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In this paper, the use of the principal component test for the identification stage of three existing
collective compensation strategies is presented. The three modified techniques are UBET
(unbiased estimation of gross errors), SEGE (simultaneous estimation of gross errors) in the
form of their recent modifications (MUBET and MSEGE), and SICC (serial identification with
collective compensation). These techniques are modified to apply a statistical test based on
principal component analysis instead of the nodal, global, and measurement tests they use. The
performance of the modified techniques is assessed by means of Monte Carlo simulations.
Comparative analysis indicates that PCA tests do not significantly enhance the ability in
identification features of these strategies, and even in some cases, it may lower the exact
identification performance.

Introduction

Typically, the presence of biased instruments and
leaks, as well as departures from steady state, invali-
dates the results of data reconciliation techniques. These
are performed to estimate process variables in such a
way that balance constraints are satisfied, but to obtain
accurate estimates, some action should be taken to
eliminate the influence of gross errors. The application
of a hypothesis statistical test has been extensively used
for this purpose. The global test,1 the measurement
test,2,3 the nodal test,1,4 the generalized likelihood ratio
(GLR)5 test, and Bonferroni tests6 have been used for
gross error identification. Recently, principal component
tests (PCT) have been proposed by Tong and Crowe.7,8

Some results on their performance were reported by
Tong and Bluck.9 The authors indicated that tests based
on principal component analysis (PCA) are more sensi-
tive to subtle gross errors and have greater power to
correctly identify the variables in error than the first
three tests.

For multiple gross error identification and estimation,
serial elimination, serial compensation, and simulta-
neous or collective compensation strategies have been
proposed. Among them, collective compensation strate-
gies have some advantages: they are applicable to all
types of gross errors, can maintain redundancy during
the procedure, and provide better estimates thanks to
the collective estimation.6

Collective compensation strategies have been pre-
sented for steady-state linear processes by Rollins and
Davis,6 Keller et al.,10 Kim et al.,11 and Sánchez and
Romagnoli,12 that considered the simultaneous estima-
tion of all gross errors. In addition, Bagajewicz and
Jiang13 proposed a collective compensation strategy for
dynamic systems that can be used for steady-state cases.

The methods presented by Keller et al.,10 Rollins and
Davis,6 and Sánchez and Romagnoli12 (CGLR, UBET,
and SEGE) have been recently modified to avoid sin-
gularities and to assess uncertainties (Bagajewicz et
al.14 and Sánchez et al.15).

The increasing application of PCA in process monitor-
ing and fault diagnosis (Gertler et al.,16 Tong and
Bluck,9 Vedam and Venkatasubramanian,17 and Jia et
al.18) suggests the need of reviewing these methods in
the area of gross error identification and comparing
their performance. In this work, the performance of PCA
tests will be evaluated in a systematic way using Monte
Carlo simulation (Iordache et al.19). For this analysis,
the statistical tests applied in the identification step of
three existing collective compensation strategies are
replaced with PCA tests, while the estimation stage
remains unchanged. The study considers the following
techniques: UBET, unbiased estimation of gross errors6

as modified by Bagajewicz et al.;14 SEGE, simultaneous
estimation of gross errors12 as modified by Sánchez et
al.;15 and SICC, serial identification with collective
compensation,20 for which a variant is also proposed in
this paper.

The paper is organized as follows: The PCT is
reviewed first. The modified versions of UBET and
SEGE (MUBET and MSEGE) are reviewed next, fol-
lowed by a discussion of modifications performed to
SICC. Last, results are discussed.

Principal Component Tests

In this section a review of principal component tests
proposed by Tong and Crowe7 is presented. Both the
principal component nodal test (PCNT) and the princi-
pal component measurement test (PCMT) are briefly
described.

Given a linear steady-state process, the residuals of
the constraints are defined as

where y is the vector of measurements and A the
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balance matrix. For simplicity, in this formulation it is
assumed that all variables are measured. This is not a
limitation because the unmeasured variables can be
removed using, for example, the reduced balance
scheme,21 matrix projection,3 QR decomposition,22,23 or
matrix co-optation.24

Assuming that the measurement errors follow a
certain distribution with covariance Ψ, then r will follow
the same distribution with expectation and covariance
given by

The eigenvalue decomposition of matrix Φ is formulated
as

where Ur is the matrix of orthonormalized eigenvectors
of Φ (UrUr

T ) I) and Λr is the diagonal matrix of the
eigenvalues of Φ.

Accordingly, the following linear combinations of r are
proposed

where

and pr consists of the principal components. Also, r ∼
P(0,Φ) w pr ∼ P(0,I), for any distribution P. That is, a
set of correlated variables r is transformed into a new
set of uncorrelated variables pr. If the measurement
errors are normally distributed, then the principal
components will be normally distributed too. That is, y
∼ N(x,Ψ) w pr ∼ N(0,I). Consequently, instead of
looking at a statistical test for r, the hypothesis test may
be performed on pr. Tong and Crowe7 proposed the
following principal component nodal test:

which is tested against a threshold tabulated value. The
constraints suspected to be in gross error can further
be identified by looking at the contribution from the jth
residual in r (rj) to a suspect principal component, say
pi

r, which can be calculated by

where wi
r is the ith eigenvector in Wr.

Similarly, the principal component measurement test
can be stated as follows:

The vector of adjustments a and its covariance matrix
V are

The vector of principal components, pa, is the follow-
ing linear combination of a:

Because V is singular, Λa has some eigenvalues which
are zero. Then, instead of normalizing the whole vector
pa and applying the test, as in the case of the PCNT,
we only normalize those components whose eigenvalues
are different from zero. Without loss of generality,
consider that the first t eigenvalues are different from
zero. Then define

where λa,i is the eigenvalue, that is, the ith diagonal
position of

Thus, the normalized principal components are

Then, a ∼ P(0,V) w pa ∼ P(0,T). When the adjustments
are normally distributed, Tong and Crowe7 proposed the
PCMT to be based on the testing of the t uncorrelated
variables pi

a against a threshold tabulated value.
In both PCNT and PCMT, the measurements in gross

errors can further be identified by looking at the
contribution from the jth residual/adjustment to a
suspect principal component, say, pi

a. This contribution
is calculated as follows:

To assess the number of major contributors k1 for a
suspect principal component pi

a, a vector g′ is defined
that contains the elements gj in descending order of
their absolute values. Then k1 is set so that

where ú may be fixed, for example, at 0.1.

Collective Compensation Strategies

In this section, three collective compensation strate-
gies are reviewed.

(a) Review of MUBET. The unbiased estimation
technique, UBET,6 is developed from the balance re-
siduals, defined by eq 1 and its expected value

where

and n and q are the number of measured variables and
constraint equations, respectively, δ and γ are the
unknown n × 1 measurement biases and q × 1 leaks,
A is a q × n constraint matrix with rank (A) ) q, and
mj is a q × 1 vector with zeros in every position but a 1
in the jth.

E{r} ) r* ) 0 Φ ) cov{r} ) AΨAT (2)

Ar ) Ur
TΦUr (3)

Pr ) Wr
T(r - r*) ) Wr

Tr (4)

Wr ) UrΛr
-1/2 (5)

Pi
r ) (WrTr)i ∼ N(0,1) i ) 1, ..., npr (6)

gj ) (wi
r)jrj j ) 1, ..., m (7)

a ) ΨAT(AΨAT)-1Ay (8)

V ) ΨAT(AΨAT)-1AΨ (9)

pa ) Wa
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a)Ta i ) 1, ..., t (13)
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a

pi
a | e ú (15)

µr ) Aδ + Mγ (16)

M ) [m1, ..., mq] (17)
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By partitioning A, M, δ, and γ and assuming there
are always q gross errors, one can get

Finally, by introducing

one obtains

Thus, li
Tr (i ) 1, ..., q) are unbiased estimators of the

components of δ and γ contained in θ1.
According to Rollins and Davis,6 the procedure for

applying UBET can be summarized as follows:
(1) Use a gross error identification strategy, like the

nodal strategies reported by Mah et al.4 and Serth and
Heenan,25 to isolate the suspect nodes and construct the
candidate bias/leak list from the suspect nodes.

(2) Obtain θ1 with elements no more than the number
of constraint equations (q).

(3) Construct C1 with rank equal to q.
(4) Obtain the size estimation for the elements in θ1.
(5) Use the Bonferroni test to identify the gross errors.
Bagajewicz et al.14 have presented a modified version

of this strategy, which addresses singularities and
uncertainties of the original method (MUBET). The
modifications are the following:

(i) In step 1, after the candidate bias/leak list is
constructed, the equivalency theory13 is applied to delete
the possible existing loops in this list. All candidates
are checked one by one. If a candidate forms a loop with
any candidate(s) checked, it will be deleted from the list.

(ii) After this modified step 1, in view of the equiva-
lency theory, the elements of θ1 in step 2 will certainly
be no more than the number of constraint equations (q).
Therefore, θ1 can be directly transferred from step 1.

(iii) In step 3, if the number of elements in θ1 is less
than q, one has to add other streams/leaks as candidates
to θ1 to make the number equal to q. Any of these
streams/leaks must be checked to be sure that it is not
forming a loop with any element(s) in θ1 before it is
added.

(b) Review of MSEGE. In this technique, a collective
statistical test based on the vector of adjustments a is
selected to detect the presence of gross errors. The null
and alternative hypotheses are stated as follows: H0 )
aTΨ-1a, E(a) ) 0; H1 ) E(a) * 0. The global test statistic
H0 is used to compare both alternatives.

If H0 is rejected, the first stage of the procedure starts.
This allows the isolation of a subset of constraints that
do not pass the global test. This applies a recursive
procedure that has the advantage that only the recipro-
cal of a scalar has to be computed in each step. In this
procedure, equations are added one by one to the least-
squares estimation problem of the vector x. After each
addition, the objective function (ofv) of the least-squares
estimation technique is calculated and compared with
the critical value τc. For updating the test statistic, the

following expressions are applied

where Σc
new and Σc

old represent the covariance matrices
of the measurement estimates after and before equation
addition, and Bi stands for the added equation.

After an equation is incorporated, the following is
checked:

(a) If ofv > τc, gross errors are detected, so the last
equation of the system of equations is eliminated. All
of the measurements involved in the constraint and a
leak from the corresponding node are added to the list
of suspected gross errors.

(b) If ofv < τc, gross errors are not detected after the
addition of the constraint, and the constraint remains
in the set.

From stage 1 of the procedure, a set of measurements
and units suspected of being biased or having leaks is
obtained. In stage 2, the identification and estimation
of gross errors is accomplished by the following proce-
dure:

(1) Set the number of gross errors s to 1 (s ) 1).
(2) Take all combinations of s gross errors and run

the corresponding reconciliation model (biases only,
leaks only, or biases and leaks).

(3) Determine which combination of gross errors gives
the lowest objective function value.

(4) If the global test is satisfied, stop. The combination
or combinations with the lowest objective function value
involve gross errors. Otherwise, increase s by 1 (s ) s
+ 1) and go to step 2.

Sánchez et al.15 have modified this strategy to address
singularities and uncertainties of the original method
(MSEGE). The modifications are as follows:

(i) If a set to be investigated in stage 2 is equivalent
to a set previously considered, the set is ignored, as the
result is known.

(ii) If a set to be investigated in stage 2 is included in
any loop of the augmented graph, the set is ignored. It
is known that it will be singular, as it cannot capture
the number of gross errors targeted.

(iii) All equivalent sets are identified at the end of
the application of the algorithm.

(C) Review of SICC. This strategy relies on the
measurement test for gross error detection. It uses the
MT to make a list of suspect gross errors and identifies
from the list one gross error using a compensation
model.13 This error is put in a list of confirmed gross
errors. Next a new list of suspects is constructed, and
the compensation model is run using the confirmed
gross errors and a new candidate at a time to determine
which should be added to the confirmed gross error list.
The procedure is repeated until no gross errors are
detected. Leaks are identified using the equivalency
theory.

The technique is made up of the following steps:
(1) Run the data reconciliation and calculate the

measurement tests (MT). If there are no MT flags,
declare no gross error and stop. Otherwise, go to step
2.

(2) Construct a list of candidates (LC) by including
all variables that failed the MT. If any two members in

Σc
new ) Σc

old - Σc
oldBi

T(BiΣc
oldBi

T)-1BiΣc
old (21)

x̂new ) Σc
newΨ-1y (22)

ofv ) (y - x̂)Ψ-1(y - x̂) (23)

µr ) [A11 0
A21 M22 ][δ1

γ2 ] ) C1θ1 (18)

li
T ) ei

TC1
-1 (19)

li
Tµr ) ei

Tθ1 ) θi (20)
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LC form a loop, erase one of them. Create a list of
confirmed gross errors (LCGE). This list is empty at this
stage.

(3) Run the data reconciliation with the gross error
estimation model simulating a gross error in all of the
members of the LCGE and in one member of the LC at
a time.

(4) Determine which member of the LC leads to the
smallest value of the objective function. Add that
variable to the LCGE.

(5) Calculate MT for the run chosen in step 4. Erase
all elements of the LC and place the latest flagged
variables in LC. If there are any two members in LC
forming a loop with any member(s) in LCGE, erase one
of them. If LC is empty, go to step 6. Otherwise, go to
step 3.

(6) Determine all equivalent sets and corresponding
gross error sizes. Declare all members in LCGE in
suspect and stop.

A Nodal Test Based SICC (NT-SICC)

The original version of SICC relies on the measure-
ment test for the identification step. To identify leaks,
this method needs to resort to equivalency theory, as
the compensation model only uses biases. The nodal test
can be used to construct a list of candidates. This list
will now include leaks, and thus the full compensation
module with biases and leaks can be used. The modi-
fications are summarized next:

(i) In step 1: Calculate the nodal tests (NT). If there
are no NT flags, declare no gross error and stop.
Otherwise, go to step 2.

(ii) In step 2: Construct a list of candidates (LC) by
including all streams and leaks connected to the nodal
tests that have failed. If any two members in LC form
a loop, erase one of them. Create a list of confirmed gross
errors (LCGE). This list is empty at this stage.

(iii) In step 5: Calculate NT for the run chosen in step
4. Erase all elements of the LC and place the latest
flagged variables in LC. If any two members in LC form
a loop, erase one of them. If there is any member in LC
forming a loop with any member in LCGE, erase it from
LC. If there are any two members in LC forming a loop
with any member in LCGE, erase one of them. If LC is
empty, go to step 6. Otherwise, go to step 3.

Inclusion of Principal Component Tests

The aforementioned techniques have been modified
to use PCA tests. For MUBET, the strategy of pseud-
onodes25 has been replaced by PCNT. However, the
Bonferroni tests used at the end of the estimation step
have been left unaltered. The same modification is
performed to MSEGE: Its stage 1 is accomplished now
by PCNT to obtain a suspect set of measurements and
leaks. In the case of SICC, the measurement test was
replaced by the PCMT test. Finally, in the case of the
nodal test-based SICC (NT-SICC), the nodal test was
replaced by PCNT.

Simulation Procedure and Uncertainty
Removal

A simulation procedure was applied to evaluate the
performance of the aforementioned strategies. The

method proposed by Iordache et al.19 was followed. Each
result is based on 10 000 simulation trials where the
random errors are changed and the magnitudes of gross
errors are fixed.

Three performance measures of exact identification
are used: overall power (OP), average number of type
I errors (AVTI), and expected fraction of perfect iden-
tification (OPF). They are defined as follows:

The first two measures are proposed by Mah and
Narasimhan5 and the last one by Rollins and Davis.6

In addition, a set of gross errors may have its
equivalent basic sets, as described by Bagajewicz and
Jiang.13 Thus, to assess these uncertainties, a new
measure, the overall performance of equivalent identi-
fication (OPFE), was introduced recently by Sánchez et
al.15

(a) Determination of OPFE. To clarify the uncer-
tainty in gross error detection, a series of concepts were
presented in a recent paper.13 Two sets of gross errors
are considered equivalent when they have the same
effect in data reconciliation. Equivalent sets usually
have the same gross error cardinality. However, in some
cases when a set of gross errors has special sizes
(usually equal to each other), it can be represented by
another set of gross errors with different cardinality.
These cases are called degenerate.

When a set of gross errors is obtained, one can identify
if it is a successful identification by simply applying the
conversion equation between equivalent sets, which has
been proposed by Jiang and Bagajewicz:20

where A is the incidence matrix, δ̂1 and γ̂1 are vectors
of biases and leaks for the set of gross errors identified,
δ̂2 and γ̂2 are vectors of biases and leaks for the set of
gross errors introduced, and L1, K1, L2, and K2 are
matrices reflecting the positions of biases and leaks in
the system.

Premultiplying both [AL1 K1] and [AL2 K2] by a
certain particular matrix, one can transform [AL2 K2]
into a canonical form and obtain the new gross error
sizes δ̂2 and γ̂2.

In addition, sometimes many sets of gross errors can
represent degeneracy if certain tolerance is allowed.
These situations are called quasi-degeneracy.20 For
example, consider the flowsheet of Figure 1. In particu-
lar consider one existing gross error in S2 of size δ2 )
-1. Consider now that a particular gross error identi-
fication method finds gross errors in S4 and S5 of sizes
δ4 ) +1 and δ5 ) +1. These variables are part of the
equivalent set (S2, S4, and S5), which has gross error
cardinality 2. To determine whether the identification

OP ) no. of gross errors correctly identified
no. of gross errors simulated

(24)

AVTI ) no. of gross errors incorrectly identified
no. of simulation trials

(25)

OPF ) no. of trials with perfect identification
no. of simulation trials

(26)

OPFE ) no. of trials with successful identification
no. of simulation trials

(27)

[AL1 K1][δ̂1
γ̂1 ]) [AL2 K2][δ̂2

γ̂2 ] (28)
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is successful, one should be able to convert from the set
of gross errors found to the originally introduced. In this
case, this is possible because, by virtue of degeneracy,
the two identified gross errors are equivalent to δ2 )
-1.

Quasi-degeneracy takes place when, for example, the
gross errors found are of sizes δ4 ) +0.98 and δ5 )
+1.01. Strictly, this set does not represent a degenerate
case. Rather, the conversion to an equivalent set con-
taining S2, such as, for example, (S2, S5), gives values
δ2 ) -0.98 and δ5 ) -0.01. Therefore, if δ5 is ignored
because its size is too small compared to a tolerance,
the gross errors introduced are retrieved and it can be
claimed that the identification was successful.

In eq 28, both sides are vectors. Strictly, when quasi-
degeneracy is not allowed, both sides have to be equal
to declare a successful identification. When quasi-
degeneracy is allowed, both sides are compared within
certain threshold tolerance τD.

Furthermore, another situation called quasi-equiva-
lency of gross errors can arise. Consider the following
example. Assume that, in Figure 1, a gross error is
introduced in stream S1 of size δ1 ) +1. Assume also
that the gross error identification finds two gross errors
in S1 and S2, with sizes δ1 ) +0.98 and δ2 ) +0.05. This
is a type I error but is accompanied with a small size
estimate. In principle, even though the result is based
on the usage of statistical tests, one is tempted to
disregard δ2 and declare the identification successful.
One important observation in this case is that S1 and
S2 are not a basic set of any subset of the graph. In other
words, no degeneracy or equivalency can apply.

Thus, generalizing quasi-equivalency occurs when
only a subset of the identified gross errors is equivalent
to the introduced gross errors, and in addition the
nonequivalent gross errors are of small size. Quasi-
equivalency is also detected by using eq 28 and a
threshold tolerance τE.

Thus, OPFE measure represents the fraction of trials
with successful identification. A trial is considered
successful if the set of simulated gross errors is identi-
fied in the simulated positions or if the strategy identi-
fies a set of gross errors which is equivalent to the
simulated set. OPFE is calculated in this paper by
allowing both quasi-degeneracy and quasi-equivalency.

(b) Differences in Success Measures. The perfor-
mance evaluation of gross error identification strategies
is intended to analyze their behavior in different situ-
ations (location and size of gross errors). In this paper
the evaluation procedure, which is based on Monte Carlo
simulations, proposes the use of three measures of
success: OP, OPF, and OPFE. The main differences
between them are the following:

(a) OP indicates the fraction of simulated gross errors
that are identified. Thus, some trials may identify other
errors that are neither simulated nor equivalent sets.

(b) OPF counts as successful those trials for which
all of the simulated gross errors are identified. As a
measure of exact identification, it is superior to OP

because it takes into account the fact that no extra gross
errors, except the simulated ones, are identified.

(c) OPFE is an extension of OPF, which avoids
considering a failure of the algorithm when a set
equivalent to the simulated set is identified. However,
no other gross errors, except the equivalent sets, are
allowed to participate in the identified set.

Results

First, the process flowsheet in Figure 2 is used with
comparative purposes. It consists of a recycle system
with five units and nine streams. The true flow rate
values are x ) [10, 20, 30, 20, 10, 10, 10, 4, 6]. The flow
rate standard deviations were taken as 2% of the true
flow rates.

Measurement values for each simulation trial were
taken as the average of 10 random generated values.
To compare results on the same basis, the level of
significance of each method was chosen such that it
gives an AVTI equal to 0.1 under the null hypothesis.
This common basis of comparison for gross error detec-
tion schemes was introduced by Rosenberg et al.26 The
same confidence levels for comparison have been used
by different authors too. If a comparison is performed
on such an alternative basis, the conclusions of this
paper do not vary. Each strategy was tested under the
same scenarios of gross errors introduced. The size of
the gross error is selected as 4 times its corresponding
flow rate standard deviation when there is only one
gross error, 5 and 3 times for two gross errors, and 5, 4,
and 3 times for three gross errors. If a leak is intro-
duced, then the minimum standard deviation of flow
rates connected to the corresponding process is chosen
for the selection of the leak’s size. In many papers where
the power of gross error detection is assessed, it has
been customary to use large sizes (around 10 standard
deviations). In this paper, we have chosen relatively
smaller values, especially because the claim has been
that PCA is more efficient in the case of small gross
errors. For this reason, the thresholds τD and τE are
quite permissive. They both have been chosen as the
maximum gross error size in the introduced set. If a
more stringent criterion is used, the values of OPFE
may be lower.

Table 1 shows the comparison between MUBET and
PCNT-MUBET. When there is one gross error, both of
them reached high and similar performance, i.e., high
OP, OPF, and OPFE with low AVTI. For more than one
gross error, the OPF for the two methods drops to low
values, reaching zero for the case of three gross errors.
However, the OPFE maintains good values and for
PCNT-MUBET is slightly higher in most cases.

The AVTI of all of these runs is substantially large
for the case of many gross errors. This indicates an
average large type I error. However, these are based
on consideration of the criterion of perfect identification.

Figure 1. Example of a flowsheet.
Figure 2. Example of a process flowsheet.
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Within these “failures” there are gross errors that are
equivalent to the introduced. A different version of AVTI
in which all equivalent and degenerate identifications
are considered as successful would show lower values
consistent with the large OPFE scores.

A comparison between MSEGE and PCNT-MSEGE
is shown in Table 2. For one gross error, MSEGE has
lower AVTI and higher OPF while OP and OPFE are
comparable to those of PCNT-MSEGE. For two gross
errors, SEGE also has better OPF. When OPFE is
considered, PCNT-MSEGE outperforms MSEGE 5 times
out of 10 for two or three gross errors. Thus, in terms
of perfect identification, PCA helps MSEGE strategy in

two situations, also makes no difference in two situa-
tions, and performs worse in 11 cases.

Table 3 indicates the simulation results for SICC and
PCMT-SICC. Performance measures show both strate-
gies have similar performance. For instance, out of 15
cases, the OPFE is higher in 6 cases for SICC and higher
in 3 cases for PCMT-SICC. The rest are about the same.

Table 4 shows a comparative performance of NT-SICC
and PCNT-SICC. Although performance measures are
slightly higher for PCNT-SICC, the conclusion that one
should make is that the inclusion of PCT does not
introduce any significant enhancement for the behavior
of NT-SICC.

Table 1. Performance Comparison between MUBET and PCNT-MUBET

gross error introduced MUBET PCNT-MUBET

no. locationa size AVTI OP OPF OPFE AVTI OP OPF OPFE

1 S1 0.8 0.1582 0.9626 0.8793 0.9978 0.1338 1.0000 0.8809 0.9992
S3 2.4 0.1141 0.9927 0.9066 0.9998 0.1717 1.0000 0.8414 0.9992
S5 0.8 0.2290 0.9431 0.8898 0.9984 0.1731 0.9995 0.8645 0.9991
S7 0.8 0.4162 0.8725 0.8165 0.9753 0.1590 0.9575 0.8234 0.9577
L3 0.8 0.1769 0.8337 0.7835 0.8756 1.7290 0.2983 0.2752 0.9678

2 S1, S4 1.0, 1.2 2.8005 0.0780 0.0686 0.9977 0.1189 0.9998 0.8896 0.9988
S3, S8 3.0, 0.24 0.7924 0.5828 0.1641 0.8155 1.3226 0.6836 0.3360 0.8661
S6, S7 1.0, 0.6 2.7848 0.2515 0.1285 0.6382 1.7704 0.5000 0.0000 0.7061
S2, S5 2.0, 0.6 1.2664 0.7030 0.3883 0.9557 0.1357 0.9993 0.8762 0.9981
S4, L2 2.0, 0.6 0.2287 0.8095 0.5876 0.6397 2.5140 0.5000 0.0000 0.7045

3 S1, S3, S5 1.0, 2.4, 0.6 2.4214 0.4949 0.1769 0.9560 0.0986 0.9982 0.9127 0.9996
S2, S4, S8 2.0, 1.6, 0.24 4.2424 0.0969 0.0000 0.8155 1.9111 0.6663 0.0000 0.8608
S6, S7, S9 1.0, 0.8, 0.36 4.8456 0.0013 0.0000 0.8728 3.8903 0.3335 0.0000 0.9150
S1, L2, L4 1.0, 0.8, 0.6 1.8961 0.3733 0.0005 0.9454 2.1917 0.3333 0.0000 0.8997
S7, S8, L3 1.0, 0.32, 0.6 2.3781 0.3641 0.0007 0.6074 1.8516 0.6072 0.0000 0.6866

a Sn means a bias in stream Sn and Ln a leak in unit n.

Table 2. Performance Comparison between MSEGE and PCNT-MSEGE

gross error introduced MSEGE PCNT-MSEGE

no. location size AVTI OP OPF OPFE AVTI OP OPF OPFE

1 S1 0.8 0.0448 0.9950 0.9593 0.9987 0.1021 0.9928 0.9066 0.9984
S3 2.4 0.0499 0.9932 0.9578 1.0000 0.1091 1.0000 0.9035 0.9978
S5 0.8 0.0434 0.9998 0.9577 0.9999 0.1006 0.9999 0.9025 1.0000
S7 0.8 0.0606 0.9776 0.9425 0.9785 0.1147 0.9776 0.8917 0.9776
L3 0.8 0.0840 0.9555 0.9326 0.9682 0.1328 0.9548 0.8943 0.9712

2 S1, S4 1.0, 1.2 0.6047 0.7105 0.6940 0.9986 0.6383 0.7127 0.6679 0.9991
S3, S8 3.0, 0.24 0.2165 0.8559 0.7038 0.7487 1.0820 0.7275 0.4189 0.6151
S6, S7 1.0, 0.6 0.1335 0.9337 0.8481 0.8821 0.1992 0.9342 0.8219 0.9003
S2, S5 2.0, 0.6 0.0475 0.9989 0.9551 0.9979 0.1052 0.9982 0.8998 0.9973
S4, L2 2.0, 0.6 0.3767 0.8321 0.6520 0.6822 0.1791 0.9451 0.8507 0.9134

3 S1, S3, S5 1.0, 2.4, 0.6 0.0655 0.9930 0.9540 0.9970 0.1044 0.9986 0.9014 0.9952
S2, S4, S8 2.0, 1.6, 0.24 0.1747 0.9166 0.7740 0.8225 1.7376 0.6572 0.0988 0.8838
S6, S7, S9 1.0, 0.8, 0.36 1.0947 0.6449 0.0000 0.9572 1.1736 0.6352 0.0000 0.9659
S1, L2, L4 1.0, 0.8, 0.6 1.9335 0.3444 0.0000 0.9151 2.0212 0.3386 0.0000 0.9472
S7, S8, L3 1.0, 0.32, 0.6 0.8449 0.7014 0.4061 0.6501 0.6601 0.7782 0.5466 0.9093

Table 3. Performance Comparison between SICC and PCMT-SICC

gross error introduced SICC PCMT-SICC

no. location size AVTI OP OPF OPFE AVTI OP OPF OPFE

1 S1 0.8 0.0713 1.0000 0.9293 0.9999 0.0653 1.0000 0.9353 1.0000
S3 2.4 0.0693 1.0000 0.9317 0.9999 0.0790 1.0000 0.9231 0.9996
S5 0.8 0.0731 1.0000 0.9274 1.0000 0.0631 1.0000 0.9372 1.0000
S7 0.8 0.0820 0.9787 0.9202 0.9797 1.1429 0.4236 0.4032 0.9473
L3 0.8 2.0355 0.0000 0.0000 0.9787 2.5566 0.0000 0.0000 0.9403

2 S1, S4 1.0, 1.2 0.0465 0.9988 0.9543 0.9983 0.0235 0.9995 0.9769 0.9994
S3, S8 3.0, 0.24 0.0717 0.9499 0.8749 0.9213 0.9851 0.5000 0.0000 0.9183
S6, S7 1.0, 0.6 0.1380 0.9438 0.8592 0.8983 1.3892 0.5091 0.0212 0.4978
S2, S5 2.0, 0.6 0.0478 1.0000 0.9523 1.0000 0.0241 1.0000 0.9760 1.0000
S4, L2 2.0, 0.6 1.9792 0.5000 0.0000 0.8790 1.8590 0.5000 0.0000 0.7987

3 S1, S3, S5 1.0, 2.4, 0.6 0.9413 0.9244 0.2985 0.9360 1.6100 0.7868 0.2969 0.8284
S2, S4, S8 2.0, 1.6, 0.24 0.0685 0.9530 0.8513 0.8882 0.9486 0.6667 0.0000 0.9049
S6, S7, S9 1.0, 0.8, 0.36 1.0685 0.6455 0.0000 0.9467 1.7177 0.6796 0.0460 0.8146
S1, L2, L4 1.0, 0.8, 0.6 2.0020 0.3333 0.0000 0.8150 2.0254 0.3333 0.0000 0.8798
S7, S8, L3 1.0, 0.32, 0.6 2.0572 0.3963 0.0000 0.4052 3.1281 0.1215 0.0000 0.6391
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These results clearly show that PCA is of help in some
situations and it does not make a difference in others.
Moreover, its application lowers the exact identification
performance of some strategies that are analyzed in this
paper. In this sense, PCA methods may be considered
as members of the broad spectrum of gross error
detection techniques and not superior strategies.

Although PCA strategies rely first on testing inde-
pendent variables against the normal distribution, in
the next steps the identification is broadened to the
entire set of residuals or adjustments. The contributions
to a suspect principal component are partially added to
assess the number of major contributors k1. There are
some numerical evidences that this procedure may not
be satisfactory enough because it enlarges the number
of residuals/measurements in suspect, depending on the
numerical values of the contributions and the threshold
value.

It has been discussed elsewhere13 that the use of OPF
as an assessment tool for the power of gross error
detection is misleading. The reason for this, it was
argued, is the fact that equivalent sets have an effect
on data reconciliation and therefore the identification
of equivalent gross errors should be considered a suc-
cess. However, for all practical purposes, high OPF may
still be a desired property, as it reflects exact identifica-
tion. However, as is shown from the examples, once one
departs from simple cases of one gross error, this
measure ceases to be practical. Thus, in the presence
of several gross errors, the identification of equivalent
sets is a must in practice. In addition, these equivalent
sets represent an uncertainty that, in the absence of
other information, is unavoidable.

Finally, if one chooses to use OPF instead of OPFE
as a comparison tool, except for the fact that all
techniques fail rather dramatically for a large number
of gross errors when OPF is used, the conclusions about
the introduction of PCA are the same.

Conclusions

The principal component tests have been added to
different collective compensation techniques. The per-
formance has then been compared to the regular tech-
niques using known tests. The simulation results show
that the use of PC tests does not necessarily improve
the power of serial identification strategies. In fact, it
sometimes performs better and sometimes worse. It also
appears then that the performance of these methods is
dependent on the location of the gross errors.
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Notation

a ) vector of measurement adjustments
A ) m × n balance matrix
AVTI ) average number of type I errors
Bi ) row vector corresponding to a balance constraint
C1 ) matrix defined by eq 18
ei ) vector with 1 in the ith place and zero elsewhere
g ) vector of contributions to a suspect principal component
I ) identity matrix
k1 ) number of major contributors to a suspect principal

component
K ) matrix for leaks’ positions
l ) vector used for making linear combinations of measure-

ments
L ) matrix for biases’ positions
M ) diagonal matrix of constants for calculating leaks
n ) number of measurements
npr ) number of elements of pr

npa ) number of elements of pa

OP ) overall power
OPF ) expected fraction of correct identification
ofv ) least-squares objective function value
P ) general distribution
q ) number of constraints
r ) equations’ residuals
s ) number of hypothesized gross errors
t ) number of nonzero eigenvalues
pr ) principal component vector of vector r
pa ) principal component vector of vector a
Ur ) matrix of orthonormalized eigenvectors of Φ
Ua ) matrix of orthonormalized eigenvectors of V
V ) covariance matrix of a
Wr ) matrix defined by eq 5
Wa ) matrix defined by eq 11
x̂ ) reconciled measurements
y ) vector of measurements

Greek Symbols

Ψ ) measurement error covariance matrix
Φ ) residual covariance matrix
Λr ) diagonal matrix of the eigenvalues of Φ
Λa ) diagonal matrix of the eigenvalues of V
δ(n × 1) ) measurement biases
γ(m × 1) ) leaks
ε ) vector of random measurement errors
τD, τE ) threshold tolerances

Table 4. Performance Comparison between NT-SICC and PCNT-SICC

gross error introduced NT-SICC PCNT-SICC

no. location size AVTI OP OPF OPFE AVTI OP OPF OPFE

1 S1 0.8 0.0850 0.9980 0.9156 0.9983 0.0668 0.9975 0.9345 0.9980
S3 2.4 0.0635 1.0000 0.9379 0.9998 0.0729 1.0000 0.9280 0.9999
S5 0.8 0.0655 1.0000 0.9354 0.9998 0.0659 1.0000 0.9344 0.9999
S7 0.8 0.0761 0.9784 0.9267 0.9800 0.0701 0.9780 0.9309 0.9790
L3 0.8 0.0997 0.8667 0.8015 0.8737 0.0945 0.9704 0.9088 0.9722

2 S1, S4 1.0, 1.2 1.4408 0.3518 0.2959 0.9993 1.4167 0.3321 0.3042 0.9986
S3, S8 3.0, 0.24 0.0664 0.8842 0.7395 0.7920 0.1333 0.9042 0.7761 0.8372
S6, S7 1.0, 0.6 0.1257 0.9363 0.8564 0.8847 0.1268 0.9258 0.8268 0.8639
S2, S5 2.0, 0.6 0.0314 1.0000 0.9687 1.0000 0.0293 1.0000 0.9707 0.9999
S4, L2 2.0, 0.6 0.3167 0.7550 0.4851 0.6105 0.3484 0.8830 0.7499 0.8590

3 S1, S3, S5 1.0, 2.4, 0.6 1.1615 0.8955 0.1564 0.9654 1.1299 0.9070 0.1578 0.9768
S2, S4, S8 2.0, 1.6, 0.24 0.0379 0.9198 0.7567 0.7920 0.0988 0.9199 0.7564 0.7972
S6, S7, S9 1.0, 0.8, 0.36 1.1174 0.6340 0.0000 0.9435 1.1250 0.6335 0.0000 0.9414
S1, L2, L4 1.0, 0.8, 0.6 0.9648 0.6507 0.0000 0.8623 1.6588 0.4156 0.0000 0.8728
S7, S8, L3 1.0, 0.32, 0.6 1.1991 0.4742 0.1942 0.5753 1.1790 0.5896 0.2408 0.8430
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µr ) expected value of r
θ1 ) vector with elements of δ and γ
τc ) critical value for the test statistic
Σ ) covariance matrix of x̂
Σc

old ) Σc for a resolved problem
Σc

new ) Σc for a new problem
ú ) prescribed tolerance
λa,i ) ith eigenvalue of V
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