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Abstract—In this paper, a downlink single-cell non-orthogonal
multiple access (NOMA) network with uniformly deployed users
is considered and an analytical framework to evaluate its perfor-
mance is developed. Particularly, the performance of NOMA is
studied by assuming two types of partial channel state informa-
tion (CSI). For the first one, which is based on imperfect CSI, we
present a simple closed-form approximation for the outage proba-
bility and the average sum rate, as well as their high signal-to-noise
ratio (SNR) expressions. For the second type of CSI, which is based
on second order statistics (SOS), we derive a closed-form expression
for the outage probability and an approximate expression for the
average sum rate for the special case two users. For the addressed
scenario with the two types of partial CSI, the results demon-
strate that NOMA can achieve superior performance compared
to the traditional orthogonal multiple access (OMA). Moreover,
SOS-based NOMA always achieves better performance than that
with imperfect CSI, while it can achieve similar performance to
the NOMA with perfect CSI at the low SNR region. The pro-
vided numerical results confirm that the derived expressions for
the outage probability and the average sum rate match well with
the Monte Carlo simulations.

Index Terms—Non-orthogonal multiple access, imperfect
channel state information, second order statistics, uniform
distribution.

I. INTRODUCTION

N ON-ORTHOGONAL multiple access (NOMA) has been

recognized as a promising candidate for the fifth gen-

eration (5G) wireless networks, since NOMA can be easily

combined with multi-user multiple-input multiple-output (MU-

MIMO) techniques, heterogeneous networks, small cells and

networks with high mobility for significantly enhancing the
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system performance [1], [2]. On the other hand, downlink

NOMA has been recently proposed to 3rd generation part-

nership project (3GPP)–long term evolution–advanced (LTE-

A) systems [3], in order to improve the spectral efficiency in the

lower frequency bands. The key concept behind NOMA is that

users’ signals are superimposed at the base station (BS) with

different power allocation coefficients, and successive interfer-

ence cancellation (SIC) is applied at the user with better channel

condition, in order to remove the other users’ signals before

detecting its own signal [4]. Note that the concept of NOMA

is a special case of the information theoretic concept of super-

position coding. Moreover, it is worth pointing out that the key

feature of NOMA is to take user fairness into consideration. For

example, compared to conventional water-filling power alloca-

tion, NOMA allocates more power to users with worse channel

conditions than those with better channel conditions, in order to

realize an improved trade-off between system throughput and

user fairness. As a result, all users share the same time slot,

frequency and spreading code, which leads to an increase in

spectral efficiency.

A. Literature and Motivation

In [5], a coordinated superposition coding scheme was pre-

sented, which can improve the cell-edge users’ rate, without

sacrificing the rate of the users who are close to the BS.

Recently, the concept of cooperative NOMA has been pro-

posed in [6], where users with better channel conditions need

to decode the signals on behalf of others, and they can be

used as relays to help the BS to communicate with users with

poor channel conditions. In [7], the uplink communication of

NOMA systems has been considered, while the impact of user

pairing in NOMA systems over small-scale fading, with fixed

and cognitive radio inspired power allocation, has been investi-

gated in [8]. For the addressed single-antenna downlink NOMA

scenario, superposition coding and dirty paper coding yield

the same performance, and both achieve the capacity of the

broadcasting channel [9]. As shown in [10], the use of NOMA

can further improve the spectral efficiency of MIMO systems,

e.g., users in one cell are divided into multiple groups, where

MIMO technologies can be used to cancel inter-group interfer-

ence and NOMA can be implemented among the users within

one group. Furthermore, in [11], the outage probability and the

average sum rate of downlink single-cell NOMA systems have

been studied, by assuming that randomly deployed users are

independently and identically distributed (i.i.d.) inside a disk,
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i.e. the distribution of users follows a general binomial point

process (BPP) [12]. Note that such an assumption it is true in

real-world wireless networks [13], [14].

Recently, optimal power allocation based on average channel

state information (CSI) has been considered in [15], by using

the outage probability as the criterion, whereas the ergodic

capacity of MIMO-NOMA systems with second order statis-

tical (SOS) CSI at the transmitter has been studied in [16].

However, [15] and [16] focused on the case that user loca-

tions are fixed, i.e., distances and path loss are deterministic.

Therefore, most of the existing works in the open literature

about NOMA assume perfect knowledge of CSI. However, in

practice, the assumption of perfect CSI at the transmitter might

not be valid, since in order to obtain perfect CSI a significant

system overhead will be consumed, especially in wireless net-

work with a large number of users. Furthermore, towards 5G,

there will be a growing demand for mobile services, such as

serving users in high-speed trains, where due to the rapidly

changing channel, perfect CSI at the transmitter is challeng-

ing to be achieved. Motivated by these practical constraints, we

focus on the use of partial CSI, which is important to reduce

the system complexity and improve the spectral efficiency of

NOMA. Furthermore, we compare the results of NOMA with

partial to the case with perfect CSI, which could help the system

designers of NOMA.

In this paper, we consider a downlink single-cell NOMA net-

work, where the users are uniformly distributed in a disk and

the BS is located at the center. The impact of two types of par-

tial CSI, named imperfect CSI and SOS, on the performance of

NOMA is investigated. In particular, the two different types of

partial CSI are defined as follows.

• Imperfect CSI: We assume the channel estimation error

model presented in [17], [18], where the BS and the users

have an estimate of the channel and a priori knowledge of

the variance of the estimation error.

• SOS: Only the distances between the BS and the users are

known. In a single-tier network, the distance varies much

slower than the channel in small-scale fading conditions.

Therefore, it is more realistic to assume the knowledge of

the SOS of the wireless channels.

B. Contribution

The contribution of this paper is three-fold:

1) We investigate the impact of imperfect CSI on the per-

formance of the NOMA network. More specifically, we focus

on the minimum mean square error (MMSE) channel estima-

tion error model. In such a scenario, a simple closed-form

approximation for the outage probability is derived. Also, exact

closed-form expressions for the outage probability are provided

for the cases where the path loss exponent is two, as well for the

NOMA systems based on perfect CSI with arbitrary path loss

exponent. In addition, we study the high signal-to-noise ratio

(SNR) outage behaviour and show that all users have a diversity

order of zero, since the channel estimation error acts as a source

of interference in the addressed system. However, for the spe-

cial case with perfect CSI, the k-th best user achieves a diversity

gain of M − k + 1, where M is the number of users, which

is superior to traditional orthogonal multiple access (OMA).

Furthermore, an approximation of the average sum rate is also

derived, and we use these analytical results to compare with

the traditional OMA, which demonstrates that the average sum

rate of NOMA systems can always outperform conventional

OMA.

2) We derive an exact expression for outage probability in

the case that the SOS of the channels is known. Since the chan-

nels are sorted accordingly by distances, order statistics of the

distance is applied to yield closed-form expressions for the out-

age probability [19]. In addition, we find that all users in this

scheme achieve a diversity gain of one, which is the same as

in conventional OMA when CSI is also unknown. However,

the former’s outage performance is much better than the lat-

ter one for all users, even when the channels of OMA are also

ordered by SOS. Moreover, an approximation for the average

sum rate in the two users case is also obtained by using the

Gauss-Chebyshev integration [20]. With the sum rate as crite-

rion, SOS based NOMA is still superior to conventional OMA,

which is consistent to the comparison based on the outage

performance.

3) We present a comparison between the two different

NOMA schemes, based on imperfect CSI and SOS, respec-

tively. The presented analytical and numerical results demon-

strate that SOS based NOMA always achieves better perfor-

mance than that with imperfect CSI. Furthermore, the perfor-

mance of the SOS based NOMA is similar to that with perfect

CSI at low SNRs. This can be explained because large-scale

path loss is dominant for most of the wireless communication

scenarios.

C. Structure

The rest of the paper is organized as follows. Section II

describes the system model. Section III studies the outage per-

formance and the average sum rate of NOMA with imperfect

CSI, while Section IV investigates the performance of NOMA

systems based on SOS. In Section V, numerical results are

presented and Monte Carlo simulations are applied to ver-

ify the accuracy of the proposed analysis. Finally, Section VI

concludes the paper.

II. SYSTEM MODEL

We consider a single-cell downlink wireless network in

which the locations of M users are uniformly distributed in a

disc with radius D, denoted by D, and the BS is located at

the center of the disc. It is assumed that all users are served

by the same orthogonal channel use, which can be a time

slot, a spreading code or a frequency channel. Furthermore,

assume that all the users and the BS are equipped with a single

antenna. The channel between user Ui and the BS is denoted by

ri = hi / d
α
2

i , where hi ∼ CN(0, 1) with CN(a, b) is the com-

plexed Gaussian distribution with mean a and variance b, di is

the distance between the BS and the user Ui , and α is the path

loss exponent. It is well known that the optimal system perfor-

mance can be achieved with perfect CSI. However, to obtain

instantaneous perfect CSI, the backhaul signalling overhead
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increases significantly, which, consequently, will then increase

the system complexity. Based on this fact, in this paper we con-

sider two types of practical channel models: imperfect CSI and

SOS. The two different NOMA systems based on these models

are described as follows.

A. NOMA Based on Imperfect CSI

In this paper, we assumed that the feedback to the trans-

mitter is instantaneous and error free, which means that CSI

is also achievable at the transmitter whatever CSI the receiver

has. Note that this assumption has been commonly used in the

literature [17], [18], [21]–[23]. Let the estimate for the chan-

nel rk be r̂k . By assuming MMSE estimation error, it holds that

[21]–[23]

rk = r̂k + ǫ, (1)

where ǫ is the channel estimation error, which follows a

complex Gaussian distribution with mean 0 and variance σ 2
ǫ ,

denoted by ǫ ∼ CN(0, σ 2
ǫ ). The channel estimate r̂k is thus

zero-mean complex Gaussian with variance σ 2
r̂k

= d−α
k − σ 2

ǫ

[21]–[23]. Note that the parameter σ 2
ǫ indicates the quality of

channel estimation.

Without loss of generality, assume that the estimated channel

gain in the cell are sorted as |r̂1|
2 ≥ |r̂2|

2 ≥ · · · ≥ |r̂M |2, and

denote the corresponding users as U1, . . . , UM . According to

NOMA scheme, the signal sl (l = 1, 2, · · · , M), sent by the BS

to the user Ul (l = 1, 2, · · · , M) is superimposed as

x =

M
∑

l=1

√

αl Psl ,

where P is the transmission power, and αl (l = 1, 2, · · · , M)

is the power allocation factor, with α1 < α2 < · · · < αM and
∑M

l=1 αl = 1. Therefore the received signal at user Uk in the

cell D can be formulated as

yk = r̂k

M
∑

l=1

√

αl Psl + ǫ

M
∑

l=1

√

αl Psl + wk, (2)

where wk is zero-mean additive white Gaussian noise

(AWGN) with variance σ 2.

Based on (2), SIC can be employed at Uk . In other words, Uk

needs to detect firstly the message sl to the user Ul (M ≥ l ≥
k + 1), before decoding its own signal. For example, the data

rate for Uk to decode the message to the user UM is RM→k =

log2

(

1+ αM |r̂k |
2

|r̂k |2
∑M−1

j=1 α j+σ 2
ǫ + 1

ρ

)

. If Uk can decode this message

successfully, i.e., RM→k ≥ R∗
M , where R∗

M denotes the targeted

rate of user UM , then the signal sM can be removed at Uk . After

that, Uk can detect the signal from Ul (M > l ≥ k + 1), step

by step, until Uk can correctly decode the signal sk+1, for user

Uk+1. The general rate expression for Uk to detect the signal

Ul , M ≥ l ≥ k + 1 is given by

Rl→k = log2

(

1+
αl |r̂k |

2

|r̂k |2
∑l−1

j=1 α j +σ 2
ǫ + 1

ρ

)

. (3)

Now, assuming that the user Uk decodes always correctly the

message of user Ul , k + 1 ≤ l ≤ M , the rate of user Uk can be

expressed as

Rk = log2

(

1+
αk |r̂k |

2

|r̂k |2ak−1+σ 2
ǫ + 1

ρ

)

, k = M, . . . , 3, 2, (4)

where ak−1 =
∑k−1

l=1 αl , ρ = P

σ 2 is the transmit SNR, and R1 =

log2

(

1 + α1|r̂1|
2

σ 2
ǫ + 1

ρ

)

.

B. NOMA Based on SOS

Let the k-th nearest user to the BS be indexed as Uk (k =
1, 2, · · · , M), and the corresponding distance is denoted as

dk . Here we assume that the SOS is known, and the dis-

tances are sorted as follows: d1 ≤ d2 ≤ · · · ≤ dM . A composite

channel model is assumed, defined by small-scale Rayleigh

fading and large-scale path loss. Note that the channel gain

is |rk |
2 = |hk |

2d−α
k , where X = d−α

k is a heavy tail random

variable (RV) such that

Pr{X > x} = x
−2
α /R2, (5)

since the users are uniformly distributed in the disk. Suppose

that a heavy tail RV is multiplied by a RV, Y = |hk |
2, with finite

moments, i.e., E{Y
2
α } < ∞. Then

Pr{XY > z} = E
{

Y
2
α

} z
−2
α

R2
(1 + o(1)) , z → ∞. (6)

Compare (5) to (6), we can observe that the small-scale fading,

Y , only weekly changes the large-scale fading X [24]. This is

the motivation why we order the users based on their distances.

It is important to point out that the composite channel gains,

rk , are not necessarily ordered, i.e., r j might be larger than rk

for j > k. Based on the NOMA protocol, the received signal at

user Uk in the cell D is given as

yk = rk

M
∑

l=1

√

αl Psl + wk . (7)

Similar to NOMA with imperfect CSI, denote R
′

l→k as the

rate of the k-th nearest user Uk to detect the message from the

the l-th nearest user Ul . Assume that the Uk can decode the

signal from Ul for k < l successfully, i.e., Pr
{

R
′

l→k ≥ R∗
l

}

=

1, where

R
′

l→k = log2

(

1+
αl |rk |

2

|rk |2
∑l−1

j=1 α j + 1
ρ

)

. (8)

If Pr
{

R
′

l→k ≥ R∗
l

}

= 1 holds for all k < l, then the rate of the

k-th nearest user Uk can be expressed as

Rk = log2

(

1+
αk |rk |

2

|rk |2ak−1 + 1
ρ

)

, k = M, . . . , 3, 2, (9)

and R1 = log2

(

1 + ρα1|r1|
2
)

.
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III. PERFORMANCE OF NOMA WITH IMPERFECT CSI

In this section, we study the outage performance and the aver-

age sum rate of NOMA systems with imperfect CSI. Outage

probability is a measure of the event that the data rate supported

by instantaneous channel realizations is less than a targeted

user rate. Therefore, it is an important performance metric of

the quality of service (QoS) in delay-sensitive communica-

tions, where the information is sent by the transmitter at a fixed

rate, and the network throughput is defined as the coverage

probability times the fixed rate.

Detection error events can be categorized into two cases:

The first corresponds to an error detection when outage does

not occur, and the second to an error detection when outage

occurs. By using optimal coding with infinite length, the proba-

bility of the former approaches zero, and the latter is dominant

[25]. This is another motivation to use in this paper the outage

probability for performance evaluation process. On the other

hand, the average data rate can be used for the case where

the transmitted data rates are determined adaptively, accord-

ing to the users’ channel conditions. This case corresponds to

delay-tolerant communications. Note that to obtain the outage

performance and the average sum capacity, we assume optimal

channel coding and modulation. The design of practical coding

and modulation schemes is a promising future direction, but it

is beyond the scope of this paper.

A. Outage Probability

The following Theorem provides an approximate expression

for the outage probability of NOMA systems for the whole

range of SNR and arbitrary path loss factor, with channel

estimation error.

Theorem 1: The outage probability of the k-th user achieved

by the NOMA scheme, assuming imperfect CSI, can be approx-

imated as

Pk
out,I ≈ k

(
M
k

)
k−1
∑

r=0

(
k−1

r

)

(−1)r

r +M−k+1

(

1 −
π

nD

n
∑

i=1

xi

×

∣
∣
∣
∣
sin

2i − 1

2n
π

∣
∣
∣
∣
exp

(
−
η(ρσ 2

ǫ + 1)

xi
−α−σ 2

ǫ

)
)r+M−k+1

, (10)

where xi = D
2
(1 + cos 2i−1

2n
π), n is an approximation param-

eter due to the use of the Gauss-Chebyshev integration, 
η =
max

k+1≤i≤M
ηi , ηi = εi

ρ

(

αi −εi

∑i−1
l=1 αl

) , αi > εi

∑i−1
l=1 αl , and εi =

2R∗
i − 1, R∗

i denotes targeted date rate of user Ui .

Proof: See Appendix A. �

Note that n is an important parameter in (10), which affects

the accuracy of the analytical results. As shown by the simula-

tions provided in Section V, Gaussian-Chebyshev integration

can achieve an accurate approximation even with a small

number of n. In addition, the constraint, αi > εi

∑i−1
l=1 αl , is

required in (10). However, because of the strong co-channel

interference, a NOMA system is interference limited, i.e.,

the achievable data rates for some users will be quite small,

which is applicable to many applications related to the Internet

of Things (IoT). For example, some of the users, such as

healthcare sensors or smart meters, need to be served only with

low date rates. In this case, NOMA can be applied to serve

these users at the same time, and thus to significantly improve

the spectral efficiency. Note that if the users’ power allocation

coefficients are optimized according to instantaneous channel

conditions, the performance can be further enhanced [15], but

this is also beyond the scope of this paper.

In addition, the outage performance achieved by NOMA with

imperfect CSI can be evaluated through Theorem 1 without

carrying out Monte Carlo simulations. However, although (10)

is consisting of elementary functions, it can not be used to

investigate the diversity gain. Motivated by this, the high SNR

approximation of the outage probability in (10) is provided in

the following Proposition.

Proposition 1: In the high SNR region, i.e., ρ → ∞, then


η → 0, the outage probability achieved by NOMA with imper-

fect CSI, i.e., σ 2
ǫ �= 0, can be approximated as

P
k,∞
out,I ≈ k

(
M
k

)
k−1
∑

r=0

(
k−1

r

)

(−1)r

r +M−k+1

(

1 −
π

nD

n
∑

i=1

xi

×

∣
∣
∣
∣
sin

2i − 1

2n
π

∣
∣
∣
∣
exp

(

−
cσ 2
ǫ

x−α
i − σ 2

ǫ

))r+M−k+1

, (11)

where 
c = max
k+1≤i≤M

εi
(

αi − εi

∑i−1
l=1 αl

) .

Proof: When 
η → 0 and σ 2
ǫ �= 0, it holds that

exp

(

−
η(ρσ 2
ǫ + 1)

x−α
i − σ 2

ǫ

)

≈ exp

(

−
cσ 2
ǫ

x−α
i − σ 2

ǫ

)

. (12)

Substituting (12) into (10), (11) is derived. �

Proposition 1 demonstrates that with imperfect CSI, the users

in NOMA systems achieve no diversity gain, which is due to

the fact that the channel estimation error acts as an interference

source and significantly affects the outage performance.

For the special case, where the path loss exponent is,

α = 2, we can obtain a closed-form expression for the outage

probability as follows.

Corollary 1: When α = 2, the outage probability of the k-th

user is given by

P
k,α=2
out,I = k

(
M
k

)
k−1
∑

r=0

(
k−1

r

)

(−1)r

r +M−k+1

⎡

⎢
⎣1 +

exp
(

−

η(ρσ 2

ǫ +1)

σ 2
ǫ

)

D2σ 2
ǫ

×

(

exp

(

η(ρσ 2

ǫ + 1)

σ 2
ǫ

)

−exp

(

η(ρσ 2

ǫ + 1)

σ 2
ǫ (1 − σ 2

ǫ D2)

)

× (1 − σ 2
ǫ D2)+


η(ρσ 2
ǫ + 1)

σ 2
ǫ

Ei

(

η(ρσ 2

ǫ + 1)

σ 2
ǫ (1 − σ 2

ǫ D2)

)

−

η(ρσ 2

ǫ + 1)

σ 2
ǫ

Ei

(

η(ρσ 2

ǫ + 1)

σ 2
ǫ

))

⎤

⎥
⎦

r+M−k+1

,

(13)

where Ei(x) is the exponential integral [26].
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Proof: When α = 2, let t = zx2

1−σ 2
ǫ x2 − z

σ 2
ǫ

, then the inte-

gral I in (34) can be rewritten as

I =

∫ D

0

x exp

(
−z

x−2 − σ 2
ǫ

)

dx

=
ze

− z

σ2
ǫ

2σ 4
ǫ

∫ − z

σ2
ǫ (1−σ2

ǫ D2)

− z

σ2
ǫ

e−t

t2
dt

=
e
− z

σ2
ǫ

2σ 2
ǫ

(

(1 − σ 2
ǫ D2) exp

(
z

σ 2
ǫ (1 − σ 2

ǫ D2)

)

− exp

(
z

σ 2
ǫ

))

−
ze

− z

σ2
ǫ

2σ 4
ǫ

∫ − z

σ2
ǫ (1−σ2

ǫ D2)

− z

σ2
ǫ

e−t

t
dt

︸ ︷︷ ︸

U

. (14)

Integral U can be evaluated as [26]

U =

∫ ∞

− z

σ2
ǫ

e−t

t
dt −

∫ ∞

− z

σ2
ǫ (1−σ2

ǫ D2)

e−t

t
dt

= Ei

(
z

σ 2
ǫ (1 − σ 2

ǫ D2)

)

− Ei

(
z

σ 2
ǫ

)

. (15)

Substituting (14), (15) and (34) into (32), the proof is com-

pleted. �

Note that the case with perfect CSI is also worth studying,

since it provides a performance upper bound for that with par-

tial CSI, where the loss due to imperfect CSI can be clearly

demonstrated. If perfect CSI is available, a closed-form expres-

sion for the outage probability can be derived in the following

Corollary.

Corollary 2: When σ 2
ǫ = 0, i.e., with perfect CSI, the outage

probability of the k-th best user in NOMA systems is given by

P
k,σ 2

ε =0

out,I =

k−1
∑

r=0

k
(

M
k

)(
k−1
r

)

(−1)r

r +M−k+1

×

(

1 −
2

αD2 
η
2
α

γ

(
2

α
, 
ηDα

)
)r+M−k+1

, (16)

where γ (a, b) is a lower incomplete gamma function [26].

Proof: When σ 2
ε = 0,

F|rk |2
(z) = 1 −

2

D2

∫ D

0

xe−zxα

dx

= 1 −
2

αD2z
2
α

γ (
2

α
, zDα). (17)

Using (17) and (32) in Appendix A, the proof is completed. �

Note that the outage performance of NOMA with perfect CSI

has been already studied in [11], where an exact closed-form

analytical result was presented, based on high SNR approxi-

mation. Compared to this result, the expression in (17) is more

accurate for the whole range of SNR. This is because we use

the exact expression for the cumulative distribution function

(CDF) of the unordered composite channel gain, instead of its

approximation, which is used in [11].

Proposition 2: In the high SNR region, i.e., ρ → ∞, then


η → 0, the outage probability achieved by NOMA with perfect

CSI, i.e., σ 2
ǫ = 0, can be approximated as

P
k,∞,σ 2

ǫ =0

out,I ≈ k
(

M
k

)
k−1
∑

r=0

(
k−1

r

)

(−1)r

r + M − k + 1

(
2Dα 
η

α + 2

)r+M−k+1

.

(18)

Proof: When 
η → 0 and σ 2
ǫ = 0, the second term in (16)

can be rewritten as [26]

2

αD2z
2
α

γ (
2

α
, 
ηDα) = 1 +

2

α

∞
∑

q=1

(−1)q 
ηq Dαq

q!( 2
α

+ q)
. (19)

Substituting (19) into (16), the proof is completed. �

Proposition 2 can be used to study the diversity gain, since

(18) can be expressed as

P
k,∞,σ 2

ǫ =0

out,I ≈ Aρ−(M−k+1), (20)

where A is a constant and the k-th best user achieves a

diversity gain of M − k + 1. Note that the users in NOMA

systems achieve better diversity gain than those in traditional

opportunistic OMA, with diversity order of one. This hap-

pens because the bandwidth resources in NOMA are shared

by all users at the same time slot, which enhances the spectral

efficiency and users fairness.

B. Average Sum Rate

In this subsection, we turn our attention to the average

sum rate of NOMA systems with imperfect CSI. The Gauss-

Chebyshev integration technique is applied to achieve a high

level of accuracy for the whole range of SNR and arbitrary path

loss factor.

Theorem 2: An approximation to the average sum rate

of the NOMA protocol with imperfect CSI, is given by

(21) shown at the bottom of the next page, where the sum-

mation is taken over all sequences of nonnegative integer

indices t1 through tn , such that the sum of all ti is j , h(z) =

exp

(

1+ρσ 2
ǫ

ρz

∑n
i=1

ti
x−α

i −σ 2
ǫ

)

E1

(

1+ρσ 2
ǫ

ρz

∑n
i=1

ti
x−α

i −σ 2
ǫ

)

, and

z = ak−1, ak .

Proof: See Appendix B. �

Compared to Monte Carlo simulations, the approximation

for the average sum rate provided in Theorem 2 can offer a

simpler way to evaluate the average sum rate in NOMA sys-

tems. The special case with perfect CSI, has been considered

in [11], but the offered closed-form expression is accurate at

only high SNRs. The reason is that firstly the Gauss-Chebyshev

integration was applied to approximate the probability distribu-

tion function (PDF) of the unordered channel gain, and then

the average sum rate was obtained at high SNRs. On the other

hand, (21) is accurate even in low and moderate SNRs. This

is because we obtain the exact expression for the PDF of the

unordered channel gain, and then the Gaussian-Chebyshev inte-

gration is used to approximate the average sum rate, which

yields much more accurate results.
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For the special case of NOMA with perfect CSI, i.e., σ 2
ǫ = 0,

and path loss exponent, α = 2, the closed-form expression for

the average sum rate can be obtained in the following Corollary.

Corollary 3: A closed-form expression for the average sum

rate of NOMA with perfect CSI and path loss factor α = 2 is

given by (22) shown at the bottom of the page, where C is the

Euler’s constant, g(x) =
∑ j

p=1

(
j
p

)

(−1)p+ j e
pD2

ρx E1

(
pD2

ρx

)

+

∑ j

q=1

∑ j

p=1

(
j
p

)

(−1) j−q+p (− pD2

ρx
)q

(q−1)!
ln
(

pD2

ρx

)

, x = ak, ak−1.

Proof: See Appendix C. �

IV. PERFORMANCE OF SOS IN NOMA SYSTEMS

In this section, the outage probability and the average sum

rate of the NOMA systems with only SOS are investigated as

follows.

A. Outage Probability

A closed-form expression for the outage performance for dif-

ferent users in NOMA systems, is presented in the following

Theorem.

Theorem 3: The outage probability of the k-th nearest user

in NOMA protocol, with CSI based on SOS is given by

Pk
out,I I = 1 − 2k

(
M
k

)
M−k
∑

j=0

(
M−k

j

) (−1) j

D2(k+ j)

×

η− 2(k+ j)

α

α
γ (

2(k + j)

α
, 
ηDα). (23)

Proof: See Appendix D. �

The diversity order of the users in NOMA systems based on

SOS is given in the following Proposition.

Proposition 3: The diversity gain of the k-th nearest user in

NOMA systems based on SOS is given by

d = − lim
ρ→∞

log Pk
out,I I

log ρ
= 1. (24)

Rave,I ≈ −

M
∑

k=1

k
(

M
k

)

ln 2

k−1
∑

r=0

(
k−1

r

)

(−1)r

r + k

r+M−k+1
∑

j=1

(
r+M−k+1

j

)
(

−π

nD

) j ∑

t1+t2+···+tn=j

j!

t1!t2! · · · tn!

n
∏

i=1

(∣
∣
∣
∣
sin

2i − 1

2n
π

∣
∣
∣
∣

xi

)ti

h(ak)

+

M
∑

k=2

k
(

M
k

)

ln 2

k−1
∑

r=0

(
k−1

r

)

(−1)r

r + k

r+M−k+1
∑

j=1

(
r+M−k+1

j

)
(

−π

nD

) j ∑

t1+t2+···+tn=j

j!

t1!t2! · · · tn!

n
∏

i=1

(∣
∣
∣
∣
sin

2i − 1

2n
π

∣
∣
∣
∣

xi

)ti

h(ak−1). (21)

R
σ 2

ǫ =0,α=2

ave,I = −

M
∑

k=1

ρak

ln 2

k−1
∑

r=0

k
(

M
k

)(
k−1
r

)

(−1)r

r +M−k+1

r+M−k+1
∑

j=1

(
r+M−k+1

j

) (−1) j (ρak)
j−1

D2 j

(

(−1) j+1C + g(ak)

)

+

M
∑

k=2

ρak−1

ln 2

k−1
∑

r=0

k
(

M
k

)(
k−1
r

)

(−1)r

r +M−k+1

r+M−k+1
∑

j=1

(
r+M−k+1

j

) (−1) j (ρak−1)
j−1

D2 j

(

(−1) j+1C + g(ak−1)

)

. (22)

Proof: In the high SNR region, i.e., ρ → ∞, and 
η → 0,

the lower incomplete gamma function in (23) can be written as

[26]

γ (
2(k + j)

α
, 
ηDα) =

∞
∑

q=0

(−1)q(
ηDα)
2(k+ j)

α
+q

q!(
2(k+ j)

α
+ q)

. (25)

From the proposition of Fdk
(x) in (51),

lim
x→D

Fdk
(x) = k

(
M
k

)
M−k
∑

j=0

(
M−k

j

) (−1) j

k + j
= 1. (26)

Substituting (25) and (26) into (23), the proof is completed. �

Note that all users in the above NOMA scheme experi-

ence diversity gain equal to one, since small-scale fading will

severely deteriorate the outage performance. Similar asymp-

totic results have been recently obtained in [27] in the context

of uplink cloud radio access networks.

B. Average Sum Rate

As mentioned above the joint effect of small-scale fading and

large-scale propagation loss are assumed in the channel model.

However, in this subsection, the CSI is based on SOS, which

means that the channels are ordered by the distance. In this

case, we can not always guarantee that the joint channel gain

are dominated by distance [19]. For example, there are two

users U1 and U2 in the cell, with distances, d1 ≤ d2. The order

of the joint channel gain |r1|
2 and |r2|

2 has two possibilities:

|r1|
2 ≥ |r2|

2, and |r1|
2 < |r2|

2.

It is well known that the SIC depends on the order of the joint

channel gain, therefore the NOMA with CSI based on SOS can

not assure that a user can remove the signals from the users

whose distances are larger than himself with probability one.

In general, it seems that it is difficult to obtain a closed-form

expression for the average sum rate of NOMA systems, with

number of users larger than two. Therefore, we only focus to

the case of M = 2. In this case, the following approximation of

the average sum rate for the whole range of SNR is presented.

Theorem 4: An approximate average sum rate achieved

by the NOMA systems is given by (27), shown at the
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bottom of the next page, where τi =
(

1 + cos (2i−1)π
2n

)

,

xi = D
2
τi , x j = D

2

(

1 + cos
(2 j−1)π

2n

)

and n is an approxima-

tion parameter of the Gauss-Chebyshev integration, g1(y) =

ρyx−α+2
j

(

1+(
τi
2 )α

)

ln 2
exp

(

xα
j

(

1+(
τi
2 )α

)

ρy

)

E1

(

xα
j

(

1+(
τi
2 )α

)

ρy

)

, g2(y) =

ρy D2x−α
j

(

1+(
Dτi
2x j

)α

)

ln 2

exp

⎛

⎝

xα
j

(

1+(
Dτi
2x j

)α
)

ρy

⎞

⎠E1

⎛

⎝

xα
j

(

1+(
Dτi
2x j

)α
)

ρy

⎞

⎠, y = 1,

α1, α2.

Proof: See Appendix E. �

Note that if we do not use the Gauss-Chebychev integra-

tion to evaluate the average sum rate in Appendix E, the

final results of (27) contain double integrals, which will sig-

nificantly increase the computational complexity. When the

Gauss-Chebychev technique is applied, the approximated aver-

age sum rate in (27) only depends on the special function

exponential integral and the finite-sum of the Gauss-Chebychev

integration term. As it can be seen from Section V, a small

number of Gauss-Chebyshev integration approximation terms

n is used in (27) can match quite well with the Monte Carlo

simulations.

C. Outage Probability and Average Sum Rate in OMA Systems

In this subsection, we focus on the outage performance and

the average sum rate achieved by the OMA systems with partial

CSI. The opportunistic transmission scheme is also consid-

ered in the OMA systems, where the rate of Uk with imperfect

channel estimation is given by

Rk =
1

M
log2

(

1+
|r̂k |

2

σ 2
ǫ + 1

ρ

)

, k = 1, 2, . . . , M, (28)

and the rate of the k-th nearest user Uk with CSI based on SOS

is given by

Rk =
1

M
log2

(

1 + ρ|rk |
2
)

, k = 1, 2, . . . , M. (29)

Note that we can use (28) and (29) to obtain the outage prob-

ability and the average sum rate achieved by OMA. Then these

results can be used as benchmarks in order to compare with the

NOMA systems in the next Section.

V. NUMERICAL RESULTS AND SIMULATIONS

In this section, numerical results and Monte Carlo simula-

tions are provided to validate the analytical results presented in

Rave, II ≈
π2

n2 D3

n
∑

i=1

τi

∣
∣
∣
∣
sin

(2i − 1)π

2n

∣
∣
∣
∣

n
∑

j=1

x j

∣
∣
∣
∣
sin

(2 j − 1)π

2n

∣
∣
∣
∣
(g1(α1) + g1(α2) − g1(1) + g2(1) − g2(α1) − g2(α2)

+
(D2 − x2

j )ρα1x−α
j

ln 2
exp

(

xα
j

ρα1

)

E1

(

xα
j

ρα1

))

+
2π

nD3 ln 2

n
∑

i=1

∣
∣
∣
∣
sin

(2i − 1)π

2n

∣
∣
∣
∣

x3
i

(

exp

(
xα

i

ρ

)

E1

(
xα

i

ρ

)

− exp

(
xα

i

ρα1

)

E1

(
xα

i

ρα1

))

. (27)

Fig. 1. Outage performance of NOMA based on imperfect CSI with SN R =

30 d B, α = 3, and M = 2.

this paper. Particularly, the parameters used in the simulations

are set as follow. The disk radius is D = 10 m with the path loss

factor, α = 2, 3, 4, and the small-scale fading gain is Rayleigh

distributed, i.e., hi ∼ CN(0, 1). The channel estimation error

variance σ 2
ǫ is assumed to take values of 0.005 in Fig. 2, and

σ 2
ǫ = 0.0001, 0.0005, 0.0008 in Fig. 3 and 6, respectively. The

power allocation factors are αk = 2k−1
∑M

l=1(2
l−1)

, 1 ≤ k ≤ M , and

the number of Gauss-Chebyshev integral approximation terms

is n = 10. The Monte Carlo simulation results are averaged

over 105 independent trials.

In Fig. 1, the analytical results in (10) for the outage perfor-

mance with imperfect CSI in NOMA systems are shown as a

function of the channel estimation error variance σ 2
ǫ . As it can

be observed from Fig. 1, the outage performance deteriorates,

when increasing the error variance σ 2
ǫ , since higher channel

estimation error brings stronger interference. Furthermore, it is

worth pointing out that the approximated analytical results in

(10) match perfectly with Monte Carlo simulations. In addi-

tion, it can be observed from Fig. 1 that when choosing αi and

R∗
i incorrectly, the outage probability will be always 1, since

such a choice of the parameters cannot satisfy the condition

αi > εi

∑i−1
l=1 αl in Theorem 1.

Fig. 2 illustrates the impact of channel estimation error σ 2
ǫ

on the outage probability in NOMA systems. As observed from

Fig. 2, with imperfect CSI, the outage probability floor appears,

and NOMA achieves no diversity gain. This is because the

channel estimation error ǫ acts as a source of interference.

Furthermore, one can observe that NOMA with perfect CSI
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Fig. 2. Impact of σ 2
ǫ on outage probability, M = 2, the targeted rate R∗

1
=

R∗
2

= 0.5 bits/s/H z, α = 2.

Fig. 3. Averaged sum rate of NOMA based on imperfect CSI with α = 3.

achieves a diversity order of M − k + 1, while traditional OMA

with perfect CSI only achieves a diversity gain of one. In addi-

tion, we also compare the analytical results of the NOMA with

Fig. 4. Outage performance of NOMA based on SOS with two users.

Fig. 5. Average sum rate analytical results vs Monte Carlo simulations, M = 2.

perfect CSI to those obtained in [11]. As it can be seen from

Fig. 2, the approximated results from [11] are accurate only at

high SNRs while the analytical results in this paper are close to

the Monte Carlo simulations for the whole range of the SNR.
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Fig. .6 Comparison between the performance of NOMA with imperfect CSI

and SOS.

Fig. 3 shows the developed analytical results for the aver-

aged sum rate and compare them to Monte Carlo simulations, in

order to show the effect of the channel estimation error variance

to the system average sum rate. Fig. 3 demonstrates a perfect

match between Monte Carlo simulations and the approximated

results, for different channel estimation error variance σ 2
ǫ and

SNR, while the results in [11] only match with Monte Carlo

simulations at high SNRs, in the case of NOMA with per-

fect CSI. Furthermore, the average sum rate of the NOMA

protocol based on perfect CSI is superior to OMA scheme,

since all the users share the bandwidth resources in NOMA

systems at the same time slot. In addition, the worse the chan-

nel estimation error is, the poor the achievable average sum

rate.

In Fig. 4, we show the approximated analytical results for

the outage performance of the SOS based NOMA protocol,

by comparing them to the Monte Carlo simulations. It can be

observed from Fig. 4 (a) that both NOMA and conventional

OMA systems, in which the channels are ordered based on

SOS, achieve the same diversity gain, but the former achieves

better outage probability than the latter. Once again, the closed-

form analytical results in Theorem 3 match quite well with

Monte Carlo simulations. Fig. 4 (b) demonstrates that if the

parameters R∗
i and αi are not correctly selected, the users are

always failing to detect their own signals.

In Fig. 5, a comparison between the approximate analytical

results for the average sum rate in (27) and Monte Carlo simula-

tions is shown. It is evident that the average sum rate of NOMA

systems is higher than that of traditional OMA scheme, when

both of the channels are ordered based on SOS. Furthermore,

the average sum rate decreases when the path loss factor α

increases. The reason is that a larger path loss factor can dete-

riorate the receive SNR, which in turn decreases the average

rate. In addition, it is worth pointing out that the approximated

analytical results are close to Monte Carlo simulations.

In Fig. 6, we focus on the comparison among different

NOMA systems, where the channels are ordered by using

imperfect CSI and SOS. As expected, the performance for the

case NOMA with CSI based on SOS outperforms that with

imperfect CSI. This is because the large-scale path loss distance

is a useful information in the channel model, while the channel

estimation error, ǫ, is regarded as interference in the systems.

In addition, it is interesting to observe that the NOMA with

CSI based on SOS can achieve the same performance as the

case of perfect CSI at low SNRs. The reason is that the distance

dominates the small-scale fading at low SNRs.

VI. CONCLUSIONS

In this paper, we have studied the outage probability and

the average sum rate for two NOMA schemes, assuming par-

tial CSI. The performance of NOMA with CSI based on SOS

are close to that based on perfect CSI at low SNRs, while

NOMA with SOS always outperforms NOMA with imperfect

CSI. In addition, the analytical expressions demonstrated that

the two NOMA protocols can achieve better performance than

traditional OMA.

APPENDIX A

PROOF OF THEOREM 1

Note that the k-th user needs to detect all of the users, whose

the estimation channel of their gains are worse than its own.

The event that the k-th user successfully decodes the i-th user’s

message is given by

Êk,i =

{

αi |r̂k |
2

|r̂k |2
∑i−1

l=1 αl + σ 2
ǫ + 1

ρ

> εi

}

=

{

ρ

(

αi − εi

i−1
∑

l=1

αl

)

|r̂k |
2 > εi (ρσ 2

ǫ + 1)

}

=

⎧

⎨

⎩
|r̂k |

2 >
εi (ρσ 2

ǫ + 1)

ρ

(

αi − εi

∑i−1
l=1 αl

)

⎫

⎬

⎭
, (30)

where εi = 2R∗
i − 1, R∗

i denotes the targeted data rate of the

user Ui . The eq. (30) is conditioned on αi > εi

∑i−1
l=1 αl .

Therefore the outage probability of the k-th user can be

expressed as
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Pk
out,I = 1 − Pr

⎧

⎨

⎩

M
⋂

i=k+1

(

|r̂k |
2 > ηi (ρσ 2

ǫ + 1)

)

⎫

⎬

⎭

= 1 − Pr
{

|r̂k |
2 > 
η(ρσ 2

ǫ + 1)

}

= F|r̂k |2

(


η(ρσ 2
ǫ + 1)

)

, (31)

where ηi = εi

ρ

(

αi −εi

∑i−1
l=1 αl

) , and 
η = max
k+1≤i≤M

ηi .

Using order statistics [19], the cumulative distribution func-

tion (CDF) of the k-th estimation channel gain |r̂k |
2 can be

written as

F|r̂k |2
(x) = k

(
M
k

)
∫ F

|r̄k |2
(x)

0

t M−k(1 − t)k−1dt

= k
(

M
k

)
k−1
∑

r=0

(
k−1

r

)

(−1)r

∫ F
|r̄k |2

(x)

0

tr+M−kdt

= k
(

M
k

)
k−1
∑

r=0

(
k−1

r

)

(−1)r

(

F|r̄k |2
(x)
)r+M−k+1

r + M − k + 1
, (32)

where F|r̄k |2
(x) is the CDF of the unordered estimation channel

gain, which can be evaluated as follows: since the unordered

estimate of the channel rk = r̄k + ǫ, and r̄k ∼ CN(0, d−α
k −

σ 2
ǫ ). Therefore the conditional CDF F|r̄k |2| dk

(x |dk) is given by

F|r̄k |2| dk
(z|dk) = 1 − exp

(

−
z

d−α
k − σ 2

ǫ

)

. (33)

Then,

F|r̄k |2
(z) =

∫ D

0

F|r̄k |2| dk
(z|x) fdk

(x)dx

= 1 −
2

D2

∫ D

0

x exp

(
−z

x−α − σ 2
ǫ

)

dx

︸ ︷︷ ︸

I

. (34)

It is difficult to solve the above integral I , but we can use Gauss-

Chebyshev integration [20] to approximate it as

I ≈
π D

2n

n
∑

i=1

∣
∣
∣
∣
sin

2i − 1

2n
π

∣
∣
∣
∣

xi exp

(

−z

x−α
i − σ 2

ǫ

)

, (35)

where xi = D
2
(1 + cos 2i−1

2n
π), and n is the number of terms

included in the summation.

Recall that the outage probability of the k-th user is Pk
out =

F|r̂k |2
(


η(ρσ 2
ǫ + 1)

)

. Therefore substituting (35) and (34) into

(32), the proof is completed.

APPENDIX B

PROOF OF THEOREM 2

When R∗
i = Ri , and based on (4), the average sum rate of

NOMA with imperfect CSI can be expressed as

Rave, I = E

[
M
∑

k=2

log2

(

1 +
αk |r̂k |

2

|r̂k |2ak−1+σ 2
ǫ + 1

ρ

)]

+ E

[

log2

(

1 +
α1|r̂1|

2

σ 2
ǫ + 1

ρ

)]

=

M
∑

k=1

E

[

log2

(

1 +
ρak |r̂k |

2

1 + ρσ 2
ǫ

)]

︸ ︷︷ ︸

Q̂k

−

M
∑

k=2

E

[

log2

(

1 +
ρak−1|r̂k |

2

1 + ρσ 2
ǫ

)]

︸ ︷︷ ︸

V̂k

, (36)

where the average rate of X is defined as

E(X) =

∫ +∞

−∞
log2(1 + x) fX (x)dx .

From the F|r̂k |2
(z) in (32), we have

lim
z→∞

F|r̂k |2
(z) = k

(
M
k

)
k−1
∑

r=0

(
k−1

r

)

(−1)r

r + M − k + 1
= 1. (37)

The F|r̂k |2
(z) in (32) can be rewritten as

F|r̂k |2
(z)≈1+k

(
M
k

)
k−1
∑

r=0

(
k−1

r

)

(−1)r

r +M−k+1

r+M−k+1
∑

j=1

(
r+M−k+1

j

)

×

(
−π

nD

) j
(

n
∑

i=1

∣
∣
∣
∣
sin

2i − 1

2n
π

∣
∣
∣
∣

xi exp

(

−z

x−α
i −σ 2

ǫ

)) j

︸ ︷︷ ︸

Qi,n

.

(38)

By using the multinomial Theorem, Qi,n can be further expand

as

Qi,n =
∑

t1+t2+···+tn=j

j!

t1!t2! · · · tn!

×

n
∏

i=1

(∣
∣
∣
∣
sin

2i − 1

2n
π

∣
∣
∣
∣

xi exp

(

−z

x−α
i − σ 2

ǫ

))ti

=
∑

t1+t2+···+tn=j

j!

t1!t2! · · · tn!

n
∏

i=1

(∣
∣
∣
∣
sin

2i − 1

2n
π

∣
∣
∣
∣

xi

)ti

× exp

(

−z

n
∑

i=1

ti

x−α
i − σ 2

ǫ

)

. (39)

The expectation Q̂k in (36) can be evaluated as
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Q̂k =
ρak

ln 2

∫ ∞

0

1 − F|r̂k |2
(z)

1 + ρσ 2
ǫ + zρak

dz

(a)
=

−ρakk
(

M
k

)

ln 2

k−1
∑

r=0

(
k−1

r

)

(−1)r

r + k

r+M−k+1
∑

j=1

(
r+M−k+1

j

)

×

(
−π

nD

) j ∑

t1+t2+···+tn= j

n
∏

i=1

(∣
∣
∣
∣
sin

2i − 1

2n
π

∣
∣
∣
∣

xi

)ti

×
j!

t1!t2! · · · tn!

∫ ∞

0

exp

(

−z
∑n

i=1
ti

x−α
i −σ 2

ǫ

)

1 + ρσ 2
ǫ + zρak

dz

︸ ︷︷ ︸

Q̂ki

, (40)

where (a) follows from (38) and (39).

Let t = 1 + zρak

1+ρσ 2
ǫ

, the integral Q̂ki in (40) can be evaluated

as

Q̂ki =
exp(ci )

ρak

∫ ∞

1

exp(−tci )

t
dt =

exp(ci )

ρak

E1(ci ), (41)

where ci = 1
ρak

∑n
i=1

(1+ρσ 2
ǫ )ti

x−α
i −σ 2

ǫ

, and E1(z) =
∫∞

1
e−zt

t
dt is

exponential integral.

Substituting (41) into (40), the proof Q̂k is completed.

Similarly, we can obtain V̂k . Substituting the results of Q̂k and

V̂k into (36), the proof is completed.

APPENDIX C

PROOF OF COROLLARY 3

When α = 2, by using (37), F|r̂k |2
(z) in (16) can be expressed

as

F|r̂k |2
(z) = 1 +

k−1
∑

r=0

k
(

M
k

)(
k−1
r

)

(−1)r

r +M−k+1

×

r+M−k+1
∑

j=1

(
r+M−k+1

j

)

(−1) j

(

1 − exp(−zD2)
) j

D2 j z j
.

(42)

Similar to (40), Q̂k in (36) can be evaluated as

Q̂k =
ρak

ln 2

∫ ∞

0

1 − F|r̂k |2
(z)

1 + zρak

dz

= −
ρak

ln 2

k−1
∑

r=0

k
(

M
k

)(
k−1
r

)

(−1)r

r +M−k+1

r+M−k+1
∑

j=1

(
r+M−k+1

j

)

×
(−1) j (ρak)

j−1

D2 j

∫ ∞

0

(

1 − exp(−z D2

ρak
)

) j

z j (1 + z)
dz

︸ ︷︷ ︸

Q j

. (43)

By using partial fractions decomposition and the binomial

Theorem,

Q j =

∫ ∞

0

⎛

⎝
(−1) j

1 + z
+

(−1) j−1

z
+

j
∑

q=2

(−1) j−q

zq

⎞

⎠ dz

︸ ︷︷ ︸

Q j1

+

j
∑

p=1

(
j
p

)

(−1)p+ j

∫ ∞

0

e
−zp D2

ρak

1 + z
dz

+

j
∑

q=1

j
∑

p=1

(
j
p

)

(−1) j−q+p

∫ ∞

0

e
−zp D2

ρak

zq
dz

︸ ︷︷ ︸

Q j2

. (44)

The above three integrals can be evaluated as

Q j1 = − lim
z→0

⎛

⎝(−1) j ln z +
1

1 − q

j
∑

q=2

(−1) j−q

zq−1

⎞

⎠ , (45)

∫ ∞

0

e
−z

pD2

ρak

1 + z
dz = e

pD2

ρak E1(
pD2

ρak

), (46)

Q j2 = lim
z→0

q−1
∑

v=1

(q − v − 1)!(−pD2)v−1e−pD2z

(q − 1)!zq−v

+ lim
z→0

(− pD2

ρak
)q−1

(q − 1)!
E1

(

z
pD2

ρak

)

, (47)

where (46) and (47) follow from [26, (8.211.1)] and [26,

(2.324.2)], respectively.

Substituting (45), (46), and (47) into (43), and also using the

Taylor series expansion of the exponential integral [26]

E1

(

z
pD2

ρak

)

= −C − ln z − ln

(
pD2

ρak

)

−

∞
∑

k=1

(

z
pD2

ρak

)k

kk!
,

the proof of Q̂k is completed. Similarly, we can prove V̂k in

(36). Substituting the results of Q̂k and V̂k into (36), the result

of (22) is obtained.

APPENDIX D

PROOF OF THEOREM 3

Since SIC is used in the NOMA protocol, the k-th nearest

user can detect successfully its own signal only if the k-th near-

est user successfully decodes the i-th (k + 1 ≤ i ≤ M) user’s

signal, where the distance di is larger than dk . After the k-th

nearest user can remove these interference signal. The event

that the k-th nearest user successfully decodes the i-th nearest

user’s message is defined as

Ek,i =

{

αi |rk |
2

|rk |2
∑i−1

l=1 αl + 1
ρ

> εi

}

=

⎧

⎨

⎩
|rk |

2 >
εi

ρ

(

αi − εi

∑i−1
l=1 αl

)

⎫

⎬

⎭
, (48)
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where the eq. (48) is conditioned on αi > εi

∑i−1
l=1 αl .

Therefore the outage probability of the k-th nearest user can

be expressed as

Pk
out,I I = 1 − Pr

⎧

⎨

⎩

M
⋂

i=k+1

(

|rk |
2 > ηi

)

⎫

⎬

⎭

= 1 − Pr
{

|rk |
2 > 
η

}

= F|rk |2
(
η), (49)

where ηi = εi

ρ

(

αi −εi

∑i−1
l=1 αl

) , and 
η = max
k+1≤i≤M

ηi .

The CDF of |rk |
2 can be evaluated as follows. Since the

locations of the users are uniformly distributed within the disc

D, the distance d from an arbitrary user to the BS has the

probability distribution function (PDF) and CDF as follows

[28]:

fd(x) =
2x

D2
, Fd(x) =

x2

D2
, 0 < x ≤ D. (50)

Since d1 ≤ d2 ≤ · · · ≤ dM , by applying order statistics [19],

the PDF of the Euclidean distance dk from the origin to its k-th

nearest user as follows:

fdk
(x) = k

(
M
k

)

(Fd(x))k−1(1 − Fd(x))M−k fd(x)

= 2k
(

M
k

) x2k−1

D2k

(

1 −
x2

D2

)M−k

= 2k
(

M
k

)
M−k
∑

j=0

(
M−k

j

)

(−1) j x2(k+ j)−1

D2(k+ j)
, (51)

where the binomial coefficient
(

N
n

)

= N !
n!(N−n)!

.

Since the small-scale Rayleigh fading and large-scale path

loss are independent, the CDF of the channel gain |rk |
2 can be

evaluated as

F|rk |2
(z) = Pr

{
|hk |

2

dα
k

≤ z

}

=

∫ D

0

(1 − e−zxα

) fdk
(x)dx

= 1 − 2k
(

M
k

)
M−k
∑

j=0

(
M−k

j

) (−1) j

D2(k+ j)

×

∫ D

0

e−zxα

x2(k+ j)−1dx

= 1 − 2k
(

M
k

)
M−k
∑

j=0

(
M−k

j

) (−1) j

D2(k+ j)

×
z− 2(k+ j)

α

α
γ (

2(k + j)

α
, zDα), (52)

where γ (a, b) =
∫ b

0 ta−1e−t dt is a lower incomplete gamma

function [26].

Substituting 
η into (52), the proof is completed.

APPENDIX E

PROOF OF THEOREM 4

When R∗
i = Ri , and there are only two users in the disk. The

rate of U1 and U2 in (9) can be rewritten as

R2 = log2

(

1 +
α2|r2|

2

|r2|2α1 + 1
ρ

)

, (53)

and

R1 =

⎧

⎨

⎩

log2(1 + α1ρ|r1|
2), if|r1|

2 ≥ |r2|
2;

log2

(

1 + α1|r1|
2

α2|r1|2+
1
ρ

)

, otherwise.
(54)

Then the average sum rate of the NOMA systems can be

expressed as

Rave, II = E

[

log2(1 + α1ρ|h1|
2d−α

1 ) |
|h1|

2

dα
1

≥
|h2|

2

dα
2

]

︸ ︷︷ ︸

Q1

+ E

[

log2

(

1 +
α1|h1|

2d−α
1

|h1|2d−α
1 α2 + 1

ρ

)

|
|h1|

2

dα
1

<
|h2|

2

dα
2

]

︸ ︷︷ ︸

Q2

+ E

[

log2

(

1 +
α2|r2|

2

|r2|2α1 + 1
ρ

)]

︸ ︷︷ ︸

Q3

. (55)

Since the joint PDF of d1 and d2 is fd1,d2
(x, y) = 8xy

D4 , 0 <

x < y < D [19], the expectation Q1 can be evaluated as

Q1 =
8

D4

∫ D

x=0

∫ ∞

u=0

log2(1 + α1ρ
u

xα
)

×

∫ D

y=x

∫ uyα

xα

v=0

e−v ydvdy

︸ ︷︷ ︸

Q11

e−u xdudv. (56)

The double integral Q11 in (56) can be calculated as

Q11 =

∫ D

x

y

(

1 − e− uyα

xα

)

dy

=
D2

2
−

x2

2
−

x2

αu
2
α

γ

(
2

α
,

u Dα

xα

)

+
x2

αu
2
α

γ

(
2

α
, u

)

.

(57)

Substituting (57) into (56), one can observe that the final result

of Q1 contains a double integral, since Q11 consists of a lower

incomplete gamma function. In order to obtain more insights

to Q1, the Gaussian-Chebyshev integration can be used to

approximate the result of Q11 in (56) as

Q11 =

∫ D

x

y

(

1 − e− uyα

xα

)

dy
(a)
≈

π

4n

n
∑

i=1

∣
∣
∣
∣
sin

(2i − 1)π

2n

∣
∣
∣
∣

× τi

(

D2 − x2 + x2e−u
τα
i

2α − D2e−u(
Dτi
2x

)α
)

, (58)

where τi = 1 + cos (2i−1)π
2n

, and (a) follows from Gauss-

Chebyshev integration [20].

Substituting (58) into (56), Q1 can be rewritten as

Q1 =
2π

nD4

n
∑

i=1

τi

∣
∣
∣
∣
sin

(2i − 1)π

2n

∣
∣
∣
∣

∫ D

0

∫ ∞

0

log2(1 +
α1ρu

xα
)

×

(

D2−x2+x2e−u
τα
i

2α − D2e−u(
Dτi
2x

)α
)

e−uduxdx . (59)
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Denote the interior integral of Q1 is Q12, which can be

evaluated as

Q12 =

∫ ∞

0

log2(1 +
α1ρu

xα
)

(

D2 − x2 + x2e−u
τα
i

2α

−D2e−u(
Dτi
2x

)α
)

e−udu

=
(D2 − x2)ρα1x−α

ln 2

∫ ∞

0

e−u

1 + ρα1x−αu
du

+
ρα1x−α+2

(

1 + (
τi

2
)α
)

ln 2

∫ ∞

0

e−u(1+(
τi
2 )α)

1 + ρα1x−αu
du

−
ρα1 D2x−α

(

1 + (
Dτi

2x
)α
)

ln 2

∫ ∞

0

e−u(1+(
Dτi
2x

)α)

1 + ρα1x−αu
du

=
(D2 − x2)ρα1x−α

ln 2
exp

(
xα

ρα1

)

E1

(
xα

ρα1

)

+
ρα1x−α+2

bi ln 2
exp

(
xαbi

ρα1

)

E1

(
xαbi

ρα1

)

−
ρα1 D2x−α

di (x) ln 2
exp

(
xαdi (x)

ρα1

)

E1

(
xαdi (x)

ρα1

)

, (60)

where bi = 1 + (
τi

2
)α , di (x) = 1 + (

Dτi

2x
)α .

Substributing (60) into (59), and using Gauss-Chebyshev

integration [20] again, we can obtain the final result of Q1 as

follows:

Q1 ≈
π2

n2 D3 ln 2

n
∑

i=1

τi

∣
∣
∣
∣
sin

(2i − 1)π

2n

∣
∣
∣
∣

×

n
∑

j=1

x j

∣
∣
∣
∣
sin

(2 j − 1)π

2n

∣
∣
∣
∣

(

(D2 − x2
j )ρα1x−α

j

× exp

(

xα
j

ρα1

)

E1

(

xα
j

ρα1

)

+ g1(α1) − g2(α1)

)

, (61)

where x j = D
2

(

1 + cos( (2i−1)π
2n

)

)

.

Similar to Q1, we can obtain Q2 as follows:

Q2 ≈
π2

n2 D3

n
∑

i=1

τi

∣
∣
∣
∣
sin

(2i − 1)π

2n

∣
∣
∣
∣

n
∑

j=1

x j

∣
∣
∣
∣
sin

(2 j − 1)π

2n

∣
∣
∣
∣

× (g2(1) − g2(α2) − g1(1) + g1(α2)) . (62)

The expectation Q3 in (55) will be evaluated as follows. Let

Z = α2|r2|
2

α1|r2|2+
1
ρ

, the CDF of Z can be obtained as

FZ (z) = Pr

{

α2|r2|
2

α1|r2|2 + 1
ρ

< z

}

= Pr

{

|r2|
2 <

z

ρ(α2 − α1z)

}

(a)
= 1 −

4

D4

∫ D

0

x3e
− zxα

ρ(α2−α1z) dx

= 1 −
4ρ

4
α (α2 − α1z)

4
α

αz
4
α D4

γ

(

4

α
,

z
4
α Dα

ρ
4
α (α2 − α1z)

4
α

)

,

(63)

where 0 < z <
α2
α1

, and (a) follows from (52). If the closed-

form expression of FZ (z) in (63) is used to evaluate the average

rate of Q3 directly, the final result will contain integral expres-

sions. Since the average rate of Q3 is evaluated as Q3 =
∫

α2
α1

0
4ρ

4
α (α2−α1z)

4
α

αz
4
α D4(1+z)

γ ( 4
α
, z

4
α Dα

ρ
4
α (α2−α1z)

4
α

)dz, it is difficult to solve

the integral Q3 which contains a lower incomplete gamma

function. In order to obtain Q3 in closed-from approximation,

we apply Gauss-Chebyshev integration [20] to approximate the

FZ (z) as follows:

FZ (z) ≈ 1−
2π

nD3

n
∑

i=1

∣
∣
∣
∣
sin

(2i −1)π

2n

∣
∣
∣
∣

x3
i e

−zxα
i

ρ(α2−α1z) . (64)

Now, the expectation Q3 is evaluated as

Q3 =
1

ln 2

∫ α2
α1

0

1 − FZ (z)

1 + z
dz

=
2π

nD3 ln 2

n
∑

i=1

∣
∣
∣
∣
sin

(2i −1)π

2n

∣
∣
∣
∣

x3
i

∫ α2
α1

0

e

−zxα
i

ρ(α2−α1z)

1+z
dz

︸ ︷︷ ︸

Q31

.

(65)

Let t =
zxα

i

ρ(α2−α1z)
, the above integral Q31 can be calculated as

Q31 =

∫ ∞

0

ρα2xα
i e−t

(ρt + xα
i )(ρα1t + xα

i )
dt

=

∫ ∞

0

ρe−t

ρt + xα
i

dt −

∫ ∞

0

ρα1e−t

ρα1t + xα
i

dt

= exp

(
xα

i

ρ

)

E1

(
xα

i

ρ

)

− exp

(
xα

i

ρα1

)

E1

(
xα

i

ρα1

)

. (66)

Substituting (61), (62), (66) and (65) into (55), the proof is

completed.
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