
Received February 8, 2021, accepted February 21, 2021, date of publication March 2, 2021, date of current version March 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3063205

On the Performance of Mean-Based Sort for
Large Data Sets

SHAHRIAR SHIRVANI MOGHADDAM 1, (Senior Member, IEEE),

AND KIAKSAR SHIRVANI MOGHADDAM 2, (Student Member, IEEE)
1Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
2School of Computer Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran

Corresponding author: Shahriar Shirvani Moghaddam (sh_shirvani@sru.ac.ir)

ABSTRACT Computer and communication systems and networks deal with many cases that require

rearrangement of data either in descending or ascending order. This operation is called sorting, and the

purpose of an efficient sorting algorithm is to reduce the computational complexity and time taken to perform

the comparison, swapping, and assignment operations. In this article, we propose an efficient mean-based

sorting algorithm that sorts integer/non-integer data by making approximately the same length independent

quasi-sorted subarrays. It gradually finds sorted data and checks if the elements are partially sorted or have

similar values. The elapsed time, the number of divisions and swaps, and the difference between the locations

of the sorted and unsorted data in different samples demonstrate the superiority of the proposed algorithm

to the Merge, Quick, Heap, and conventional mean-based sorts for both integer and non-integer large data

sets which are random or partially/entirely sorted. Numerical analyses indicate that the mean-based pivot is

appropriate for making subarrays with approximately similar lengths. Also, the complexity study shows that

the proposed mean-based sorting algorithm offers a memory complexity same as the Quick-sort and a time

complexity better than the Merge, Heap, and Quick sorts in the best-case. It is similar to the Merge and Heap

sorts in view of the time complexity of the worst-case much better than the Quick-sort while these algorithms

experience identical complexity in the average-case. In addition to finding part by part incremental (or

decremental) sorted data before reaching the end, it can be implemented by parallel processing the sections

running at the same time faster than the other conventional algorithms due to having independent subarrays

with similar lengths.

INDEX TERMS Ascending, descending, divide-and-conquer, heap, integer, large data set, merge, non-

integer, quick, sorting.

I. INTRODUCTION

Facing a large volume of data in various civil, medical, indus-

trial, and military applications demonstrates that sorting the

data in the shortest possible time is the main goal [1]–[4].

The time and power consumed to do the sorting depend on

the computational complexity of the sorting algorithm and

the length and type of data [5] that may differ from one

application to another.

Sorting is the process of ordering unsorted data in a

descending (from high to low) or an ascending (from low

to high) order. This data can be an integer or non-integer

numbers, letters of the alphabet, or specific features or

The associate editor coordinating the review of this manuscript and

approving it for publication was Senthil Kumar .

signals [6]. Some practical examples of numerical and

non-numerical data used in everyday life are landline and

mobile phone numbers, dictionaries, license plates, codes

for different colors, student and staff numbers, national code

and ID number, passport number, username and password to

access e-mail and various portals and systems, bank account

number, and bank card number [7], [8].

The Sorting process facilitates queuing, classification,

clustering, segmentation, separation, search, and so on.

In large networks based on massive multi-input multi-output

(massive-MIMO) and ultra-dense networks (UDNs), as well

as heterogeneous networks (HetNets) consisting of small

cells [9]–[11], dense sensor networks with a large number of

sensors, and internet of things (IoT) applications, the number

of nodes is very large. It is necessary to efficiently select

37418 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021

https://orcid.org/0000-0002-8427-2446
https://orcid.org/0000-0003-0249-1547
https://orcid.org/0000-0002-8587-7017

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

and assign radio resources to solve large-scale optimization

problems.

The main applications of data sorting include ascending or

descending sorting, faster data search, speed up the clustering

process, speed up the classification process, assist in the pro-

cess of deleting data below or above a threshold level, recover

lost data, find the highest and lowest amount of data, extract

the median of data, find similar data, determine the dynamic

range of data, and obtain the frequency and histogram

of data [6], [12].

Depending on whether the data is numerical or non-

numerical, integer or non-integer, random (uniform, Gaus-

sian) or non-random (approximately sorted, somewhat

sorted), and in terms of size, small, medium, or large,

various algorithms are introduced and used. Also, hard-

ware and software capabilities, allowed processing time,

and costs are essential items in determining the type of

algorithm [13], [14].

In this regard, evaluation and comparison of algorithms

are based on memory space complexity, time complexity,

elapsed time to the sorting process, number of comparisons

and swaps, number of division levels in methods based on

divide-and-conquer, gradual sorting rate, and the sensitivity

of the algorithm to the type and length of data. On the other

hand, sorting methods can be divided according to the real-

ization (series or parallel) and type of programming (recur-

sive or non-recursive). Specific-purpose or general-purpose,

comparative or non-comparative, counting or non-counting,

in-place or non- in-place, stable or unstable, adaptive or

non-adaptive are the other classifications in the field of sort-

ing algorithms [15], [16].

In the category of comparison-based sorting algorithms,

we can name Selection, Bubble, Insertion, Merge, Quick,

Heap, Shell, Tim, Comb, Cycle, Strand, Binary Insertion,

Tree, Cartesian Tree, Cocktail, and Odd-Even. Among the

non-comparison-based algorithms capable of sorting inte-

ger data, Counting, Radix, Bucket, Pigeonhole, and Tag

are the most important ones. Specific-purpose sorting algo-

rithms include Bitonic, Bogo/Permutation, Pancake, Sleep,

Stooge [17]–[19].

In this work, we propose a new sorting algorithm and

compare it to the Quick, Merge, and Heap with more

detail, and also to the Insertion, Bubble, and Selection

in some aspects. Among the reasons why it is neces-

sary to review and improve existing algorithms and intro-

duce new data sorting algorithms, the following can be

mentioned:

1) The abundance of databases;

2) Large-scale data sets;

3) High speed of change of phenomena and the need to

update them;

4) Complex problems with a large number of parameters

and criteria, such as optimization problems in resource

allocation and power control of device-to-device

(D2D), vehicle-to-vehicle (V2V), and machine-

to-machine (M2M) communications [20]–[22].

The divide-and-conquer method widely used in sorting,

recursively divides a problem into sub-problems of the same

or related type, until these become simple enough to be

solved directly. Many algorithms that follow this principle,

are structurally recursive and can invoke the typical algo-

rithm itself once or even more times to solve tightly related

sub-problems [23]–[25].

Many divide-and-conquer sorting algorithms are suitable

for large data sets, especially for internet and communica-

tion systems and networks [26], [27]. Merge-sort produces a

sorted sequence by sorting its two halves and merging them

[28]. It is a top-down implementation that starts from the

entire array and then splits the original problem into unitary

items [24]. Quick-sort picks an element, the first, last, middle,

or a random one, as the pivot and partitions the given array

around the pivot [29], [30]. Heap-sort based on a binary Heap

data structure finds the maximum element, places it at the

end, and then repeats the same process for the remaining

elements. References [31], [32] introduce a sorting algorithm

that divides a single array into two smaller sub-arrays based

on the mean value and continues it to reach one-element ones

more efficient than Insertion and Selection but less efficient

than Merge and Quick sorts.

Merge-sort does not work well for completely unsorted

and random non-integer large data set, and we do not have

any sorted data until the end. Due to the randomness of the

Quick-sort pivot, unequal subarrays are generated, and there

is no control when we want to get only a certain number

of sorted data. Dealing with low-sorted, somewhat sorted,

or similar data in a list, imposes unnecessary comparisons and

swaps. The Heap-sort requires first to find the maximum ele-

ment, put it at the end, and do it for the other elements that are

a time-consuming process. In the algorithm proposed in [31],

[32], unsorted data remains unsorted until subarrays with

similar data are found, or the final level with double-member

subarrays is reached. It means that it is not possible to detect

the sorted data at any level of sorting. The order of elements

changes in the right-hand subarray, which causes unnecessary

extra swaps and disrupts the adaptivity. Furthermore, if there

is similar data in the list, especially in the right subarray,

the stability will be violated. In processing the right and left

subarrays, the entire array is updated at each level, which

causes a considerable number of swaps that directly increases

the elapsed time and complexity.

AlthoughMerge, Heap, andQuick sorts arewidely used for

sorting large data sets [33], [34], the processing time should

be decreased, and gradual sorting is a necessity [35]–[37].

Hence, in this article, we propose an efficient mean-based

sorting algorithm that uses the pros of the popular divide-

and-conquer algorithms and offers some new useful prop-

erties. Also, we compare the proposed algorithm with the

Quick, Merge, and Heap sorts, which work much better than

the conventional mean-based sorting algorithm.

It is compared to the Quick, Merge, Heap, Insertion, Selec-

tion, and Bubble sorts in view of the time and memory

complexity and new features that are the main novelties,

VOLUME 9, 2021 37419

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

especially to the Quick, Merge, and Heap sorting algorithms

in the large data sets. The new capabilities such as detection

of a sorted part, detection of a part with similar data, Higher

ability to sort data gradually, making independent subarrays

with approximately the same length, and better stability and

adaptivity compared to the Quick-sort, are the main features

of the proposed algorithm.

The proposed ideas reported in [38]–[44] are focused on

theMerge and Quick sorts in parallel processing and compare

them to the conventional Merge, Quick, and Heap sorts by

proposing a flexible division of tasks between logical pro-

cessors to show that this proposition is a valuable method

that can findmany practical applications in high-performance

computing. By separation of concerns, each of the proces-

sors works separately. The proposed method was described

in a theoretical way, examined in tests, and compared to

other methods. The results confirm high efficiency and show

that by adding a new processor, sorting becomes faster and

more efficient, especially for large data sets. None of these

algorithms makes the independent subarrays in parallel pro-

cessing that the proposed K-S mean-based sorting algorithm

makes them with approximately the same length. It means

that the proposed algorithm can be examined in the parallel

realization by using multicore architectures to find faster and

more efficient implementations than those mentioned in [38],

[39], [42], [43].

In the following, Section II illustrates the proposed K-S

mean-based sort and its C# pseudo-code. Section III presents

theoretical analyses and formulations. Section IV compares

the mostly used conventional algorithms and the new one

based on the running time, the number of swaps and divi-

sions, and a new proposed measure, namely normalized mean

absolute error, numerically. Section V has an in-depth anal-

ysis of the mean-based pivot and its effect on the integer

and non-integer data in low and high standard deviations

for different division levels. In Section VI, we derive the

time complexity order of the proposed algorithm in the best,

worst, and average cases. Section VII compares the proposed

algorithm to the Quick, Merge, Heap, Insertion, Bubble, and

Selection sorting algorithms in different viewpoints. Finally,

Section VIII concludes this article and introduces an idea to

future works.

II. PROPOSED MEAN-BASED SORTING ALGORITHM

Like the conventional mean-based (relative) sort [31], [32],

the proposed K-S mean-based algorithm makes two inde-

pendent subarrays in each level, one greater (smaller) and

another smaller (greater) than the mean value. Unlike the

conventional ones, the left subarray goes to the next step up

to be divided entirely and sorted while the right one has no

change in these steps. Then, it comes back to the previous

levels to do that for the right parts, similarly. This algorithm

has no additional array and gradually reaches the sorted parts

from left to right. Algorithm 1 demonstrates the pseudo-code

of the proposed algorithm supporting the following features:

1) In each level, just those parts that are compared to the

mean value may be changed if the section involved

in the division does not have sorted data or similar

elements.

2) After comparing the data with the mean value, if the

elements are similar to the main array, they may be

sorted. It can be checked by comparing the neigh-

bor elements to each other. If all comparisons are

positive (negative), the section is sorted increasingly

(decreasingly).

3) If the data in each division is assigned entirely to one

subarray means they are similar.

4) The approximate mean value is used for the big data

and the first partitioning levels, which does not change

the average much, but does take less time to calculate.

5) Achieving a certain number of sorted data is possible

using several mean-based divisions or a single-level

division made by a threshold based on the data’s mean

and variance.

6) The left and right parts almost in the same length can

be processed by parallel processing, efficiently.

III. THEORETICAL ANALYSES AND FORMULATIONS

The probability of locating positive numbers larger or smaller

than a threshold level can be measured from the Markov

inequality [45], as (1). In the particular case, which always

occurs in the Heap-sort and some instances in the Quick-sort,

if the threshold level, α, is the largest (smallest) number, there

is no data (total data) more than that, and the complete data

(no data) will be smaller than that. In addition to the positive

parts of data, this inequality can be applied to the negative

part when both positive and negative elements are present in

the data set.

P(X ≥ α) ≤
E(X)

α
, X > 0 (1)

In the proposed algorithm, in each division, half of the

data is in the upper subarray and the next half in the lower

subarray, on average. It is assumed that the total number of

data is N = 2n, it is entirely random, there are no similar data

in a subarray, and the data of each subarray are not sorted

until the double-member subarray is reached. Also, the next

subarrays have lengths of 2n−1, 2n−2, . . . , 2. Therefore, in the

worst-case, the number of divisions, Ndm, is

Ndm = n− 1 = logN2 − 1 (2)

In the Quick-sort, the pivot is randomly one of the elements

of the data set with equal probability. Therefore, on average,

the absolute difference between the data lengths of the upper

and lower parts around the pivot, |1L|, can be with a proba-

bility equal to 1
N−1

in the range [0,N − 1] with an average

equal to N−1
2

. So,

|LU − LL | =
N − 1

2
(3)

and we know that

LU + LL = N − 1 (4)

37420 VOLUME 9, 2021

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

Algorithm 1 C# Pseudo-Code of the Proposed K-S

Mean-Based Sorting Algorithm

Variables:

arr: Array of data.

si: Starting index.

ei: Ending index.

swapped: Boolean variable for showing if any swap

happened in the previous partitioning.

ordered: Boolean variable for showing if this part has

descending order.

sum: Variable for storing sum of each part.

mean: Variable for storing mean of each part.

bi: Boundary index.

Function Sort(arr, si, ei):

if ei− si > 0 then
swapped ←− False

Call Partition(arr, si, ei, ref swapped)

bi←− returned value from partition

ordered ←− False

if swapped = False then
ordered ←−True

for i←− si to ei− 1 do

if arr[i] > arr[i+ 1] then
ordered ←− False

break

end

end

end

if ordered = False then
Call Sort(arr, si, bi)

Call Sort(srr, bi+ 1, ei)

end

end

return void

End Function

Function Partition(arr, si, ei, ref swapped):
bi←− si− 1

sum←− 0

for i −→ si to ei do

sum←− sum+ arr[i]

end

mean←− sum
ei−si+1

for i←− si to ei do

if arr[i] < mean then
bi←− bi+ 1

if arr[bi] 6= arr[i] then

swap arr[bi] with arr[i]

swapped ←−true
end

end

end

return bi

End Function

Assuming that the upper subarray is larger than the lower one,

LU =
3

4
(N − 1)

LL =
1

4
(N − 1)

(5)

In the next divisions for the larger subarrays, we reach the

following lengths:

3

22
(N − 1),

32

24
(N − 2), . . . ,

3Ndq

22Ndq
(N − Ndq) (6)

Also, for the smaller subarrays, we have

1

22
(N − 1),

1

24
(N − 2), . . . ,

1

22Ndq
(N − Ndq) (7)

In the last division, we have

(

N − Ndq
)

(

3

22

)Ndq

= 2 (8)

or

2

(

4

3

)Ndq

+ Ndq = N (9)

For large Ndq, the first term is much larger than the second

one. Therefore, the number of divisions is approximately

Ndq =
logN2 − 1

2− log32
= 2.41(logN2 − 1) (10)

According to equations 3 and 5, at each division in the

Quick-sort, the length of the larger subarray is three times

the size of the smaller one, on average, and the difference

between the lengths of them is 50% of the total data on

which the division is performed. Also, using equations 2 and

10, the ratio of the average number of the divisions of the

Quick-sort, Ndq, to that for the proposed algorithm, Ndm, is

equal to

Ndq

Ndm
= 2.41 (11)

That is, the Quick-sort requires about 140% more divisions

than the proposed algorithm.On the other hand, when the data

within a subarray are sorted (incremental or decremental) or

similar to each other, there is no need for further divisions and

swaps in the proposed algorithm. Therefore, the number of

divisions obtained is smaller than the upper bound in equation

2. Besides, comparing the average number of data in a larger

subarray in the Quick-sort, 3N
4
, to that for each subarray in

the proposed algorithm, N
2
, indicates 50%more comparisons,

swaps, and processing time in the parallel realization.

Different algorithms can be compared to each other by

defining a new measure based on the difference between the

location of the sorted data to that for the unsorted data as

ej (i) = l ju(i) − ls (i) , i = 1, 2, . . . ,N (12)

In this equation, ls (i) is the location of the element i after

complete sorting, and l
j
u(i) is the location of the element i in

VOLUME 9, 2021 37421

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

the step j. The location of each element in these two cases is in

range [1,N]. The difference between these two values in each

location is in range [0,N − 1]. We propose the normalized

mean absolute error (NMAE) as

NMAE j =

∑N
i=1 |e

j(i))|

MAE
=

∑N
i=1 |l

j
u(i) − ls (i) |

MAE
(13)

It can be intuitively found that in anN -element array, themax-

imum absolute error (MAE) between the sorted and unsorted

data is equal to

MAE = 2

2×

(

1+ 3+ . . .+
N − 3

2
+
N − 1

2

)

,

N = 2k − 1

1+ 3+ . . .+ (N − 3)+ (N − 1) ,

N = 2k

(14)

By obtaining these sums, we have

MAE =
1

2

{

(N − 1) (N + 1) , N = 2k − 1

N 2, N = 2k
(15)

For large N , these two equations are approximately equal to
N 2

2
. Finally, the suggested measure is formulated as

NMAE j =

2
∑N

i=1 |l
j
u(i) − ls (i) |

(N − 1)(N + 1)
, N = 2k − 1

2
∑N

i=1 |l
j
u(i) − ls (i) |

N 2
, N = 2k

(16)

IV. NUMERICAL ANALYSES AND COMPARISONS

In [31], [32], it was shown that the Merge, Heap, and Quick

sorts work better in both integer and non-integer data than

the mean-based (or relative) sort algorithm, especially in the

medium and large data sets. Hence, based on the required

elapsed time, the number of swaps, the number of divisions,

and the difference between the sorted and unsorted data

in different samples, the proposed K-S mean-based sort-

ing algorithm is compared to the Merge, Quick, and Heap

sorts, indicating the achievement to an efficient and effective

mean-based sorting algorithm.

All simulation parameters and performance metrics used

in this article are summarized in Table 1. Simulations are

performed for integer and non-integer Gaussian and uniform

distributions for partially to entirely sorted scenarios, on a 64-

bit system with the specifications summarized in Table 2.

Simulations show that in the case of non-integer data, a part

of the data may be sorted, but the probability of similar data

is low. On the contrary, in the case of integer data, similar

data is more likely to occur, but for high variances, it will

be decreased. The lower the data variance, the greater the

possibility of similarity of data causes unnecessary divisions

required in the conventional sorts. Herein, it is investigated

that the Quick-sort has a big problem, namely stack over-

flow, when there is a huge number of similarity in data.

It happens mostly for low-variance data and/or integer data.

TABLE 1. Simulation parameters and performance metrics.

TABLE 2. Software and computer system specifications.

In these cases, although the Quick-sort experiences a large

number of unnecessary swaps, they never occur in the pro-

posed mean-based algorithm. Hence, to have the simulation

results in an acceptable time, the minimum value of the data’s

standard deviation is set 13 to overcome the stack overflow in

the Quick-sort.

The elapsed time for the proposed algorithm in the case of

integer and non-integer data sets are close to each other while

they are significantly different for Quick-sort. For different

mean and variance values, it is shown that the number of

elements of the two subarrays in the Quick-sort differs by as

much as 50% of the total data. In comparison, the lengths

of the two subarrays are almost equal in the proposed algo-

rithm. These simulation results are valid for different sizes,

variances, and types of data.

Figs. 1, 2, and 3 respectively depict the required elapsed

time, the number of swaps, and the number of divisions,

in partially to entirely sorted data scenarios in both integer

and non-integer data. The proposed algorithm offers higher

performance in terms of the metrics mentioned above than

the others in both integer and non-integer data sets.

In the integer data, the elapsed times of the Heap and

Quick algorithms do not depend on the percentage of the

sorted parts. Still, in the Merge and the proposed sorting

algorithms, we have a slight decrease because similar data

is possible, which in the proposed one is no longer divided

and swapped, and we have no swap in the Merge-sort. In the

non-integer data, increasing the percentage of the sorted parts

causes a reduction in the elapsed time of the Heap, Merge,

and the proposed algorithms, because the number of swaps

reduces. The similar data decreases the need for additional

swaps, which causes lower running time of the Heap and

37422 VOLUME 9, 2021

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

FIGURE 1. The required elapsed time for partially to entirely sorted data
with length 1000000, a) integer, b) non-integer.

FIGURE 2. The number of swaps for partially to entirely sorted data with
length 1000000, a) integer, b) non-integer.

Merge in the integer data sorting compared to that for the

non-integer data. Because the probability of similar data in

each level is high, the higher running time of the Quick-sort

is in the integer data compared to that for the non-integer one.

Therefore, by comparing the data to the pivot, one subarray

will have much higher elements than another subarray which

consequently causes more unnecessary divisions. When all

the elements of a K -element subarray are equal, one of the

subarrays at the next division has no element and the second

one has (K − 1) elements. Also, in the non-integer data,

increasing the sorted parts increases the elapsed time for

the Quick-sort because unnecessary swaps experience longer

distances.

The highest number of swaps is related to the Merge,

because for this algorithm, the swaps take place first in the

two-member sets and then in the adjacent parts. The second

one is the Heap-sort, because it does a lot of swaps in each

step to find the maximum element until it eventually reaches

a single-member set. The Quick-sort has a smaller number

FIGURE 3. The number of divisions for partially to entirely sorted data
with length 1000000, a) integer, b) non-integer.

of swaps than these two algorithms, because in each step,

the data is divided into two subarrays. Also, in each step,

the data is swapped only in that subarray. Although the num-

ber of swaps is less than the Merge and Heap algorithms,

the running time of the Quick-sort is increased because each

element is compared to a random pivot. It is decreased in the

proposed algorithm because the array elements are compared

to the mean-value locating almost in the middle of the data.

The Heap-sort requires the highest number of divisions

because it finds one element at each step and divides over

the rest to the end. The number of divisions in the proposed

algorithm is reduced because, at each division, two subarrays

of approximately the same length are made. If the data in

each subarray is similar or sorted, there will be no further

divisions or swaps. On the contrary, the Quick-sort does not

care about the sorted data or the similarity rate of the data,

and pushes the data to a single-member subarray. On the other

hand, if they are sorted or similar in a level, some sorted data

in one subarray and some in another subarray fall out of order,

which causes them be sorted later.

Figs. 4, 5, and 6 show the performance of the proposed K-S

mean-based algorithm compared to the Quick, Merge, and

Heap algorithms for low and medium sorted primary data in

the view of the NMAE when the data length is 1000000.

For the Merge-sort, especially in a significant portion of

the processing time, little changes are made to the NMAE

because there is no swap and/or the swaps occur in close loca-

tions, mostly in a subarray. Sometimes we have a decrease

that may increase again in a few samples. In cases where

data from one subarray is merged with another, there may

be upward jumps. In the last steps of the algorithm, there is a

sudden decrease in the value of this criterion, which is due to

the nature of the Merge algorithm, i.e., until the last steps of

the sorting process, we cannot guarantee the data is sorted.

In the Heap algorithm, we first see an increase in the

NMAE measure, which reaches about 90%. By finding the

maximum element and placing it in the exact final location,

VOLUME 9, 2021 37423

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

FIGURE 4. The normalized mean absolute error for 10% sorted data with
length 1000000 in different sampling times, a) integer, b) non-integer.

FIGURE 5. The normalized mean absolute error for 50% sorted data with
length 1000000 in different sampling times, a) integer, b) non-integer.

the locations of all other elements change, which means

increasing the degree of disordering. Moreover, when a new

maximum element is found, this effect will be increased. This

increase in the NMAE continues until the sorting result due

to locating the maximum elements overcomes the disorder

caused by the Heap algorithm. Then, the NMAEmeasure will

be decreased monotonically to reach a non-zero minimum

value because it is non-stable. This value is higher for integer

data because similar data are more than the non-integer data.

By comparing the results of the Heap algorithm for two types

of data studied in Figs. 4, 5, and 6, it can be seen that the

higher the percentage of the sorted primary data, the lower

the peak of the NMAE curve. The peaks reach 0.88 in 90%,

0.92 in 50%, and 0.94 in 10% sorted primary data, while the

data are entirely sorted after 1045, 1260, and 1400 millisec-

onds, respectively. In the case of non-integer data, for high,

medium, and low sorted primary data, the peaks of 0.87, 0.92,

FIGURE 6. The normalized mean absolute error for 90% sorted data with
length 1000000 in different sampling times, a) integer, b) non-integer.

and 0.94 and the total processing times of 1200, 2000, and

2400 are obtained, respectively.

In both Quick and K-S mean-based sorts, the NMAE

measure is initially reduced exponentially on a linear scale

because smaller data sets are made by dividing the data into

two subarrays around a pivot which are ordered to each other,

and their data locations are at most about the length of the

new subarray far from their final locations. In the later steps,

because the data is somewhat sorted and smaller subarrays

are obtained, the changes of NMAE are less. The proposed

algorithm offers a higher number of jumps because, unlike

the Quick-sort that the pivot is random, it is the mean value of

each array that makes two subarrays with a higher probability

to be sorted. Although the new algorithm is non-stable same

as the Quick and Heap sorts, it has a slightly lower NMAE

floor due to the selection of a mean-based pivot located

approximately in the middle of each array and also two con-

ditions that cause the sorted parts and the parts with similar

data would be extracted before reaching the next divisions.

The numerical analyses show that different algorithms

experience different NMAE curves because they have

different sorting procedures. Furthermore, each algorithm

introduces similar trends for changes of NMAE measure

in different data sets. Averaging the values obtained from

1000 times of simulation shows that the best performance

belongs to K-S mean-based algorithm. Also, the proposed

algorithm offers the highest decreasing slope of NMAE and

the least processing time. To see more details about the

changes in NMAE, the simulation results of Figs. 4, 5, and 6,

are not averaged over several experiments.

V. WHY THE MEAN-BASED PIVOT IS APPROPRIATE?

Here is a criterion defined (equation 17) that shows the degree

of similarity between the two subarrays in each division.

We expect the most similarity if the data’s median is selected

as the pivot and the least resemblance if the random pivot is

37424 VOLUME 9, 2021

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

FIGURE 7. Normalized similarity index for non-integer Gaussian data
using the proposed algorithm, a) low standard deviation (5), b) high
standard deviation (1000).

selected.

NSI (i) =
|LU (i)− LL(i)|

max(LU (i),LL(i))
(17)

Fig. 7 shows that the closer the normalized similarity index

is to 1, the fewer differences there are in the subarrays’ length,

and the fewer levels and divisions we get to the end of the

sort. If there is no similar data, the data’s length is almost

halved each time we divide, so after nd layers, we get to

the single-member subarrays. For the non-integer data in the

length of 1000000, we reach the divisions’ end after 20 levels.

It shows that in the integer data, even the use of the median

does not necessarily give the exact value of 1 for NSI, because

the same data in an array or when the length of an array is odd,

they cause the length inequality of the subarrays.

As shown in Fig. 8, for integer data, after dividing data

into several levels, the similarity tends to zero because the

larger subarray that is considered as the main array in the next

levels has similar data. In this case, after each division, one

subarray has no data. In contrast, the next subarray has the

total number of elements minus the pivot, which indicates

the maximum difference in length. This action also occurs

in subsequent divisions in the following levels. The number

of layers and divisions it imposes is equal to the number of

similar data in the array minus 1. For example, if the number

of similar data in the array is 100, 99 levels with 99 times

division are required. In data set with 1000000 members,

20 levels of division would suffice if there were no similar

data. Therefore, to use the existence of similar elements in

integer data set, the condition of having similar data in the

proposed algorithm improves, and by using it, not only we do

not get caught in additional layers like the Quick-sort, but also

we reach sorted data in fewer levels than non-integer data.

As shown in Fig. 9, 15 levels of division in low standard

deviation (5) and about 20 levels in data with high standard

deviation (1000) are required. Interestingly, using the second

FIGURE 8. Normalized similarity index for integer Gaussian data using
the proposed algorithm without the capability to detect the subarray with
similar data, a) low standard deviation (5), b) high standard deviation
(1000).

FIGURE 9. Normalized similarity index for integer Gaussian data using the
proposed algorithm with the capability to detect the subarray with similar
data, a) low standard deviation (5), b) high standard deviation (1000).

feature of the proposed algorithm, if the data is sorted in

higher levels, even in large standard deviations, 20 levels of

division may not be required. Using the proposed algorithm,

if the data are similar in the larger subarray, the processing

time of the smaller subarray is considered in the parallel

processing, and there is no need to sort the larger subarray

with similar data.

Briefly, we can find the following results:

1) In the integer data, where the possibility of similarity

of the data in one subarray is high, especially in low

variances, the number of divisions in the mean-based

or median-based methods has decreased.

2) The proposed algorithm for high variances has also

improved because in more divisions, subarrays with

similar elements are encountered, which are left out.

VOLUME 9, 2021 37425

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

In this way, in addition to reducing the processing time

in serial processing, the similarity of the two subarrays

is closer to each other, which also reduces the parallel

processing time.

3) In the sorting algorithm based on the median and

mean values, especially for low variances, the similar-

ity index is improved. On the contrary, when the pivot

is random, also there is a slight improvement. This is

because subarrays with similar data are discarded with-

out subsequent additional divisions, and the divisions

are made into subarrays, which similar data are less

likely. Therefore, the length of the subarrays becomes

closer to each other.

4) In the integer data with low variance, considering the

similarity of data in each subarray, after 15 divisions,

they reach the sorted state. But in data with higher

variance, on average, 20 divisions are needed where

fluctuations are less.

5) If the data is sorted, we will still have an improvement,

which will improve both the value of the similarity

index and the number of the layers of division.

6) In non-integer data in low-variance and high-variance

cases, there is almost the same result in the view of the

similarity index because the possibility of similarity of

data in different variances is approximately the same.

For uniform distribution, the NSI is close to 1 in higher

divisions, but in the Gaussian distribution, the NSI is

always greater than 0.6.

7) The reason that the similarity index in the integer data

with low variance in the median-based method is lower

than 1 is due to the existence of a high number of similar

data. By obtaining the median as the pivot to divide the

array into two subarrays, there are identical numbers

that fall into the larger subarray, reducing the value of

the index. But in high variance, because the probability

of similar data decreases, at each level, the likelihood

of having data similar to median also decreases.

8) Downward jumps indicate duplicate data similar to

pivot. It causes more data to be placed in a subarray,

and the similarity index becomes smaller than 1.

9) In non-integer data, the possibility of reaching similar

data is very low, so the similarity index in large subar-

rays with the mean-based algorithm is close to 1. In the

next subarrays, the difference in length between the

two subarrays is 0 or 1. As the subarrays get smaller,

the difference is divided into a smaller number, which

indicates the NSI is closer to 0.

For the integer data, the Quick-sort is slower than the case

of non-integer data because there is a lot of similar data. It is

possible to make the subarrays with different lengths that

are not obtained for non-integer data. But in the proposed

algorithm, this issue is prevented, so the difference that exists

for the processing time in the Quick-sort between the integer

and non-integer data has been eliminated in the proposed

algorithm. It is noteworthy that in the random pivot, there are

cases where the difference between the two subarrays reaches

100%. Interestingly, in the median-based and mean-based

pivots, the difference between the two subarrays will never

exceed 40%. It is an essential advantage over the Quick-sort.

The median value is the best pivot to make the subarrays

with similar lengths. It needs a time-consuming process to

be found, which is not acceptable. The mean value is mainly

the same as the median value for symmetric distributions,

while it is close to the median value for non-symmetric

distributions. Natively, the mean-value involves summing up

the N numbers and then dividing by N . Hence, it has linear

complexity.

Herein, selection the median value as the pivot in the

sorting of integer and non-integer data is just to show the

upper bound of the normalized similarity index. In practice,

the median cannot be used because it is necessary to have the

data almost sorted, which creates a paradox. After all, our

goal is to sort the data and not use a pivot that must first

be found based on a sorting algorithm. Finding the median

requires sorting the data, which involves the complexity of

O(NlogN). In this research, the mean value is used instead,

which requires O(N) time complexity if the actual mean of

N -element data is obtained.

Another idea given in this article is that in large data,

the approximatemean can be obtained using a limited number

of data (M) that experiences lower complexity. For example,

in this study, 100 points with a random position were used

for different layers whose data length is more significant than

100. Thus, in the first average, which is related to data with

a length of 1000000, we only need to average 100 numbers;

that, with a factor of 10000, we will reduce the calculations

and improve the processing time. Figs. 10, 11 show the NSI

of the exact and 100-point approximate means in both integer

and non-integer data. It can be seen that for the data with a

length of 1000000, it is sufficient to select 100 samples in

each level, and the mean and median values are close to each

other.

As shown in Figs. 10 and 11, first the mean, approximate

mean, and median values are almost zero. They experience a

large jump to a positive (shown in Fig. 10) or negative value

(shown in Fig. 11) and gradually return to a number close to

zero. It is due to this fact that it first changes from a symmetric

Gaussian distribution to an asymmetric one-sided Gaussian

distribution. Then, in subsequent divisions, it gradually tends

to form a more uniform histogram, which is shown in Figs.

12 and 13 for four layers of division. In these figures, the data

probability density function curves are plotted in the first,

second, third, and fourth layers, respectively, for the larger

length subarrays.

Fig. 12 shows a case where the number of data above zero

is slightly more significant than the number of data below

zero. Therefore, in the second layer, the upper half is chosen.

In subsequent divisions, the subarray is selected close to

zero because the frequency of data around zero is higher.

This is why in the figure for the mean value of different

layers, the mean value first suddenly jumps from zero to a

37426 VOLUME 9, 2021

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

FIGURE 10. Median, exact mean, and 100-element approximate mean
values for non-integer Gaussian 1000000-element data in different levels
of division, a) low-standard deviation, b) high-standard deviation.

FIGURE 11. Median, exact mean, and 100-element approximate mean
values for integer Gaussian 1000000-element data in different levels of
division, a) low-standard deviation, b) high-standard deviation.

considerable value (positive or negative) and then tends to

a number around zero. Fig. 13 shows the case where the

number of data less than zero is slightly higher. Therefore,

in the second layer, the data smaller than zero are in the larger

subarray. In both figures, the probability density function of

the data of different subarrays of each layer is more uniform

than the previous layer. The results obtained in Figs. 12 and

13 are valid for both Gaussian and uniform data distributions

with different standard deviations.

VI. COMPLEXITY ANALYSIS OF THE PROPOSED

ALGORITHM

The proposed algorithm is unlike the Quick-sort, which expe-

riences O(NlogN) time complexity at best and average cases

and O(N 2) at the worst-case [30]. Using the six new ideas

proposed in this investigation, the number of swaps, divisions,

and processing time reduce, i.e., lower complexity than the

FIGURE 12. Gaussian data with low standard deviation (5), a) the first
level, b) second level, c) third level, d) fourth level.

FIGURE 13. Gaussian data with high standard deviation (1000), a) the
first level, b) second level, c) third level, d) fourth level.

Quick-sort. The worst-case for the Quick-sort occurs when

the pivot divides the data into two subarrays, one with zero

length and another with the total length of the data minus one,

at each division level. If this happens for the proposed algo-

rithm, or if the data in an array are the same or sorted, it will

not enter the next division. In these two cases, the proposed

algorithm only needs to calculate the mean value of the data

and then check the similarity or order of the data, which will

be an operation with linear time complexity, O(N). On the

other hand, the worst-case for the proposed algorithm occurs

when the divisions continue until single-member subarrays.

In each division, the two subarrays have the greatest possible

difference.

In Section 5, we proved theoretically and numerically

that using the mean-based pivot, the maximum difference

between the length of subarrays in each division is about

40%. Also, in the average-case of the proposed algorithm,

VOLUME 9, 2021 37427

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

the length of the two subarrays is almost equal, and therefore,

we will have fewer levels and divisions than the Quick-sort.

In general, the time taken by the proposed K-S mean-based

sort is as follows:

T (N) = T (m)+ T (N − m)+ TB(N)+ TM (N)+ TP(N)

(18)

The first two times are for two recursive calls, the last three

times respectively are for obtaining the Boolean variables

1 and 2, evaluating the mean value, and partitioning an array

into two subarrays, which is each of them in order of 2(N).

As we know

2(N)+2(N)+2(N)+2(N) = 2(N) (19)

Hence,

T (N) = T (m)+ T (N − m)+2(N) (20)

m is the number of subarray elements whose elements are

equal or greater than the mean value, and (N − m) is the

remainder elements, located in the second subarray that are

smaller than the mean value. Without loss of generality, it is

assumed that the mean value is not equal to the value of

any data in the array. In the following subsections, we use

Big O (O), Omega (�), and Theta (2), which describe the

upper bound, the lower bound, and the exact bound of the

complexity [46], [47], respectively.

A. THE BEST-CASE

When the data in an array are similar, or sorted in an ascend-

ing or descending order, the best-case occurs. In this case,

we need an O(N) process for evaluating the mean value

of the primary array, O(N) for the comparison process in

partitioning, and 2O(N) for obtaining two Boolean variables.

The first Boolean variable indicates that the data are similar,

and the second one demonstrates that the elements are in an

increasing or decreasing order. If the first Boolean variable

is true, means that all elements are similar. If the second

Boolean variable is true, i.e., data are sorted. Hence, we have

four operations with linear complexity, one for making the

mean value, one for comparisons to the mean value, and two

others for obtaining the Boolean variables. Hence, the upper

bound of the complexity order for the best-case is linear as

Tbest (N) = �(N) (21)

B. THE AVERAGE-CASE

The average-case occurs when the partition process always

divides the primary array into two subarrays around the mean

value, similar in length. It is like the best-case for the Quick-

sort. In the average-case it is clear that

Tav(N) = 2Tav(
N

2
)+2(N) (22)

In this case, we have one N -element array in the first level,

two N
2
-element subarrays in the second level, four N

4
-element

subarrays in the third level, and so on. Finally, it has 2nd num-

ber of single-element subarrays in the nd th level of division

as the last one. Considering N
2nd

equals 1, nd satisfies the

following equation.

nd = log2N (23)

Knowing that log2 N is the same as logN in the complexity

analysis, therefore,

N + 2×
N

2
+ 4×

N

4
+ . . .+ 2nd × 1 = nd .N = NlogN

(24)

Also, for evaluating the mean value, comparisons to make the

subarrays, and obtaining the Boolean variables, we need sim-

ilar complexities as
{

2(N), 22(N
2
), 42(N

4
), . . . , 2nd2(1)

}

that totally is in the order of 2(NlogN). Therefore, the com-

plexity order of the proposed mean-based algorithm for the

average-case is as

Tav(n) = 2(NlogN) (25)

C. THE WORST-CASE

According to the simulation results reported in Figs.

7, 9, based on the normalized similarity index of the

integer/non-integer Gaussian data in low and high standard

deviations, the least similarity between the lengths of the

subarrays in each level of division is about 60% which means

about 40% difference. Assuming that the length of the upper

subarray is larger than that for the lower subarray, we have

LU − LL = 0.4LU (26)

LU + LL = N (27)

By solving these two equations, we have

LU =
5

8
N , LL =

3

8
N (28)

For this case, the complexity order can be found by solving

the following equation

Tworst (N) = Tworst (
5

8
N)+ Tworst (

3

8
N)+2(N) (29)

Based on [46], [47], we conclude that

Tworst (N) = O(NlogN) (30)

VII. COMPARISON IN DIFFERENT VIEWPOINTS

Briefly, Table 3 demonstrates a comparison between the pro-

posed K-S mean-based sorting algorithm and the popular

sorting algorithms such as Quick, Merge, Heap, Insertion,

Selection, and Bubble, in the view of the time complexity,

space complexity, stability, adaptivity, type of swaps (in-place

or not), detectability of a part with similar data, detectability

of a part with sorted data, ability to sort data gradually,

making parallel independent subarrays, and applicability for

low, medium, or large data sets.

As shown in Table 3, although the proposed algorithm has

a similar time complexity to the Merge-sort in the worst-case

37428 VOLUME 9, 2021

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

TABLE 3. Comparisons of the proposed K-S mean-based algorithm with popular sorting algorithms.

and average-case, performs better than the Quick and Merge

sorts in the best-case, with a linear time complexity. This

algorithm has amemory complexity similar to the Quick-sort.

The proposed algorithm, same as the Quick-sort, qualifies

as an in-place sorting algorithm as it uses extra space only

for sorting recursive function calls but not for manipulating

the input. It is applicable for sorting three types of data,

especially for medium and large data sets. Moreover, it can

detect the part with identical elements and distinguish the

part with sorted data. Besides, it can gradually sort the data

and make independent subarrays with approximately similar

lengths. All features of the proposed algorithm are valid and

applicable for different data types (Gaussian and uniform

random distributions) and a wide range of data’s standard

deviation from low to very high.

VIII. CONCLUSION

In this article, we proposed an efficient mean-based sorting

algorithm that distinguishes sorted subarrays and those that

have similar elements. The difference between the lengths

of the left and right subarrays was analyzed. A measure to

evaluate the difference between the locations of the sorted

and unsorted data, namely NMAE, was proposed. Regarding

the processing time, the number of swaps and divisions,

and NMAE, the effectiveness of the proposed algorithm

to the Merge, Quick, and Heap sorts for both integer and

non-integer data was shown.

We showed the main drawback of the Quick-sort, i.e., mak-

ing independent subarrays with non-similar lengths in each

division due to the randomness of the pivot. We improved it

in the proposed algorithm by considering a mean-based pivot.

Moreover, we decreased the number of unnecessary swaps

and divisions by adding an ability to detect the sorted part and

similar data. As the future work, it is considered to combine

the results of this work and those reported in [38], [39], [43],

[44] to realize the K-S sorting in the parallel processing.

Each subarray can be processed without any interaction

with the other ones because they are independent. If the data

of one subarray is more important, it can be sorted first, and

then we can do the sorting for the rest of the subarrays later.

As the final remark, the proposed K-S mean-based sort is a

proper algorithm to extract the median or a specific number

of min./max. values faster than the conventional methods.

REFERENCES

[1] Z. Shen, X. Zhang, M. Zhang, W. Li, and D. Yang, ‘‘Self-sorting-based

MAC protocol for high-density vehicular ad hoc networks,’’ IEEE Access,

vol. 5, pp. 7350–7361, 2017.

[2] G. Maier, F. Pfaff, C. Pieper, R. Gruna, B. Noack, H. Kruggel-Emden,

T. Längle, U. D. Hanebeck, S. Wirtz, V. Scherer, and J. Beyerer, ‘‘Exper-

imental evaluation of a novel sensor-based sorting approach featuring

predictive real-time multiobject tracking,’’ IEEE Trans. Ind. Electron.,

vol. 68, no. 2, pp. 1548–1559, Feb. 2021.

[3] M. Haggag, S. Abdelhay, A. Mecheter, S. Gowid, F. Musharavati,

and S. Ghani, ‘‘An intelligent hybrid experimental-based deep learn-

ing algorithm for tomato-sorting controllers,’’ IEEE Access, vol. 7,

pp. 106890–106898, 2019.

[4] C. Ni, Z. Li, X. Zhang, X. Sun, Y. Huang, L. Zhao, T. Zhu, and D. Wang,

‘‘Online sorting of the film on cotton based on deep learning and hyper-

spectral imaging,’’ IEEE Access, vol. 8, pp. 93028–93038, 2020.

[5] M. Nati, S. Mayer, A. Capossele, and P.Missier, ‘‘Toward trusted open data

and services,’’ Internet Technol. Lett., vol. 2, no. 1, pp. 1–5, 2018.

[6] X. Huang, Z. Liu, and J. Li, ‘‘Array sort: An adaptive sorting algorithm on

multi-thread,’’ J. Eng., vol. 2019, no. 5, pp. 3455–3459, May 2019.

[7] Y. Chauhan and A. Duggal, ‘‘Different sorting algorithms comparison

based upon the time complexity,’’ Int. J. Res. Anal. Rev., vol. 7, no. 3,

pp. 114–121, Sep. 2020.

[8] B. S. Khan and M. A. Niazi, ‘‘Emerging topics in Internet technology:

A complex networks approach,’’ Internet Technol. Lett., vol. 1, no. 4,

pp. 1–6, 2018.

VOLUME 9, 2021 37429

S. Shirvani Moghaddam, K. Shirvani Moghaddam: On the Performance of Mean-Based Sort for Large Data Sets

[9] H. Peng, Y. Xiao, Y. N. Ruyue, and Y. Yifei, ‘‘Ultra dense network: Chal-

lenges, enabling technologies and new trends,’’ China Commun., vol. 13,

no. 2, pp. 30–40, Feb. 2016.

[10] P. Pirinen, ‘‘A brief overview of 5G research activities,’’ presented at the

1st Int. Conf. 5G Ubiquitous Connectivity, Levi, Finland, Nov. 2014.

[11] W. Saad, M. Bennis, and M. Chen, ‘‘A vision of 6G wireless systems:

Applications, trends, technologies, and open research problems,’’ IEEE

Netw., vol. 34, no. 3, pp. 134–142, May/Jun. 2020.

[12] S. Z. Iqbal, H. Gull, and A. W. Muzaffar, ‘‘A new friends sort algorithm,’’

presented at the 2nd IEEE Int. Conf. Comput. Sci. Inf. Technol., Beijing,

China, Aug. 2009.

[13] I. Hayaran and P. Khanna, ‘‘Couple sort,’’ in Proc. 4th Int. Conf. Parallel,

Distrib. Grid Comput., Waknaghat, India, Dec. 2016, pp. 390–393.

[14] S. M. Cheema, N. Sarwar, and F. Yousa, ‘‘Contrastive analysis of bubble

& merge sort proposing hybrid approach,’’ presented at the 6th Int. Conf.

Innov. Comput. Technol., Dublin, Ireland, Aug. 2016.

[15] A. Alotaibi, A. Almutairi, and H. Kurdi, ‘‘One by one (OBO): A fast

sorting algorithm,’’ presented at the 15th Int. Conf. Future Netw. Commun.,

Leuven, Belgium, Aug. 2020.

[16] A. H. Elkahlout and A. Y. A. Maghari, ‘‘A comparative study of sorting

algorithms: Comb, cocktail and counting sorting,’’ Int. Res. J. Eng. Tech-

nol., vol. 4, no. 1, pp. 1387–1390, Jan. 2017.

[17] J. Alnihoud and R. Mansi, ‘‘An enhancement of major sorting algorithms,’’

Int. Arab J. Inf. Technol., vol. 7, no. 1, pp. 55–61, Jan. 2010.

[18] Geeksforgeeks. Accessed: Nov. 11, 2020. [Online]. Available:

https://www.geeksforgeeks.org

[19] Programix. Accessed: Nov. 15, 2020. [Online]. Available:

https://www.programix.com

[20] S. S. Moghaddam, M. Shirvanimoghaddam, and A. Habibzadeh,

‘‘Clustering-based handover and resource allocation schemes for cognitive

radio heterogeneous networks,’’ presented at the 28th Int. Telecommun.

Netw. Appl. Conf., Sydney, NSW, Australia, Nov. 2018.

[21] S. S. Moghaddam and M. Ghasemi, ‘‘A low-complex/high throughput

resource allocation for multicast D2D communications,’’ presented at

the 7th Int. Conf. Comput. Commun. Eng., Kuala-Lumpur, Malaysia,

Sep. 2018.

[22] S. S. Moghaddam, ‘‘Introductory: Primary and secondary users in cog-

nitive radio based wireless communication systems,’’ in Cognitive Radio

in 4G/5G Wireless Communication Systems. London, U.K.: IntechOpen,

2018, ch. 1, pp. 1–12.

[23] S. Mishra, S. Saha, and S. Mondal, ‘‘Divide and conquer based non-

dominated sorting for parallel environment,’’ presented at the IEEE Congr.

Evol. Comput., Vancouver, BC, Canada, Jul. 2016.

[24] M. Yan, W. Shang, and M. Zhang, ‘‘The analysis of coordinate-recorded

merge-sort based on the divide-and-conquermethod,’’ presented at the 15th

Int. Conf. Comput. Inf. Sci., Okayama, Japan, Jun. 2016.

[25] S. S. Moghaddam and K. S. Moghaddam, ‘‘Efficient base-centric/user-

centric clustering algorithm based on thresholding and sorting,’’ presented

at the 14th Int. Conf. Innov. Inf. Technol., AlAin, UAE, Nov. 2020.

[26] Y. Yang, P. Yu, and Y. Gan, ‘‘Experimental study on the five sort algo-

rithms,’’ presented at the 2nd Int. Conf. Mech. Automat. Control Eng.,

Hohhot, China, Jul. 2011.

[27] M. S. Rana, M. A. Hossin, S. M. H.Mahmud, H. Jahan, A. K. M. Z. Satter,

and T. Bhuiyan, ‘‘MinFinder: A new approach in sorting algorithm,’’

Procedia Comput. Sci., vol. 154, pp. 130–136, Jan. 2019.

[28] G. Kocher and N. Agrawal, ‘‘Analysis and review of sorting algorithms,’’

Int. J. Sci. Eng. Res., vol. 2, no. 3, pp. 81–84, Mar. 2014.

[29] K. S. Al-Kharabsheh, I. M. AlTurani, A. M. I. AlTurani, and N. I. Zanoon,

‘‘Review on sorting algorithms: A comparative study,’’ Int. J. Comput. Sci.

Secur., vol. 7, no. 3, pp. 120–126, 2013.

[30] W. Xiang, ‘‘Analysis of the time complexity of quick sort algorithm,’’ pre-

sented at the Int. Conf. Inf. Manage., Innov. Manage. Ind. Eng., Shenzhen,

China, Nov.2011.

[31] D. N. Raju, ‘‘An efficient new approach mean based sorting,’’ presented

at the IEEE UP Sect. Conf. Elect. Comput. Electron., Allahabad, India,

Dec. 2015.

[32] W. H. Butt and M. Y. Javed, ‘‘A new relative sort algorithm based on

arithmetic mean value,’’ presented at the IEEE Int. Multitopic Conf.,

Karachi, Pakistan, Dec. 2008.

[33] M. Shabaz andA. Kumar, ‘‘SA sorting: A novel sorting technique for large-

scale data,’’ J. Comput. Netw. Commun., vol. 2019, pp. 1–7, Jan. 2019.

[34] P. C. Roy, K. Deb, and M. M. Islam, ‘‘An efficient nondominated sorting

algorithm for large number of fronts,’’ IEEE Trans. Cybern., vol. 49, no. 3,

pp. 859–869, Mar. 2019.

[35] P. Gupta, ‘‘Conventional vs enhanced sorting algorithm: A review,’’ Int. J.

Res. Sci. Innov., vol. 5, no. 1, pp. 120–127, 2018.

[36] S. K. Gill, V. P. Singh, P. Sharma, and D. Kumar, ‘‘A comparative study

of various sorting algorithms,’’ Int. J. Adv. Stud. Sci. Res., vol. 4, no. 1,

pp. 367–372, 2018.

[37] L. Khreisat, ‘‘A survey of adaptive quicksort algorithms,’’ Int. J. Comput.

Sci. Secur., vol. 12, no. 1, pp. 1–10, 2018.

[38] Z. Marszałek, M. Woźniak, and D. Połap, ‘‘Fully flexible parallel

merge sort for multicore architectures,’’ Complexity, vol. 2018, pp. 1–19,

Dec. 2018.

[39] Z. Marszalek, ‘‘Parallelization of modified Merge sort algorithm,’’ Sym-

metry, vol. 9, no. 176, pp. 1–18, 2017.

[40] A. Maus, ‘‘A faster all parallel mergesort algorithm for multicore pro-

cessors,’’ presented at the Norwegian Inform. Conf., Oslo, Norway,

Aug. 2018.

[41] D. Pasetto and A. Akhriev, ‘‘A comparative study of parallel sort algo-

rithms,’’ presented at the ACM Int. Conf. Companion Object Oriented

Program. Syst., Lang. Appl., Portland, OR, USA, Oct. 2011.

[42] D. Jimenez-Gonzalez, J. J. Navarro, and J. L. Larriba-Pey, ‘‘The effect of

local sort on parallel sorting algorithms,’’ presented at the 10th EuroMicro

Workshop Parallel, Distrib. Netw.-Based Process., Canary Islands, Spain,

2002.

[43] V. Prifti, R. Bala, R. Tafa, D. Saatciu, and J. Fajzaj, ‘‘The time profit

obtained by parallelization of quicksort algorithm used for numerical

sorting,’’ presented at the Sci. Inf. Conf., London, U.K., 2015.

[44] Z. Marszalek, ‘‘Parallel fast sort algorithm for secure multiparty computa-

tion,’’ J. Universal Comput. Sci., vol. 24, no. 4, pp. 488–514, 2018.

[45] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic

Processes, 4th ed. New York, NY, USA: McGraw-Hill, 2002.

[46] J. L. Bentley, D. Haken, and J. B. Saxe, ‘‘A general method for solving

divide-and-conquer recurrences,’’ ACM SIGACT News, vol. 12, no. 3,

pp. 36–44, Sep. 1980.

[47] Y. Chee, ‘‘A real elementary approach to themaster recurrence and general-

izations,’’ presented at the 8th Annu. Conf. Theory Appl. Models Comput.,

Tokyo, Japan, May 2011.

SHAHRIAR SHIRVANI MOGHADDAM (Senior

Member, IEEE) was born in Khorramabad, Iran,

in 1969. He received the Ph.D. degree in electri-

cal engineering from the Iran University of Sci-

ence and Technology, Tehran, Iran, in 2001. Since

2003, he has been with the Faculty of Electri-

cal Engineering, Shahid Rajaee Teacher Training

University, Tehran, Iran, where he is currently an

Associate Professor. He has numerous articles in

prestigious scientific journals. He has presented

dozens of articles in national and international conferences. He has authored

two books, one on digital communications and another on electrical engi-

neering, and edited one book about cognitive radio (CR). His research

interests include resource allocation and power control in CR-based net-

works, ultra-dense networks, heterogeneous networks, device-to-device and

vehicle-to-vehicle communications, and digital array processing.

KIAKSAR SHIRVANI MOGHADDAM (Student

Member, IEEE) was born in Tehran, Iran, in 2000.

He is currently pursuing the B.Sc. degree in com-

puter engineering with the School of Computer

Engineering, Iran University of Science and Tech-

nology. He is currently a Teaching Assistant with

the Iran University of Science and Technology.

He has been a lecturer of some courses about C

and C++ programming languages, LATEX soft-

ware, fundamentals of computer engineering, and

Rubik’s cube. His activities are focused on the development of Web and

windows applications and algorithm design in cross-platform languages.

37430 VOLUME 9, 2021

