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ABSTRACT This paper addresses the research question: can feedforward neural network (FFNN)-based

path loss modeling improve the accuracy of Kriging? Radio propagation factors, which consist of path loss

and shadowing, can accurately be obtained via crowdsourcing with Kriging. In most works on Kriging-aided

radio environment mapping, measurement datasets are first regressed via linear path loss modeling to

ensure spatial stationarity of the shadowing. However, in practical situations, the path loss often contains

an anisotropy owing to terrain and obstacle effects. Thus, Kriging may not perform an optimal interpolation

because of the errors in path loss modeling. In this paper, an FFNN is used for path loss modeling. Then,

ordinary Kriging is applied to interpolate the shadowing. We first evaluate the performance of this method in

a case where the transmitter is fixed. It is shown that this method does not improve Kriging in a large-scale

and fixed transmitter system; although the FFNN outperforms OLS in path loss modeling. Then, this method

is extended to distributed wireless networks where transmitters are arbitrarily located, such as in mobile ad

hoc networks (MANETs) and vehicular ad hoc networks (VANETs). The results of a measurement-based

experiment show that the FFNN is capable of improving Kriging in such a distributed network case.

INDEX TERMS Radio propagation, spatial statistics, crowdsourcing, neural network, Kriging, regression

analysis.

I. INTRODUCTION

The growth in the demand formobile communication systems

has exponentially increased data traffic during the last decade.

Because this exponential growth consumes finite spectrum

resources, traditional spectrum utilization according to exclu-

sive policies for spectrum allocation faces certain limita-

tions. In addition to a shortage in frequencies exclusively

assigned to the new system, problems such as the degrada-

tion of communication quality arise owing to traffic conges-

tion in wireless local access network (WLAN) and cellular

systems.

Currently, there are two countermeasures used to address

such a problem:

• Dynamic spectrum sharing with existing systems [1].

• Improvement of spectrum utilization efficiency in exist-

ing systems via sophisticated low layer techniques

(e.g., non-orthogonal multiple access (NOMA) [2]).

The associate editor coordinating the review of this manuscript and
approving it for publication was Guan Gui.

In both these measures, it is important to improve the com-

munication efficiency over the spatial domain. Because this

requires accurate estimation of the available spectrum and the

interference between transmitters, radio environment estima-

tion is a key technology for the sustainable development of

wireless communication systems.

A. KRIGING-BASED RADIO ENVIRONMENT MAP

One simple method of radio environment estimation for a

system with a fixed transmitter is the use of the radio envi-

ronment map (REM) [3]–[5]. An REM is generally defined

as a map that indicates the average received power for each

location. By storing an REM that has been constructed in

advance based on actual measured values and accessing it

via a cloud server, we can accurately predict the surrounding

radio environment.

Because of its practicality, many researchers have inves-

tigated embedding an REM into wireless systems over the

last decade, e.g., spectrum sharing over television white space
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(TVWS) [6], coverage prediction in cellular networks [7], and

communication quality prediction in WLANs [8].

Because the accuracy of the REM is directly related to

the utilization efficiency of the spectrum [9], [10], many

theoretical and experimental studies have been conducted.

In particular, it is well known that Kriging, a spatial inter-

polation technique [11] with an actual measured dataset, can

obtain an accurate REM.

Here, the average received signal power consists of two

factors: the path loss and shadowing. Only path loss mod-

eling cannot be used to estimate shadowing; thus, this

method has a root mean squared error (RMSE) of approx-

imately 6–8 [dB] [12], [13]. It is empirically known that

shadowing has a spatial correlation [14]. Focusing on this

characteristic, the shadowing can be estimated accurately by

applying an appropriate weighted average to the observation

dataset in the framework of spatial statistics.

Kriging is an interpolation method that minimizes the vari-

ance of estimation errors under the constraint of unbiased

estimation. Kriging is subdivided according to the charac-

teristics of a random variable because the optimality of the

interpolation value is realized under the spatial constancy

of the random variable. Ordinary Kriging is a fundamental

Kriging that is often applied in REM construction. Ordinary

Kriging realizes an optimal interpolation for the Gaussian

process following a unique model in which both the expected

value and semivariogram of the random variable have spatial

stationarity.

B. PROBLEM OF KRIGING IN WIRELESS SYSTEMS

As the expected value of the received signal power has a

spatial trend owing to the path loss, we first need to estimate

the path loss and remove it from the dataset using regression

analysis.

Path loss modeling often assumes a simple equation with a

few parameters, for example,

L(d) = C + 10ηlog10d [dB], (1)

where C [dB] is the constant factor, d [m] is the distance

from the transmitter, and η is the path loss index. By applying

ordinary least squares (OLS), we can model the path loss in

a simple way. In many cases, such a tuned-path loss outper-

forms empirical models [13]. However, in fact, the path loss

generally exhibits strong anisotropy because it is affected by

several complex factors such as terrain, roads, and buildings.

Additionally, this anisotropy becomes even stronger when the

transmitter employs an array antenna. Therefore, path loss

estimation assuming a simple model cannot fully obtain the

spatial stationarity of the shadowing, and Kriging may not

perform an optimal interpolation.

C. NEURAL NETWORK FOR RADIO PROPAGATION

ESTIMATION AND OUR QUESTION

Some recent works have shown the outstanding performance

of neural networks (NNs) in physical layers [15]–[18].

An NN is a well-known technique in the field of machine

learning and is formed by propagating the output between

multiple artificial neurons coupled together. By taking a

weighted sum of activation functions appropriately designed

based on a training dataset, a nonparametric estimation can

be realized [19]. For example, the authors in [15] applied

a deep recurrent NN for resource allocation in practi-

cal non-orthogonal multiple access systems. Additionally,

reference [16] proposed a deep-NN-based fast beamform-

ing design for downlink multiple-input and multiple-output

(MIMO) systems.

As NNs can be used for regression analyses, they can

help accurately model the path loss [20], [21]. From an

optimization-based discussion, the authors in [20] concluded

that a simple NN that employs a few (1–3) hidden layers

can achieve a sufficient accuracy for path loss modeling.

The authors in [21] evaluated the performance of a feedfor-

ward NN (FFNN) in path loss modeling over an ultrahigh

frequency (UHF) band. The input layer of the FFNN pro-

posed in [21] consisted of distance, frequency, information

of structures, etc. From a measurement-based evaluation,

they concluded that an FFNN can improve the accuracy

of path loss modeling. Considering the problem of Kriging

shown in Sect. I-B, these results raise a simple question: can

FFNN-based path loss modeling improve the accuracy of

Kriging?

D. OVERVIEW OF THIS PAPER AND

MAIN CONTRIBUTIONS

In this study, to answer the above research question, we eval-

uate the practical performance of FFNN-aided Kriging in

radio environment mapping. To this end, the path loss is first

modeled with an FFNN from actual measured datasets. After

the shadowing factors in the datasets are extracted, ordinary

Kriging is performed for spatial interpolation. In the field of

spatial statistics, such a procedure is called neural network

residual Kriging (NNRK). NNRK was proposed in [22],

where the authors applied it to analyze the air radiation dose

and showed that FFNN-based regression can improve the

accuracy of ordinary Kriging.

This study focuses on two situations as shown in

Fig. 1(a)(b). We first consider a situation where a transmitter

is fixed (Fig. 1(a)), such as in television and cellular sys-

tems; these are the main applications of the REM. Then, this

discussion is extended to a more complex situations where

transmitters are arbitrarily located, as shown at Fig. 1(b). This

case considers mobile ad-hoc networks (MANETs), vehicu-

lar ad-hoc networks (VANETs), and device-to-device (D2D)

communications. The main contributions of this study are

summarized as follows.

• From a brief theoretical discussion and a numeri-

cal simulation, we first show that the effects of path

loss modeling on Kriging strongly depend on the dis-

tance between the transmitter and the estimated loca-

tion. Namely, as the communication distance decreases,

the influence of errors in path loss modeling increases.
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FIGURE 1. This study focuses on two cases. The distributed network case
consists of considerably more complex path loss compared with the fixed
transmitter case; FFNN will significantly improve accuracy of path loss
modeling in this situation.

The following two contributions are based on this dis-

cussion (Sects. II-C and IV-A).

• It is shown that OLS with Kriging achieves a perfor-

mance almost equal to that of NNRK in a large-scale

and fixed transmitter system; although the FFNN out-

performs OLS in path loss modeling. We demon-

strate this using a dataset measured over TV bands

(Sect. IV-B).

• We extend NNRK to a distributed case as shown

in Fig. 1(b). The spatial correlation of shadowing can

also be obtained in such a distributed situation [23].

Thus, Kriging-based radio environment mapping can

be extended to such a case. Here, as the path loss

exhibits considerably complex anisotropy according to

the transmission location, we cannot develop an accu-

rate model with an equation. Additionally, the commu-

nication distance is usually within a hundred meters;

thus, the NN significantly improves the performance

of Kriging. We show this using a dataset obtained

from a vehicle-to-vehicle (V2V) communication system

(Sect. V).
These discussions demonstrate how an FFNN can improve

the performance of Kriging.

The reminder of this paper is organized as follows.

In Sect. II, we introduce the principle of Kriging-based REM

construction while focusing on a case where the transmitter

is fixed. At the end of this section, we indicate the influence

of path loss modeling in Kriging. Then, in Sect. III NNRK is

described, and the performance of the NNRK is evaluated via

both numerical simulation and experiment in Sect. IV. Then,

Sect. V extends NNRK to a distributed situation. Finally,

we conclude our work in Sect. VI.

II. OVERVIEW OF KRIGING-BASED RADIO

ENVIRONMENT MAPPING

Methods for REM construction can be categorized into an

empirical-model-based approach and crowdsourcing-based

approach. In this paper, we focus on the latter approach

because this usually outperforms the former in terms of

accuracy. This section summarizes ordinary Kriging with

OLS-based path loss modeling as a fundamental method in

radio environment mapping. Note that this section considers

the situation where a transmitter is fixed, as already shown

in Fig. 1(a). In Sect. V, we extend this method to the dis-

tributed situation that is shown in Fig. 1(b).

A. RADIO PROPAGATION MODEL AND BRIEF PROCEDURE

We first summarize the task of Kriging based on a descrip-

tion of the radio propagation model. A block diagram of

Kriging-based radio environment mapping is shown in Fig. 2.

Although this study covers both fixed and distributed situa-

tions and both OLS and FFNN-based modeling, all methods

in this study follow this diagram.

FIGURE 2. Block diagram of radio environment mapping. Both fixed and
distributed situations and both conventional Kriging (in Sect. II) and
NNRK (in Sect. III) follow this procedure.

The REM is usually stored in a cloud database. The

database first collects information on the received signal

power related to the received location. We define the REM as

a map that stores two-dimensional coordinate information of

the average received signal power focusing on a fixed trans-

mitter. In this system, multiple nodes first measure the signal

strength from a transmitter and report the data to a database.

Then, the reported (instantaneous) values are averaged for

each grid from several meters to several hundred meters to

alleviate the effect of multipath fading. However, because

the number of nodes and the area where observations can

be performed are limited, the REM is missing teeth. Thus,

we need to interpolate for missing-tooth information. Kriging

is often used for this purpose.

In this section, we consider an REM construction

where N values of the average received signals are given

in the database. We define the dataset vector y =

(P(x1),P(x2), · · · ,P(xN ))
T, where xi = (xi, yi) is the mea-

surement location and P(xi) [dBm] is the average received

signal power. If the effect of multipath fading can be alle-

viated by averaging the instantaneous values, the average
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received signal power at a given location x from the trans-

mitter location xTx = (xTx, yTx) can be modeled as

P(x) = PC − L(x)
︸ ︷︷ ︸

,P(x)

+W (x), (2)

where PC [dBm] is the location-independent scalar quan-

tity that includes the transmission power, antenna gain,

and the effect of frequency. L(x) [dB] is the path loss

between x and xTx. W (x) [dB] is the log-normal shadowing

with a standard deviation σ [dB]. As both L and W are

location-dependent scalars [24], we express them as functions

of the location vector x. Here, we assume that the spatial

correlation in shadowing follows a typical model [14],

ρi,j =
E
[

(W (xi) − E[W (xi)])
(

W (xj) − E[W (xj)]
)]

σiσj

≈ exp

(
−||xi − xj||ln2

dcor

)

, (3)

where || · || is the Euclidean distance, σi is the standard

deviation of W (xi), dcor [m] is the correlation distance, and

E[·] is the expected value of the random variable. The task

of Kriging in this context is to interpolate the received signal

power at an arbitrary location from the dataset y.

B. ORDINARY KRIGING WITH OLS

Next, we describe ordinary Kriging with OLS, which has

been well discussed in the community of spectrum shar-

ing. Although Kriging is subdivided into some strategies

according to the property of the target random variable Z ,

all methods interpolate by taking the weighted average of the

measured values:

Ẑ (x0) =

N
∑

i=1

ωiZ (xi), (4)

where ωi is the weight factor multiplied by Z (xi), and Ẑ (x0)

is the interpolated Z (x0). Kriging optimizes ωi such that the

variance of the estimation error is minimized.

Here, ordinary Kriging assumes that
• E [Z (x)] = const. over any x.

• The spatial correlation property of Z (x) is static over the

entire measurement area.
Considering these assumptions, Z (x) can be related to the

shadowingW (x) in Eq. (2). However, the received signal has

a location-dependent trend factor P(x); i.e., P(x) 6= const..

Thus, before applying ordinary Kriging, we need to estimate

the model of P(x) and subtract it from y to gain the optimality

of the interpolated value.

Usually,P(x) is assumed to follow a simple path loss model

that depends on the distance d , ||x− xTx|| [m],

P(d) = PTx − L(d)

= PC − 10ηlog10d, (5)

where η is the constant path loss index. By applying OLS

for y, we can estimate both PC and η and then extract W (xi)

from y. Because ordinary Kriging should be applied for the

extracted W (xi) according to Eq. (4), the interpolation result

at x0 can be derived by

P̂(x0) = P̂C − 10η̂log10||x0 − xTx||

+

N
∑

i=1

ωi

(

P(xi) −
(

P̂C − 10η̂log10||xi − xTx||
))

︸ ︷︷ ︸

,Ŵ (xi)

,

(6)

where η̂ and P̂C are the estimated η and PC obtained by OLS.

Ordinary Kriging determines the optimum weights that

minimize the variance of the estimation error σ 2
k =

Var[Ŵ (x0) − W (x0)], where Var[·] is the variance of the

random variable. To achieve the best linear unbiased estima-

tor (BLUE), this method determines the weights under the

constraint
∑N

i=1 ωi = 1. Using the method of the Lagrange

multiplier, the objective function can be written as

φ(ωi, µ) = σ 2
k − 2µ

(
N
∑

i=1

ωi − 1

)

, (7)

where µ is the Lagrange multiplier. Here, σ 2
k can be written

as follows [11]:

σ 2
k = −γ (d0,0) −

N
∑

i=1

N
∑

j=1

ωiωjγ (di,j) + 2

N
∑

i=1

ωiγ (di,0), (8)

where di,j , ||xi − xj||. In addition, γ is the semivariogram

defined as

γ (di,j) =
1

2
Var[Ŵ (xi) − Ŵ (xj)]. (9)

By taking partial derivatives in Eq. (8) and by assuming that

these results equal to zeros, we can obtainN+1 simultaneous

equations:









γ (d1,1) · · · γ (d1,N ) 1

γ (d2,1) · · · γ (d2,N ) 1
...

...
...

...

γ (dN ,1) · · · γ (dN ,N ) 1

1 · · · 1 0



















ω1

ω2

...

ωN
µ










=










γ (d1,0)

γ (d2,0)
...

γ (dN ,0)

1










.

(10)

From the above simultaneous equations, the optimal ωi can

be derived.

C. WHEN DOES THE EFFECT OF ERRORS IN PATH

LOSS MODELING BECOME SEVERE?

Next, we briefly discuss the effect of imperfect path loss

modeling in the Kriging-based REM. Previous methods for

REM construction assumed an isotropic path loss model,

as shown in Eq. (5). Meanwhile, in many realistic situations,

the path loss has anisotropy; e.g., η indicates a degree depen-

dence, and the transmitter employs an antenna array. This

difference between the assumedmodel and true characteristic
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causes a difficulty in obtaining E[Ŵ (x)] = const.. Thus,

the optimality of ωi will be broken.

Let us consider a simple situation of path loss modeling

to examine this effect. For simplicity, we assume a simple

anisotropic path loss; the path loss follows Eq.(5) at a cer-

tain angle, and PC and η depend on the horizontal angle

between the transmitter and the receiver. Under this assump-

tion, we discuss the error of path loss modeling over a straight

line. Fig. 3(a) shows both true and estimated path loss curves.

If OLS assuming the isotropic model is applied to model the

path loss in such an anisotropic situation, the error becomes

severe according to the anisotropy. In this figure, the error of

path loss modeling at a given distance d can be written as

ε(d)=
(

PC − 10ηlog10d
)

− (P̂C − 10η̂log10d) [dB]. (11)

FIGURE 3. Example of path loss modeling where η = 3.0, η̂ = 2.0,

PC = 0.0, P̂C = −15.0, and 1d = 500). (a) True and estimated path loss
curves, (b) ε(d ) − ε(d − 1d ). The farther away is the transmitter,
the greater is the probability that the regression result becomes
stationary on the spatial axis. Near the transmitter, Kriging is strongly
affected by the error of path loss modeling.

Here, we can achieve E[Ŵ (x)] = const. spatially when the

difference in the error of path loss modeling between two

points is zero, i.e., ε(d) − ε(d + 1d) = 0. This condition

then gives

ε(d) − ε(d + 1d) = 10(η − η̂)log10
d + 1d

d
. (12)

As this equation approaches zero, ordinary Kriging will work

properly. Here, we define 1d [m] as the maximum distance

between the interpolated location and the dataset utilized for

Kriging. Although the number of datasets for the interpo-

lation can be increased by taking a large 1d , a too-large

1d may not efficiently improve the accuracy of Kriging

because a pair of distant data are almost uncorrelated to each

other. Thus, a sufficient 1d will be several hundred meters to

several kilometers. A numerical example of Eq. (12) where

1d = 500 [m] is shown in Fig. 3(b). Even if OLS performs

an imperfect path loss modeling, Eq. (12) approaches zero as

the interpolated location leaves the transmitter because this

value depends on log10 ((d + 1d)/d). This brief discussion

provides us with simple but important knowledge: the esti-

mation error of the path loss strongly affects the optimality

of ordinary Kriging if the interpolation is performed near the

transmitter.

Note that we focused only on ε(d) − ε(d + 1d), and the

amount of ε itself is ignored in this discussion. This is because

ordinary Kriging compensates ε(d) if ε(d)− ε(d +1d) = 0.

Therefore, the influence of the error in path loss modeling

can be neglected in the end even if ε(d) is large. This char-

acteristic is shown in Sect. IV via a numerical simulation

(see Fig. 6).

III. NEURAL NETWORK RESIDUAL KRIGING

In Sect. II, we pointed out the effects of imperfect path loss

modeling. The accuracy of REM is strongly affected by this

imperfection; improving the path loss modeling may improve

the accuracy of REM at locations near the transmitter. Path

loss modeling has been widely discussed in the commu-

nity of radio propagation. A number of path loss models,

e.g., the Okumura-Hata model and COST-231, have been

studied, and we can obtain an accurate path loss characteristic

by choosing a suitable model [12]. Meanwhile, accurate path

loss modeling requires a careful choice of model, and this dif-

ficulty often causes a mismatch between the selected model

and the actual estimated area. In many situations, fitting a

simple equation into an actual measured dataset outperforms

the man-selected path loss model [13].

Some recent works showed the outstanding performance of

NNs in path loss modeling [20], [21]. The use of NNs may

improve the accuracy of REM. In this section, we present an

NN-assisted REM construction called NNRK.

A. PATH LOSS MODELING VIA FFNN

An NN consists of artificial neurons. These neurons are

connected by weighted links, and each neuron propagates

a value obtained from the weight and its own nonlinear

function. By adjusting the weights between the neurons

from the dataset, we can perform model-free and accurate

path loss modeling. Fig. 4 shows the FFNN we used in

this paper. To fully take into account the effects of location

dependence, we input both the transmitter location and the

receiver location.1 Because the path loss mainly depends on

the communication distance and the azimuth, the receiver

coordinate is first converted into d [m] and θ [deg]. Addi-

tionally, the output layer consists of the average received

signal power over the logarithmic domain related to the input

information.

Generally, we can easily gain the expression capability of

NNs by employing a deep-layered structure [15]–[18]. Mean-

while, from an optimization-based discussion, the authors

in [20] concluded that a few (1–3) hidden layers can achieve

a sufficient accuracy for path loss modeling. The authors

in [21] showed a similar result. According to these discus-

sions, we exploit only one hidden layer.

1If the transmitter is fixed at a location, the input layer may need only
the receiver location. Because Sect. V extends the NNRK to the distributed
situation, we assume this four-dimensional input layer.
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FIGURE 4. FFNN used for path loss modeling. Although a deep-layered
structure can improve the capability of NNs [15]–[18], some authors have
shown that a few (1–3) hidden layers can achieve a sufficient accuracy for
path loss modeling [20], [21]. According to these results, this study uses
only one hidden layer.

B. NEURAL NETWORK RESIDUAL KRIGING

Once the FFNN is constructed, the path loss can easily

be obtained by using the FFNN, transmitter location, d ,

and θ ; the FFNN can be expressed as a function of path

loss f (xTx, d, θ). The procedure of NNRK is the same as the

conventional method, except that FFNN is used for path loss

modeling instead of OLS, as shown in Fig. 2. Thus, we can

implement NNRK by modifying Eq. (6) as

P̂(x0) = f (xTx, d0,Tx, θ0,Tx)

+

N
∑

i=1

ωi
(

P(xi) − f (xTx, di,Tx, θi,Tx)
)

, (13)

where θi,j = 6
(

xi, xj
)

. Note that ωi is calculated by solving

Eq. (10) according to the manner of ordinary Kriging.

C. IMPLEMENTATION OF FFNN IN THIS PAPER

We implement the FFNNs using Python 3.6.5 with Chainer

4.5.0. The task of the FFNN in this context is to predict

an accurate P(xTx, yTx, d, θ), and this FFNN should be con-

structed via training dataset y. We implement the FFNN

according to the manner of mini-batch learning. As men-

tioned at the beginning of this section, we consider one hidden

layer. All of the activation functions employ a rectified linear

function (ReLU) that is defined as h(x) = max (0, x).

Before the learning, distance di and degree θi are extracted

from xTx and xi, and all input values are normalized to

0–1 in each dimension. In the learning process, Nmb(< N )

mini-batch datasets are randomly selected from y, and we

input them into the FFNN at once. Then, the MSE between

the estimated and measured datasets is calculated. The MSE

is defined as

MSE =
1

Nmb

Nmb∑

i=1

(

pi − p̂i
)2

, (14)

where p̂i is the normalized output obtained from FFNN, and

pi is the normalized P(xi). Next, the FFNN updates its own

weight factors according to backpropagation-based gradient

calculation andAdam [25], which is an efficient algorithm for

stochastic optimization. The above procedures are iterated for

Nepoch epochs.

IV. PERFORMANCE EVALUATION

This section presents performances of NNRK for the situation

of a fixed transmitter. First, we verify the effect of imperfect

path loss modeling via a numerical simulation by assuming

a simple anisotropy. After that, an actual measured dataset is

utilized for an experimental evaluation.

A. NUMERICAL SIMULATION

The simulation model is summarized in Fig. 5. A two-

dimensional plane consisting of a square with a side length

L [m] is used as the evaluation area. The transmitter is

located on the coordinate xTx = (0,L/2), and the REM

focuses on this transmitter. In the first part of this simula-

tion, we randomly select 1024 measurement locations based

on a two-dimensional uniform distribution. If the received

signal power exceeds a measurement threshold, then the

value is counted for the dataset. All successfully received

values are contained in the dataset vector y, and its length is

expressed asN . To evaluate the effect of the distance from the

transmitter on the REM, we consider the evaluation location

x0 = (d0,Tx,L/2) where d0,Tx [m] is the distance from the

transmitter. Under the above conditions, the RMSE at x0 is

evaluated via a Monte Carlo simulation.

FIGURE 5. Simulation model.
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TABLE 1. Simulation parameters.

After the measurement, the path loss is modeled from y

via OLS or FFNN. Then, the shadowing at x0 is estimated by

ordinary Kriging. In Kriging, we use only the dataset that is

in a circle with radius R [m] where the center point is located

at x0; we express this dataset by y∗. Before applying ordi-

nary Kriging, we generate empirical semivariograms from the

estimated shadowing in y∗ according to binning [11]. Then,

the generated semivariograms are fitted to the exponential

semivariogram model, which is defined as

γ
(

di,j
)

= α2
n + α2

s

{

1 − exp

(

−
di,j

αr

)}

, (15)

where α2
n , α2

s , and αr are Nugget, Sill, and Range, respec-

tively. Note that we determine α2
n = 0 in this simulation to

avoid the event that Eq. (10) rarely has no result.

Radio propagation characteristics follow Eq. (2) and we do

not consider any time-variant factors. Additionally, to express

the anisotropic radio propagation simply, the transmitter

employs beamforming; PC in Eq. (2) is assumed to follow

PC (θ ) = PTx + G(θ), where PTx [dBm] is the transmis-

sion power, θ (−180◦ ≤ θ ≤ 180◦) is the azimuth, and

G(θ ) [dBi] is the angle-dependent antenna gain. According

to [26], we assume

G(θ ) = −min

(

12

(
θ

θ3dB

)2

, Amax

)

, (16)

where θ3dB [deg] is the 3 dB beamwidth, and Amax [dB] is the

maximum attenuation.

1) RMSE VS DISTANCE FROM TRANSMITTER

The impact of d0,Tx on the RMSE is shown in Fig. 6. Both

OLS and FFNN are compared in this simulation. Addi-

tionally, we evaluated the performance where P(x) can be

obtained perfectly. This means that path loss modeling was

performedwithout any errors, and the Kriging fully optimizes

the interpolation; thus, this value shows a maximum accu-

racy in this simulation. The RMSE of OLS-aided Kriging

increases by 2.9 [dB] in d0,Tx = 500 [m] compared to the

perfect case. Meanwhile, NNRK suppresses this degradation;

FIGURE 6. RMSE against distance from transmitter. The effects of path
loss modeling strongly depend on the distance between the transmitter
and the estimated location. As the communication distance decreases,
the influence of errors in path loss modeling increases.

thus, FFNN can improve the accuracy of REM in the presence

of anisotropic path loss. In both methods, the farther from

the transmitter, the more the accuracies approach the perfect

case because the effect of imperfect path loss modeling on

Kriging can be ignored in far places, as previously discussed

in Sect. II-C. We are interested in the results before and

after applying Kriging in OLS. Before applying Kriging,

the RMSE is over 15 [dB] in almost all regions and is not

practical. Applying the Kriging compensates the error in path

loss modeling, and near-optimal spatial interpolation can be

performed.

OLS requires much lighter calculations than FFNN. If the

REM is constructed in large-scale systems, such as television

and cellular, OLS will be an appropriate selection for prepro-

cessing in Kriging. By contrast, if the REM is constructed in

small-scale systems, such as small-cell and WLAN, FFNN

will be capable of improving the accuracy of REM.

2) RMSE VS. CORRELATION DISTANCE dcor

The effects of the correlation distance of shadowing dcor
where d0,Tx = 500, 2000 [m] are shown in Fig. 7.

dcor depends on the obstacle structures, and the value is

FIGURE 7. RMSE against correlation distance dcor. Regardless of dcor,
the distance from the transmitter is a very important metric when
considering if the FFNN should be applied.
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FIGURE 8. Example of REM where N = 512. OLS with Kriging and NNRK show no difference in their construction results, at least visually.

determined empirically (e.g., several tens of meters for urban

and several hundreds of meters for suburban) [14]. Because

highly spatial correlation allows Kriging to perform an accu-

rate interpolation, the RMSE increases as dcor becomes

shorter. Meanwhile, in any dcor, the effect of path loss mod-

eling can be ignored away from the transmitter. Regardless

of dcor, the distance from the transmitter is a very important

metric for considering whether we should apply the FFNN.

B. NUMERICAL EXAMPLE WITH ACTUAL

MEASURED DATASET

We present a numerical example using an actual measured

dataset that we used in [27], [28]. In [27], we conducted

measurements over a five-day period in October 2013.

The spectrum sensing function was implemented on a

software-defined radio platform [Universal Software Radio

Peripheral (USRP) N210] by the GNU Radio software and

ran on a laptop computer. The TV signal was sampled using

a fast Fourier transform with a sampling rate of 200 [kHz],

and the number of samples was set to 2048. The noise floor

of the USRP N210 for the above conditions is approxi-

mately -171 dBm/Hz in a temperature chamber. Five vehicles

were used to perform signal measurements while driving on

roads, and two sensing devices were installed in each vehicle,

which made a total of 10 measurement devices. Each antenna

was put on the roof of a vehicle at a height of 1.7 [m], and

two antennas per vehicle were installed diagonally on the

roof. The sensing results were stored on a laptop PC with

the location information obtained using a USB-connected

GPS unit (Garmin GPS18xUSB). Based on the above con-

ditions, the television signals from the Kumagaya relay sta-

tion were measured. This station is located in Kumagaya

city, Saitama, Japan, which is a suburban area. We mea-

sured signals with a center frequency of 521.14 [MHz] that

were vertically polarized and whose transmission consisted

of the Integrated Services Digital Broadcasting-Terrestrial

(ISDB-T) standard with an equivalent isotropically radiated

power (EIRP) of 31 [W]. ISDB-T consists of 13 segments

of orthogonal frequency division multiplexing (OFDM) sig-

nals, and each segment has 432 subcarriers; a channel has

roughly 6 [MHz] of bandwidth. After the measurement cam-

paign, to estimate the spatially distributed average received

signal power, the prior datasets were averaged over spatial

grids in which each side had a length of 10 [m].

In Fig. 8, we show an example of radio environment map-

ping. Fig. 8(d) plots all of the averaged datasets we used in

this evaluation. The 22 332 grids contain average received

signal values. In this example, 512 grids are randomly

selected from these datasets and are utilized for learning. The

learning datasets in this example are shown in Fig. 8(a), and

Figs. 8(b), (c), (e), and (f) show the REM constructed via

OLS, OLS-aided Kriging, FFNN, and NNRK, respectively.

Although the FFNN-based path loss modeling well expresses

the anisotropy of the path loss, both the OLS-aided Kriging

and NNRK construct similar REMs, at least visually.

To compare the detailed accuracies of these methods,

we perform a cross-validation-based evaluation. In this eval-

uation, several datasets are randomly selected from all of the

datasets and are utilized for learning. Next, for the cross-

validation, 100 grids are randomly selected from the datasets

except the learning datasets, and the RMSE is calculated.

These procedures are iterated 1000 times. Note that semivar-

iogrammodeling and Kriging use only datasets up to 500 [m]

from the interpolation point.

Fig. 9 shows the CDFs of the RMSE where N = 1024.

Although the FFNN statistically improves the performance of

path lossmodeling, the gap between FFNN andOLS becomes

small after Kriging is applied. This is because the datasets

were observed from several kilometers to several tens of

kilometers from the transmitter. In such an environment, OLS

assuming isotropic path loss can obtain sufficient accuracy,

as shown in Fig. 6.

Fig. 10 shows 90-percentile RMSEs where N =

512, 1024, and 2048. Characteristics similar to those in Fig. 9

can be found for bothN = 512 and 2048. If Kriging is applied

to such a large-scale system, even if FFNN can improve
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FIGURE 9. CDFs of RMSE over TV bands where N = 1024. Although FFNN
improves the accuracy of path loss modeling, this effect is compensated
after Kriging is applied in this case. Note that FFNN improves the
accuracy of Kriging in the distributed case. This result is shown in Fig. 13.

FIGURE 10. Ninetieth-percentile RMSE over TV bands.

the accuracy of the path loss modeling, OLS will achieve a

sufficient accuracy after the Kriging is applied.

V. EXTENSION TO DISTRIBUTED WIRELESS NETWORKS

We have discussed the performance of NNRK in the situation

where the transmitter is fixed. Even if the path loss has

anisotropy, OLS with Kriging can perform accurate radio

environment mapping in large-scale systems.

Next, we consider a situation where the transmitter has

an arbitrary location, such as in MANET. The shadowing

in such a distributed situation also has a spatial correla-

tion [23]; thus, from the theoretical viewpoint, we can easily

extendKriging-based estimation to this situation.Meanwhile,

because the path loss has too-complex anisotropy according

to the transmission location, we cannot accurately model this

with an equation. Because the communication range in such a

situation is within several hundreds of meters in many cases,

the error of path loss modeling may strongly degrade the

accuracy of radio environmentmapping, as shown in Sect. IV.

In this section, we evaluate the performance of NNRK in the

distributed situation.

A. DATA COLLECTION AND PREPROCESSING IN CLOUD

As in the fixed case, radio environment mapping in the

distributed situation also starts from data collection via

crowdsensing. Here, we assume that all packets include the

transmission location. After peer-to-peer (P2P) wireless com-

munication, the receiver records the received signal power

that is related to both the receiver and transmitter loca-

tions, and reports it to the cloud server. After the server

collects sufficient datasets from massive reporters, the time-

variant factors such as multipath fading are removed from the

datasets to conduct radio environment mapping in the manner

of spatial statistics. In the fixed case, this process can be

simply implemented by averaging the instantaneous signals

by a grid. By contrast, in the distributed situation, simple

averaging that focuses only on the receiver location cannot

extract meaningful features because the datasets have arbi-

tral coordinates for the transmission location. Thus, we also

consider gridizing the transmitter locations. In this process,

after both the transmitter and receiver locations are gridized,

all datasets are classified to a pair of grids according to the

transmitter and receiver locations. By averaging the datasets

for each pair of transmit and receive grids, we can construct

(tooth-missing) REMs for each transmit grid [29].

After this subsection, the received power represents the

preprocessed value.

B. PRINCIPLE

Let us consider N datasets where the transmitter in the

i-th link is located in xi,Tx and the paired receiver is in xi,Rx.

The average received signal power at xi,Rx can be expressed

by redefining Eq. (2) as

P(xi,Tx, xi,Rx) = PC − L(xi,Tx, xi,Rx) +W (xi,Tx, xi,Rx).

(17)

According to reference [23], the spatial correlation of shad-

owing in the distributed situation can be simply extended

from Eq. (3). This characteristic can be derived by

ρi,j ≈ exp

(

−
d(i,j),Tx + d(i,j),Rx

dcor
ln2

)

, (18)

where d(i,j),Tx = ||xi,Tx − xj,Tx|| [m] and d(i,j),Rx = ||xi,Rx −

xj,Rx|| [m]. The spatial correlation in the distributed situ-

ation depends on the moving distances of the transmitter

and receiver. Considering this fact, the radio environment

mapping derived in Sect. II and Fig. 2 can be applied in the

distributed situation.

In the distributed situation, the task of radio environ-

ment mapping is to estimate the received signal power at a

given link P(x0,Tx, x0,Rx) from the measurement vector y =
(

P(x1,Tx, x1,Rx),P(x2,Tx, x2,Rx), · · · ,P(xN ,Tx, xN ,Rx)
)T
. In

the distributed situation, this task can be achieved by the

following procedure.
1) The communication distance di = ||xi,Tx − xi,Rx|| and

the horizontal angle θi = 6 (xi,Tx, xi,Rx) are calculated

from y.
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2) The path loss is modeled. If OLS is applied, the path

loss is estimated from di and P(xi,Tx, xi,Rx). Note that

we assume the path loss as P(d) = PC − 10ηlog10(d +

1) because the communication distance often falls

into zero in this grid-based architecture. If FFNN is

applied, the path loss is learned from xi,Tx, di, θi, and

P(xi,Tx, xi,Rx).

3) ShadowingW (xi,Tx, xi,Rx) is extracted from y.

4) A semivariogram is analyzed from W (xi,Tx, xi,Rx).

Note that the semivariogram is expressed as the func-

tion of d(i,j),Tx + d(i,j),Rx; thus, the semivariogram can

be derived as

γ (d(i,j),Tx + d(i,j),Rx)

=
1

2
Var[Ŵ (xi,Tx, xi,Rx) − Ŵ (xj,Tx, xj,Rx)]. (19)

5) Ordinary Kriging is applied. Because the semivari-

ogram is defined as the function of d(i,j),Tx + d(i,j),Rx,

the smaller this value, the larger the weight factor in

Kriging. In this section, Kriging uses only datasets that

satisfy d(i,0),Tx + d(i,0),Rx ≤ 100 [m].

C. MEASUREMENT CAMPAIGN AND PREPROCESSING

To confirm the performance of NNRK in the distributed

situation, we use the dataset that we measured using a V2V

communication system in [29].

In this experiment, we measured the received signal power

of the communication packet of the Dedicated Short Range

Communications (DSRC), the current standard for Intelligent

Transport Systems (ITS), with three vehicles. Each vehicle

exploits an onboard unit (OBU: MK5 OBU, Cohda Wire-

less), and these run while communicating with each other.

This OBU broadcasts 100 bytes and 400 bytes of packets

including its own location at a rate of 200 packets per second.

The received signal power related to the transmitter/receiver

locations is recoded in the local storage; these data had been

uploaded to the database implemented by MySQL. We per-

formed the experiment at California Partners for Advanced

Transportation Technology (PATH), Richmond, CA, USA,

over two days. The detailed parameters of OBU are listed

in Table 2.

TABLE 2. Parameters of OBU.

Each OBU repeatedly transmits packets with different

modulation formats and different packet lengths at a rate

of 200 packets per second. Additionally, each OBU receives

the packets transmitted by the other vehicles and stores com-

munication logs. The log includes the packet ID, GPS infor-

mation of both transmitter/receiver locations, received signal

strength indicator (RSSI), and noise level of each antenna.

FIGURE 11. Measurement environment (acquired from Google Earth).

The test route is shown in Fig. 11. We chose two test fields

named Loop 1 and Loop 2. The three vehicles run the outer

circular road of each loop. One vehicle runs the loop in the

clockwise direction, and the other two vehicles run the loop

in the counterclockwise direction. Here, Loop 1 consists of

many buildings; contrastingly, there are only a few buildings

in Loop 2. Thus, these routes can demonstrate typical V2V

communication environments that contain both line-of-site

(LOS) and non-line-of-site (NLOS) conditions. We obtained

approximately 15 000 000 instantaneous datasets in 4 h in

each loop. Using these datasets, we constructed the average

received signal power maps related to different transmission

locations with 5-m grids. Note that the dataset for the per-

formance evaluation was filtered so that the communication

distance is within 100 m to remove the effect of the noise

floor. The number of datasets after this filtering is 16 322.

D. RESULT

We perform a cross-validation-based evaluation that fol-

lows the same procedure in Sect. IV-B. Before showing

the detailed performance, we plot an example of the the-

oretical semivariogram in Fig. 12. This figure was created

from 1024 randomly selected datasets, and both OLS and

FFNN use the same datasets. The semivariogram means
1
2
Var[Ŵ (xi,Tx, xi,Rx) − Ŵ (xj,Tx, xj,Rx)], and Kriging assigns

a large ωi to the dataset that has a small semivariogram. In

this figure, FFNN-based path loss modeling suppresses the

semivariogram. This means that the FFNN allows Kriging to

utilize data that is more distant in the interpolation. Fig. 13

shows CDFs of the RMSE where N = 1024. Unlike the eval-

uation in the situation of a fixed transmitter, the NNRK signif-

icantly improves the RMSE. Additionally, the 90-percentile

RMSE is shown in Fig. 14. This tendency can be confirmed

regardless of N .
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FIGURE 12. Example of semivariogram modeling in distributed situation.
FFNN-based regression can suppress semivariogram of shadowing; this
means that FFNN allows Kriging to utilize more distant data in
interpolation.

FIGURE 13. CDFs of RMSE over distributed situation. In this situation,
FFNN-based path loss modeling significantly improves the accuracy of
Kriging.

FIGURE 14. Ninetieth-percentile RMSE over distributed situation.

To clarify the effect of communication distance, we plot

the RMSE vs. communication distance where N = 1024

in Fig. 15. In this evaluation, 100 grids are randomly selected

from the datasets except the learning datasets, and each

error is calculated in dB. After these procedures are iterated

FIGURE 15. Effects of communication distance on RMSE where N = 1024.
Even in a distributed environment, FFNN helps Kriging as communication
distance is shorter.

1000 times, the error values are classified according to the

communication distance, and each RMSE is calculated. It can

be seen that FFNN improves the accuracy of Kriging as the

communication distance is closer. In many distributed wire-

less systems, the communication distance is within hundreds

of meters and the path loss is too complicated when compared

with the situation of a fixed transmitter. Such a distributed

network will be an application of FFNN-based path loss

modeling.

VI. CONCLUSION

This paper evaluated the performance of NNRK in radio

environment mapping. Specifically, we focused on whether

FFNN-based path loss modeling improves the accuracy of

radio environment mapping. The main novel knowledge

obtained through this work is as follows:

• The effects of path loss modeling strongly depend on

the distance between the transmitter and the estimated

location. As the communication distance decreases,

the influence of errors in path loss modeling increases.

• In a large-scale system, OLS with Kriging achieves an

almost equal performance of NNRK, although FFNN

outperforms OLS in path loss modeling. We demon-

strated this fact with a dataset measured over TV bands.

• In distributed wireless networks, NNRK significantly

improves the accuracy because such a system suffers

from too-complex path loss and the communication dis-

tance is usually short. This was verified via the V2V

system.

The communication distance and the complexity of path loss

are useful criteria when deciding whether to adopt FFNN.
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