946 − 25 1.1476 − 10 3.4906 − 12 5.0986 − 07 2.2356 − 08
0.025 1.0066 − 23 4.8356 − 26 2.5966 − 11 7.5926 − 13 1.6206 − 07 6.6546 − 09
0.015 2.4666 − 24 1.7956 − 26 1.3496 − 11 2.3646 − 13 5.6896 − 08 2.2226 − 09
0.01 1.0226 − 24 4.3266 − 27 3.9986 − 12 1.2456 − 13 3.9836 − 08 8.8376 − 10
0.0075 9.9426 − 25 3.9916 − 27 2.7586 − 12 7.0176 − 14 1.1156 − 08 5.7866 − 10
0.005 6.363e − 25 2.300e − 27 1.4496 − 12 3.0616 − 14 1.1166 − 08 2.0346 − 10
0.0025 2.0036 − 23 1.3766 − 26 3.638e − 13 9.420e − 15 1.5926 − 09 6.7786 − 11
0.0015 4.4696 − 08 2.9626 − 08 7.3786 − 13 1.2546 − 14 1.062e − 09 3.1306 − 11
0.001 2.9006 + 02 9.8876 + 01 5.7116 − 02 8.2656 − 13 2.5636 − 09 2.755e − 11
the best solutions. In Rastrigin, the two algorithms have equal
performances. However, in other test problems, the result
indicates that LDIW-PSO can get better optimum �tness
result, showing better convergence speed. LDIW-PSO is also
more stable and robust compared with DLPSO2, because its
standard deviation is comparatively smaller in all the test
problems. Besides, LDIW-PSO demonstrated better global
search ability and getting out of local optima than DLPSO2.

6. Conclusion

Motivated by the superiority claims by some PSO variants
over LDIW-PSO in terms of performance, a number of

experiments were performed in this paper to empirically
verify some of these claims. Firstly, an appropriate (approx-
imate) percentage of the test problems search space limits
were obtained to determine the particle velocity limits for
LDIW-PSO. Secondly, these values were used in the imple-
mentation of LDIW-PSO for some benchmark optimization
problems and the results obtained compared with that of
some PSO variants that have previously claimed superiority
in performance. LDIW-PSO performed better than these
variant. �e performances of the two other recent PSO
variants with di�erent inertia weight strategies were also
compared with LDIW-PSO on similar problems with the
latter showing competitive advantage.�iswork has therefore
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Table 13: Di�erent values of parameter F and respective mean best
�tness for Scha�er’s f6 test problem.

F Dimension 2

Size = 20 Size = 30

1.0 1.3426 − 03 5.4466 − 04
0.75 2.3926 − 03 9.3356 − 04
0.5 2.0526 − 03 7.6516 − 04
0.25 1.3876 − 03 7.2126 − 04
0.15 7.7566 − 04 2.7316 − 04
0.1 6.8166 − 04 1.8476 − 04
0.075 4.865e − 04 1.7496 − 04
0.05 6.4136 − 04 1.612e − 04
0.025 4.2756 − 03 2.7406 − 03
0.015 5.6256 − 03 3.1296 − 03
0.01 4.7266 − 03 2.9936 − 03
0.0075 4.5946 − 03 2.6836 − 03
0.005 5.6636 − 03 3.3276 − 03
0.0025 5.9406 − 03 4.7606 − 03
0.0015 7.5826 − 03 5.4496 − 03
0.001 7.7766 − 03 6.0926 − 03
showed that with good experimental setting, LDIW-PSOwill
perform competitively with similar variants. Precious claims
of inferior performance might therefore be due to some
unfavourable experimental settings. �e Appendix provides
further simulation results that can provide useful hints for
deciding the setting velocity threshold for particles for LDIW-
PSO.

Appendix

Tables 9, 10, 11, 12, and 13 show the results of LDIW-PSO in
optimizing some benchmark problems so as to determine a
suitable value for F that was used to set the velocity limits for
the particles. �e experiments were repeated 500 times for
each of the problems. Two di�erent swarm sizes of 20 and 30
were used for each of the three di�erent problem dimensions
10, 30, and 50. �e respective number of iterations that was
used with the dimensions is 1000, 1500, and 2000.�e LDIW
strategy was decreased from 0.9 to 0.4 in course of searching
for solution to the problem [7, 10–12, 27], the acceleration
constants (�1 and �2) were set to 2.0, and �max = F(�max) and�min = F(�min). In the tables, bold values represent the best
mean �tness value.
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