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Abstract

In this paper, we study the performance of location-
centric storage (LCS) theoretically. Our results indicate
that LCS utilizes network resource efficiently. In particular,
the storage load of sensors is independent of the network
size, and is evenly distributed across the network. Moreover,
the communication distance for getting event information is
small. Therefore, the protocol has great scalability. In addi-
tion, we also propose algorithms for data retrieval in LCS.
Our analysis shows that both the number of queries and the
response cost involved in the algorithms could approach to
the theoretical lower bound.

Keywords: sensor networks, location-centric storage,
LCS

1 Introduction

There exists four data storage methods proposed in the
context of sensor networks. In Local Storage (LS), short-
lived data is stored locally at the home sensor. In External
Storage (ES), data is sent to an outside access point where
it can be further processed as needed. In Data-Centric Stor-
age (DCS), data is stored according to name/location. A
data centric storage scheme [9] based on geographic hash
tables [10] maps the data of the same type (name) to a fixed
location in the sensor network. The performance of these
three methods has been extensively studied [6,9–12]. These
studies indicate that no one outperforms the other two in all
situations. The fourth storage method is termed Location-
Centric Storage (LCS), which is complement to DCS, LS,
and ES.

The basic concept of LCS has been applied to the one-
dimensional sensor network mimicking a unidirectional
highway for safety warning [15]. The generalization to
roadways with intersections has been reported in [15]. Two-
Dimensional LCS has been proposed in [14]. Compared to

LS, ES, and DCS, LCS utilizes a completely different con-
cept. In fact, LCS is relatively more context-aware. In LCS,
events are replicated at multiple locations based on the as-
sociated parameter intensity. The intensity of an event is a
function of the event type, the significance and the location
of the event, the application scenario, etc. The higher the in-
tensity, the more number of replications the event will have,
and the farther away from the home location the event will
be stored.

In this paper, we will study the performance of LCS in
terms of storage and query theoretically. The rest of the
paper is organized as follows. First we briefly overview
the location-centric storage protocol for sensor networks in
Section 2. The theoretical performance analysis on storage
and query is given in Section 3 and 4, respectively. We con-
clude this paper by Section 5 with a comparison of the four
storage methods.

2 Overview of Location-Centric Storage

In this section, we briefly overview the basic concept of
LCS. One-dimensional LCS was first introduced in [15] for
roadway safety warning. LCS for a general sensor network
was proposed in [14].

We assume that sensors can obtain their own geometric
coordinates (Sx, Sy) using GPS or other techniques, such as
those proposed in [1,7,13]. We further assume that a robust
broadcasting protocol is in place such that event records can
be properly disseminated.

When detecting an event, the home sensor1 creates a
record with the following five fields:

• The time indicating when the event occurs.

• The location (i.e. the coordinates (Sx, Sy)) of the
event. For simplicity, we assume an event collocates

1An event is usually detected by multiple sensors simultaneously but
one sensor will be designated for reporting the event [2]. We term this
sensor the “home sensor” of the event.
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with its home sensor. Note that the time and location
fields together uniquely identifies an event record.

• An integral intensity value (σ) that characterizes the
event. Intensity values are application-specific. If the
event is a car crash [15], the intensity value character-
izes the time needed to clear the road. In context-aware
facility query, the intensity value indicating the avail-
ability of a gas station may be proportional to the price
the owner would like to pay. Generally speaking, the
higher the intensity, the wider area the record should
be dispatched; The closer the sensor to the event loca-
tion, the higher the probability of the sensor storing the
record.

• A Time-To-Live (TTL) as the expiration time (relative
to the current moment) of the record. Records are
purged from the database when their TTL values reach
0.

• The type of the event.

In LCS, when a sensor receives an event record, it com-
putes its distance to the event location and checks whether
it is “close enough”2 to the event location. Thus each sen-
sor is able to locally and independently determine whether
it should drop or store the received event record. When a
user query is received, a response is generated based on the
information stored in the sensor’s database. This procedure
can be formally defined by the following LCS protocol.

1. When detecting an event, the home sensor S creates,
stores and broadcasts an event record.

2. When receiving an event record, a sensor stores the
record if (a) its X coordinate ∈ {x + 20, x + 21, x +
22, · · · , x + 2σ−1}, and (b) its Y coordinate ∈ {y +
20, y+21, y+22, · · · , y+2σ−1}, where σ and (x, y) are
the intensity value and the event location, respectively.
Otherwise, the record is dropped. In both cases, the
sensor broadcasts the record if its distance to the event
location is less than 2σ−1 in both X and Y dimensions.

3. After a record is stored, its TTL value decreases by
the clock tick. The entry containing the record will
be purged out of the database immediately when TTL
reaches 0.

4. When receiving a user query, a response to the
user based on the information stored in the sensor’s
database will be generated.

2Here “close enough” means that this sensor is the closest among its
neighboring sensors to one of the ideal locations where the record should
be stored.

Figure 1. An Example of Location-Centric
Storage Scenario. All circles store the event
record for the event at the solid dot, whose
intensity value is 3; And all squares keep a
copy of the event record for the event at the
solid square, whose intensity value is 2.

It should be noticed that for any particular pair of (i, j),
where i, j ∈ {0, 1, 2, ..., σ − 1}, there is probably no sensor
on the exact point of (x±2i, y±2j). In this case, the sensor
closest to the point in the neighborhood takes the place and
keeps a copy of the record.

From the LCS protocol, it can be easily seen that records
are stored in exponentially expanding frames, where the dis-
tance between the i-th and i+1-th frame is 2i. Besides, the
larger the intensity value, the more expanding frames that
will contain the information, and thus the further the infor-
mation can reach. As an example, Fig. 1 shows a sensor
network with two events. The event detected at the solid
dot has an intensity of 3. Therefore, its record is stored
in a sensor whose horizontal and vertical distances to the
solid dot are members of the set {1, 2, 4} (corresponding to
20, 21, and 22, respectively). Similarly, the other event de-
tected at the solid square has an intensity of 2. In this case,
less sensors in a smaller area store the record.

3 Storage Performance Analysis

Due to the simple structure, our protocol has several
well-defined properties that lead to promising performance.
The following theorems provide the analysis.

Theorem 3.1 Given two records A and B produced by two
nodes at different locations (Ax, Ay) and (Bx, By), respec-
tively. Let σA and σB be their corresponding intensity val-
ues.

1. If Ax �= Bx and Ay �= By , at most 16 nodes store both
records.
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X-coordinate

Figure 2. Two nodes at (x1, y1) and (x2, y2),
x1, x2 ∈ (Bx,∞).

X-coordinate

Figure 3. Three nodes at (x1, y1), (x2, y2) and
(x3, y3), x1, x2, x3 ∈ [Ax, Bx].

2. If Ax = Bx or Ay = By, at most 4(2σ+1) nodes store
both records, where σ = min{σA, σB} is the smaller
intensity value among the two.

Proof. We assume that both records are alive at the same
time (since otherwise no nodes will store both of them). The
storage locations for record A are then {(Ax ± 2i, Ay ±
2j)|i, j ∈ {0, 1, · · · , σA −1}}. Similarly, we can determine
the storage locations for B.

Case 1: Ax �= Bx and Ay �= By .
Without loss of generality, we assume Ax < Bx. Con-

sider the X coordinate only. Ax and Bx partition the X axis
into three intervals: (−∞, Ax), [Ax, Bx], (Bx,∞). Using
the reduction to absurdity approach, we will prove that there
exists at most one X coordinate in the right (left) inter-
val such that nodes with this X coordinate will store both
records of A and B.

Given two nodes at (x1, y1) and (x2, y2) with x1, x2 ∈
(Bx,∞). For contradiction we assume that both nodes store
both records. Without loss of generality, we further assume
x2 > x1. Let ax1, bx1, ax2, bx2 (Fig. 2) be the values such
that

x1 = Ax + 2ax1 = Bx + 2bx1 (1)

x2 = Ax + 2ax2 = Bx + 2bx2 (2)

It is easily seen that ax2 > ax1 and bx2 > bx1 since x2 >
x1. Further, Ax < Bx induces ax1 > bx1 and ax2 > bx2.

From Eqs. (1) and (2), we obtain

2ax1 − 2bx1 = 2ax2 − 2bx2 ⇒
(2ax1−bx1 − 1) = 2bx2−bx1(2ax2−bx2 − 1) (3)

In Eq. (3), the left side value is odd while the right side
value is even, which is impossible. Therefore, the assump-
tion that there exist two nodes storing both records can not
be held true. Thus we have proved that at most one x in
(Bx,∞) such that the node at (x, y) stores both records.

With a very similar derivation, the same conclusion holds
for the interval (−∞, Ax). In the following, we will prove
that for those nodes whose X coordinates are in [Ax, Bx], at
most two of them may store both records of A and B, again
using reduction to absurdity.

For contradiction we assume three such nodes at dif-
ferent locations (x1, y1), (x2, y2) and (x3, y3) store both
records. Let axi, bxi(i ∈ {1, 2, 3}) (Fig. 3) be the values
such that

x1 = Ax + 2ax1 = Bx − 2bx1 (4)

x2 = Ax + 2ax2 = Bx − 2bx2 (5)

x3 = Ax + 2ax3 = Bx − 2bx3 (6)

Without loss of generality, we assume x1 < x2 < x3.
Hence we have bx1 > bx2 > bx3. Also, from the above
equations, we obtain

2bx1−bx2(2ax2−bx1 − 1) = (2ax1−bx2 − 1) (7)

2bx1−bx3(2ax3−bx1 − 1) = (2ax1−bx3 − 1) (8)

2bx2−bx3(2ax3−bx2 − 1) = (2ax2−bx3 − 1) (9)

Eq. (7) is true if and only if ax2 = bx1 and ax1 = bx2

(otherwise the parity of the two sides would be different).
Similarly, Eq. (8) and Eq. (9) are true if and only if ax3 =
bx1, ax1 = bx3, ax3 = bx2, ax2 = bx3. Therefore ax1 =
ax2 = ax3 = bx1 = bx2 = bx3, and thus x1 = x2 = x3,
which contradicts the assumption.

From the above analysis, we conclude that there are at
most four different X coordinates such that the nodes with
these coordinates will store both records. The same argu-
ment holds true for the Y coordinate. Therefore there are at
most 16 positions at which the nodes store both records.

Case 2: Ax = Bx or Ay = By .
Consider the case of Ax = Bx and Ay �= By. From

the above analysis, we know that at most 4 different Y
coordinates whose nodes store records for both events.
Further, there are at most 2σ + 1 different X coordinates
whose nodes store both records, where σ = min{σA, σB}.
Therefore at most 4(2σ + 1) nodes store both records of
A and B. A similar discussion holds for the case when
Ax �= Bx and Ay = By. �
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Corollary 1 Assume all event records have the same inten-
sity value σ. Given two nodes at (Ax, Ay) and (Bx, By),
respectively,

1. If Ax �= Bx and Ay �= By , they store at most 16
records in common.

2. If Ax = Bx or Ay = By , they store at most 4(2σ + 1)
records in common.

Proof. Consider a node at (Sx, Sy). According to our
protocol, the node can only store event records generated
by nodes at (Sx ± 2i, Sy ± 2j)(i, j ∈ {0, 1, 2, . . . , σ − 1}).
Therefore, we can reverse the roles of records and nodes in
the proof of the Theorem 3.1, which leads to the corollary.
�

Remark: Theorem 3.1 indicates that no matter how big the
intensity value of a record is, there will be a fixed number of
sensors that store the same pair of records in the network, as
long as the two event locations are not colinear in X and Y
directions. However, when these two locations are colinear
in either X or Y direction, the intensity value does matter.
Particularly, intensity values determine how many copies
of the records can be stored and what distance the records
can be propagated. Therefore, they affect the storage space
at each sensor, as indicated by Theorem 3.2. Corollary 1
shows that records are distributed among all nodes instead
of converging onto some of them. Thus no hot spots will be
created.

Theorem 3.2 Assume broadcast is instantaneous. Let the
average intensity value of records be σ, and the average
TTL value be T (assumed as an integer). Also assume that
at any node, the number of events detected during a unit
time, denoted by N , follows a Poisson distribution with
a mean of λ. If N is independent node-wise and time-
wise, the average number of records stored at each node
is λ(4σ2 + 4σ + 1)T .

Proof. Given a node at (Sx, Sy), it is easily seen that
at any time t, the node stores the records generated
at (x, y) (where x = Sx ± 2i and y = Sy ± 2j for
i, j ∈ {0, 1, . . . , σ − 1}) during the time interval [t − T, t].
Let Nx,y

k be the number of events for which the node at
(x, y) generates records during the kth unit time interval
[t−T + k− 1, t−T + k] (k ∈ {1, 2, . . . , T}). The average
number of records generated by this node during the time
interval [t − T, t] is thus Wx,y =

∑T
k=1 Nx,y

k . Conse-
quently, at any time t, the number of records stored in the
node at (Sx, Sy) is W =

∑
x,y Wx,y =

∑
x,y

∑T
k=1 Nx,y

k .
Since Nx,y

k ’s are Poisson distributed and independent from
each other, W follows the Poisson distribution with the

mean of λ(2σ + 1)2T = λ(4σ2 + 4σ + 1)T . �

Remark: Note from Theorem 3.2 that the average number of
records stored in each node at any instant time is indepen-
dent of the network size. This independency also implies
the bounded broadcast of records. Therefore, our protocol
is efficient in terms of storage requirement, power consump-
tion, and bandwidth utilization. It is thus highly scalable.

Theorem 3.3 Let σ be the intensity value in an event
record. Assume the radio range of each sensor is set to
be one unit, then the record will be broadcasted at most
(2σ − 1)2 times. With a careful broadcast scheduling, this
upper bound can be reduced to 2σ × (2σ − 2) + (2σ + 1).

Proof. According to our protocol, a record with the inten-
sity σ generated at (x, y) is propagated within the area of
[x − 2σ−1, x + 2σ−1] and [y − 2σ−1, y + 2σ−1]. Imag-
ine a grid laid on the area centered at (x, y), and each grid
cell is sized 1 × 1. Since the radio range of each sensor is
one unit of distance, only the nodes on (or closest to) the
crossings of the virtual grid lines need to participate in the
broadcast. Also note that the broadcast stops on the bound-
ary of the area. Therefore, the total number of intermediate
nodes participating in the broadcast is at most (2σ − 1)2.

This upper bound can be improved if the record is prop-
agated horizontally and vertically only when necessary.
To be specific, each of the sensors at (x ± i, y), where
i = 0, 1, · · · , 2σ−1, needs to broadcast once; and each of
the sensors at (x ± 2i, y ± j), where i = 0, 1, · · · , σ − 1
and j = 0, 1, · · · , 2σ−1 − 1, needs to broadcast once.
Therefore the total number of broadcastings is at most
2σ × (2σ − 2) + (2σ + 1). �

Remark: From Theorems 3.2 and 3.3, we observe that LCS
is efficient in network resource (power, bandwidth, mem-
ory) utilization. Further, LCS is fair to all nodes in storage
space, as long as the records are uniformly and indepen-
dently generated. This is an intrinsic difference compared
with DCS [10,12], which creates storage hot spot even when
the number of events in the network is low.

Theorem 3.4 Suppose (x, y) is the location of a user and
(Sx, Sy) is the location of an event whose record has an
intensity value of σ. Let dx = |x− Sx|, and dy = |y − Sy|.
If the user is in the broadcast region of this event, i.e., x ∈
[Sx − 2σ−1, Sx + 2σ−1] and y ∈ [Sy − 2σ−1, Sy + 2σ−1],
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Figure 4. For a user at (x, y) in the shaded
area, the record of the event at (Sx, Sy) will
be provided by the node at (Pa1, Pb1). The
query distance is thus the distance from (x, y)
to (Pa1, Pb1). When the user is closer to
(Pa1, Pb2), (Pa2, Pb1) or (Pa2, Pb2), the calcula-
tion is similar.

the average query distance dq is:

dq =




√
a2+b2

3 + a2 ln(

√
a2+b2+b

a )

6b + b2 ln(

√
a2+b2+a

b )

6a ,
if x �= Sx ± 2i and y �= Sy ± 2j ,
where i, j = 0, 1, · · · , σ − 1;

√
a2+b2

2 , otherwise.

where
{

a = (2�log2 dx� − 2�log2 dx�)/2
b = (2�log2 dy� − 2�log2 dy�)/2

Proof.
We denote

Pa1 = Sx + 2�log2 dx�, Pa2 = Sx + 2�log2 dx�

Pb1 = Sy + 2�log2 dy�, Pb2 = Sy + 2�log2 dy�

Therefore, a = (Pa2−Pa1)/2, b = (Pb2−Pb1)/2. Note
that a = 0 indicates that x = Sx±2i for i = 0, 1, · · · , σ−1,
and b = 0 indicates that y = Sy±2j for j = 0, 1, · · · , σ−1.
There are four different cases:

Case 1: a �= 0, b �= 0.
In this case, the user at (x, y) chooses the closest point

from (Pai, Pbj) (i, j = 1, 2), and sends the query to the
node at that point. Whichever point the user chooses, the

situation is similar. Therefore, we will only consider the
situation when (Pa1, Pb1) is the closest to the user, as shown
in Fig. 4.

Since (x, y) can be any point in the shaded square with
the same probability, the average query distance dq is

dq =

∫ a

0

∫ b

0

√
x2 + y2dxdy

ab

=
√

a2 + b2

3
+

a2 ln(
√

a2+b2+b
a )

6b

+
b2 ln(

√
a2+b2+a

b )
6a

Case 2: a �= 0, b = 0.
In this case, (x, y) is on the line between (Pa1, Pb1)

and (Pa2, Pb1). The user will choose the closer point from
(Pa1, Pb1) and (Pa2, Pb1) for the query. Therefore, the av-
erage query distance is

a

2
=

√
a2

2
=

√
a2 + b2

2
(∵ b = 0)

Case 3: a = 0, b �= 0.
The derivation is similar to case 2.

Case 4: a = 0, b = 0.
In this case, the user is at (Pa1, Pb1). Therefore, the

query distance is
√

a2+b2

2 = 0. �

Remark: Theorems 3.4 and its proof reveal that when the
user resides in the broadcast region of an event, the query
distance is no more than the distance between the user and
the home location of this event. In fact, in most cases, the
former is much smaller than the latter, resulting in a low
query delay.

It is obvious that using our protocol, the information of
an event can only be propagated to the furthest distance of
2σ−1, where σ is the intensity value of the record corre-
sponding to the event. Therefore, a user can only be noti-
fied of the events that occur within certain distance from the
user. Usually, a user can communicate with any node within
the neighborhood area, called the user communication area.
If the information of an event can be obtained by the user,
we say that the information is covered by the user commu-
nication area, and we call an area with covered information
a covered area.

Theorem 3.5 Assume all events have the same intensity
value σ. Suppose an event occurs at an arbitrary location
(Sx, Sy) in the network, but a user at (x, y) can only com-
municate with nodes within an area of l × l (denoted by H)
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centered at (x, y). Let dx = |Sx − x|, dy = |Sy − y|, and
β = min(σ − 1, �log2 l�). The user is notified of the event
if (Sx, Sy) ∈ A,B or C, where area A,B and C are defined
as follows,



(Sx, Sy) ∈ A if dx ≤ 2β + l/2 and dy ≤ 2β + l/2
(Sx, Sy) ∈ B if (dx ≤ 2β + l/2

and 2β + l/2 < dy ≤ 2σ−1 + l/2),
or
(2β + l/2 < dx ≤ 2σ−1 + l/2
and dy ≤ 2β + l/2)

(Sx, Sy) ∈ C if 2β + l/2 < dx, dy ≤ 2σ−1 + l/2.

Otherwise, the user cannot be notified,

Proof. In the case of (Sx, Sy) ∈ area A,B or C, since the in-
formation of any event occurs in area A,B or C is recorded
by some nodes in H, and the user communicates with all
nodes in H, the user will be notified of the event.

In the case that the event (Sx, Sy) occurs in the area other
than area A,B and C, since the information of the event is
not recorded by any node in H, the user won’t be able to
receive the event information. �

4 Query Performance Analysis

In a typical sensor network, query a number of (if not
all) sensors to retrieve gathered data is a central task for
monitoring and control. A naive but inefficient way is to
flood queries to all sensors in the monitored area.

When LCS is applied as the data storage method, a sim-
ple and efficient approach for data retrieval is readily avail-
able. Both the number of queries needed and the response
cost could approach to the theoretical lower bound. In the
following, we propose method for data retrieval in a one-
dimensional network, and then extend the idea to the two-
dimensional case.

4.1 Definitions

Given a graph G = (V,E), a dominating set D of G is
a subset of V such that for ∀u ∈ V − D, there is a v ∈ D
for which (u, v) ∈ E (i.e., u is dominated by v). A domi-
nating set with a minimum cardinality is called a minimum
dominating set. Computing a minimum dominating set is
an NP-complete problem [4]. Given a dominating set D of
graph G, if each vertex of G is dominated by exactly one
element in D, then D is called a perfect dominating set of
G. A perfect dominating set is necessarily a minimal domi-
nating set.

Let n and m be k-bit binary numbers. The Hamming
distance h(n,m) of n and m is the number of bit positions

in which n and m differ. A k-dimension hypercube Hk is
an undirected graph with N = 2k vertices. In Hk, each
vertex is uniquely identified by a k-bit binary expansion of
some integer u ∈ {0, 1, ..., N − 1}, and an edge connects
two vertices u and v if and only if h(u, v) = 1.

Let C be an error-correcting code consisting of N code-
words, in which each codeword consists of n letters taken
from an alphabet A of length q, and every two distinct code-
words differ in at least d = 2e + 1 places. Then C is said
to be perfect if for every possible word w0 of length n with
letters in A, there is a unique code word w in C in which at
most e letters of w differ from the corresponding letters of
w0. An example perfect code is the (k, t)-Hamming code,
in which a codeword of length k contains t check bits.

Computing a perfect dominating set D of Hk can be
transformed to the problem of computing a perfect single-
error-correcting code [8]:

Lemma 4.1 Given a k-dimension hypercube Hk, a perfect
dominating set D of Hk is precisely a perfect binary single-
error-correcting code with 2k codewords.

4.2 Field Data Gathering in a One-
Dimension Sensor Network

Assume a one-dimension network contains N sensors,
denoted by S0, S1, S2, S3, ..., SN−1, placed at locations
0, 1, 2, 3, ..., N − 1, respectively, in a straight line, where
N = 2k and minN−1

i=0 {σSi
} ≥ k. A graph G(V,E) can be

constructed by setting V ={S0, S1, S2, S3, ..., SN−1} and
an edge e(Su, Sv) ∈ E if and only if the distance between
Su and Sv equals 2i, where i ∈ {0, 1, · · · , k − 1}. Based
on this graph model, a minimum dominating set of G stores
all event information recorded in the whole network, which
means that querying this subset suffices in order to retrieve
all events.

4.2.1 Case I: k = 2t − 1

For simplicity, we consider the case of k = 2t − 1 for a
non-negative integer t first. Since computing a minimum
dominating set is a NP-complete problem [5], a computa-
tionally efficient algorithm in this section is sought to find
out a good approximation. We first identify a hypercube Hk

as a subgraph of G; Then map the (k, t)-Hamming code, a
perfect single-error correction code, to a perfect dominating
set of Hk. We prove that the size of this perfect dominating
set is at most twice of that of a minimum dominating set of
G.

Lemma 4.2 G(V,E) defined above contains a k-
dimension binary hypercube Hk as a subgraph.

Proof. We prove this lemma by constructing Hk(V ′, E′)
by setting V ′ = V and an edge e(Su, Sv) ∈ E′ if and
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only if e(Su, Sv) ∈ E and h(u, v) = 1, since Su(Sv)
resides at position u(v), every pair of Su and Sv satisfying
h(u, v) = 1 has a corresponding edge in E. �

Lemma 4.2 proves the existence of Hk in G. According
to Lemma 4.1, the problem of finding a perfect dominating
set in a hypercube Hk can be transformed to the problem
of finding a perfect single-error correction code. The fol-
lowing theorem maps the (k, t)-Hamming code to a perfect
dominating set in Hk when k = 2t − 1.

Theorem 4.3 Given a k-dimension hypercube Hk, if k =
2t − 1, where t ∈ {0, 1, ...}, Hk has a perfect dominating

set containing exactly 2k

k+1 nodes.

Proof. For a (k, t)-Hamming codeword b1b2 · · · bk, the
bit positions bi satisfying i = 2j with j = 0, 1, · · · , t − 1
are the check bits while others are data bits. Therefore the
(k, t)-Hamming code is used to correct a single error of
data words with length k − t. Since the (k, t)-Hamming
code is a perfect single-error correction code, the subset of
vertices in Hk whose binary representations correspond to
the valid Hamming codewords of all data words with length
k − t is a perfect dominating set, based on Lemma 4.1. The
size of this perfect dominating set is 2k−t, which equals to
2k

k+1 . �

Theorem 4.4 When k = 2t−1 for a non-negative integer t,
the size of the perfect dominating set found via the construc-
tion of a (k, t)-Hamming code is at most 2 · OPT , where
OPT is the cardinality of a minimum dominating set of
the original graph G(V,E) formed from the one-dimension
LCS network.

Proof. Note that each node stores records from at most 2k
other sensors, namely dominates at most 2k nodes. There-
fore the size of a minimum dominating set of G(V,E) is
lower-bounded by

N
2k = N

2log2N , which means that OPT ≥ N
2log2N .

According to Theorem 4.3, the size of the perfect dom-
inating set computed based on the construction of a
(k, t)-Hamming code is 2k

k+1 = N
k+1 = N

log2N+1 ≤
N

log2N ≤ 2 · OPT . �

Algorithm 1 summarizes the procedure of finding a
small subset of node to query in the one-dimension LCS
network when N = 2k and k = 2t − 1 in order to retrieve
all event information.

For example, given a one-dimension LCS network with
a network size of N = 128. A hypercube H7 can be de-
rived easily according to Lemma 4.2. Since k = 7, we
have t = 3. The (7, 3)-Hamming code contains the fol-
lowing valide codewords: {0000000, 0000111, 0011001,

Algorithm 1:

1. Construct G(V,E) to model the one-dimension LCS net-
work;
2. Compute the Hypercube Hk as a subgraph of G based on
Lemma 4.2;
3. Compute the (k, t)-Hamming code;
4. Map the Hamming codewords to the corresponding
nodes in the hypercube Hk and G.

0011110, 0101010, 0101101, 0110011, 0110100, 1001011,
1001100, 1010010, 1010101, 1100001, 1100110, 1111000,
1111111}. Therefore, we need to query only 16 sensors
(S0, S7, S25, S30, · · ·) in order to retrieve all event informa-
tion within the one-dimension LCS network of 128 nodes.

4.2.2 Case II: k �= 2t − 1

When k �= 2t−1, we can partition the network and map it to
several hypercubes and find corresponding perfect dominat-
ing set in each hypercube. This problem can also be solved
via constructing leafy spanning tree of hypercube [3].

4.3 Two-Dimension LCS network

In this section we present how to extend the results in the
one-dimension LCS network to the case of two-dimension
LCS. Assume the user-queried area is N ×N and N = 2k,
where k = 2t−1 for a non-negative integer t. The following
algorithm identifies the dominating set to query for event
information retrieval.

Algorithm 2:

1. Apply Algorithm 1 to the one-dimension LCS network
with size N . Find the dominating set D = {d1, d2, · · ·}.
2. For a sensor i at location (a, b) in the two-dimension
network, if a ∈ D and b ∈ D, then i will be selected into
the query set S.

Theorem 4.5 All of the information in the user-queried
area N × N is covered by the queried sensors in the set
S.

Proof. It is obvious that the information stored by sensor i
at (a, b) is covered by the sensors in the set S if a ∈ D and
b ∈ D, namely (a, b) ∈ S.

Now we consider the cases of a ∈ D or b ∈ D or
both, namely (a, b) ∈ S. Following the results obtained
for the one-dimension LCS network, we observe that a
is dominated by some node di in D, b is dominated by
some node dj in D, which indicate that the information
stored at (a, b) is covered by (di, dj). Therefore all of
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the information in the user-queried area is covered by the
sensors in S. �

Based on Theorem 4.5, the size of the dominating set
found via Algorithm 2 is N2

(log2N+1)2 . Table 1 reports sev-
eral example results for the case of two-dimension LCS net-
work. It indicates that Algorithm 2 is able to greatly reduce
the number of nodes to be queried.

Network Size N × N The Number of Queried Sensors
8 × 8 4

128 × 128 256
215 × 215 4, 194, 304

Table 1. The network size and the corre-
sponding number of sensors to be queried.

5 Comparison Study

Note that LCS has better scalability and stronger re-
silience against node failures compared with DCS. Nev-
ertheless, LCS and DCS can coexist in a sensor network
since they target different application scenarios. DCS is de-
signed for a large-area data dissemination. The designated
storage locations for an event type in DCS decreases query
overhead since no flooding is involved. On the other hand,
LCS is designed for scenarios when the event information
is needed only when a user is approaching the event loca-
tion. The query of a specific event in LCS requires global
flooding.

Compared to LS, a group of sensors in LCS store an
event generated roughly at the geometric center of the
group, while in LS a sensor stores its local observations.
LCS has better resilience against node failures, and is suit-
able for summary data dissemination. Overall, LCS is a
novel storage method that is a complement to DCS, LS, and
ES, and fits in well with the various sensor network appli-
cations.
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